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CDS 205: Final Homework-A Look at Suris’ Approach to Integrable Discretizations

As computers become a more vital part of our study of physics and en gineering, it is natural to
desire 10 bridge the gap between the well-developed tools of dynamical systems theory and numerical
analysis. Since computerized calculation is basically a discrete process, clever means for discretizing
dynamical systems are of great interest to the physicist or engineer. In doing such a discretization, one of
the major qualitative aspects of a dynamical system that one might seek to preserve is that of integrability
(i-e. if the continuous dynamical system has functionally independent integrals in involution (w.r.t. a given
bracket), then so too should the discretized version of the same). The method of time discretization
presented by Yuri B. Suris is one such method of integrability for a restricted class of Hamiltonian
systems. Since Suris neglects to provide proofs for the steps in his method (at least in his review papers), a
natural way to achieve mastery of the theory that he uses is to provide these proofs where they are missing,
or to flesh out the few that are provided.

Consider a Poisson Manifold, P, with Poisson bracket {®3}; H(u) be an integrable Hamiltonian:

i.e.u={H,u}. Weareinterested in the class of Hamiltonian systems which admit a Lax Representation.

3T:P —> g,A: P — g (where g s a Lie Algebra) such that the above differential equation can be

represented as T = [T, A]. In addition to admitting such a representation, we also restrict ourselves to the
class of systems for which the map A admits an R-operator (i.e. A=R(f(T)) where R is a linear operator:
88, and f is Ad-Covariant function on g: AdU f(T)= f(AdU T). Here Ad is the adjoint
representation of algebra g, a conjugation operation (like that seen in class when constructing the inner
automorphisms for determining the Lie Bracket of an algebra). It is important to not that this limits the
claim of universality of this approach greatly, as Suris states his belief that certainly many interesting
systems admit such a representation, but probably not all.

Since the idea of an R-matrix is so important to proceeding to build the structure that is to follow,
it is prudent to spend a few minutes taking a deeper look at these objects. Let g be a Lie Algebra, R a linear
operator: g->g. We say that R is a classical R-matrix if the bracket:

[X,Y]; =[RX,Y]+[X,RY] is a Lie Bracket (i.e. satisfies Poisson Identity as skew-bilinearity follows
trivially from fact [®, o] is a Lie Bracket). In such a case we define (g,R) as a double lie algebra equipped
with bracket [.,.]Jz. To connect this Lie algebra point of view with the integrable systems, let us now
consider on C®(g*) corresponding Lie-Poisson brackets:

{h,h}o(L) = L([X,, X,)])

{h,hy}x (L) = L([X, X, ),) = L(IRX,, X,] + [X,,RX,])

X,=dh€EgLEg*

Letting Ad*, and Adg* be the coadjoint representations of the corresponding algebras g, g;. We note that
from definition of the Lie Bracket that: AdgX L=Ad'RX L+ R'(Ad'X L)



Using this observation we can make our first connection between the classical R-matrix and the linear Lie-
Poisson structure:
Let(G.R) be a double Lie Algebra

i) Ad* invariant functions are in involution with respect to the Lie Poisson brackets on
CH(g")
ii) The Equations of motion on g* with an invariant Hamiltonian, h, with respect to Lie

Poisson bracket {.,.} can be written in two equivalent forms.

dL .
—=Ad,dh(L) L
dt rdh(L)

aL =Ad' R(dh(L)) L
dt

Here the proof of both parts is primarily a verification exercise:
i) Let h;,h, be Ad-invariant functions on g*:
{h,h,}o(L) = L([X,, X,]) = Ad'X, L(X,)=0 by dint of the fact that X,,X, are
derivatives of Ad-invariant functions.
{h,hy}e = LURX,, X, 1) + L(X,.RX, 1) = L(RX,. X, ) - LURX,, X,])
=Ad'X, L(RX,)-Ad X, L(RX,)=0
as both terms in the sum vanish due to the Ad-invariance property.

ii) Because h is an invariant Hamiltonian with respect to the R-bracket (Lie-Poisson), the

equations of motion can be written as:
dL .
= ={L,h}, = L(|L, X)) =Ad;X L

But h is Ad-invariant, so let us use our observation from above:
Ad;X L=Ad'RX L+ R'(AdX L), applying Ad-invariance of h forces the

second term to go to zero. This leaves the desired second form of the equations of

motion.
a ={L,h},=Ad'RX L
dt

So we have seen that the determination of R-brackets on the Poisson manifold and the Lie algebra
can be a powerful tool in connecting the Lax representation to the integrable system. However, it remains
to be seen, outside of an extremely lucky guess, how an appropriate R-operator is determined. In order to
establish some sufficient conditions, let us go back to the definition that |.,.]J; is a Lic bracket if and only if
it satisfies the Jacobi Identity:
[X.1Y,Z];], =[RX.[Y,Z] ]+ [X,RIY.Z)]
=[RX,[RY,Z]+(Y,RZ]]+ [X,RIRY,Z]+ R[Y,RZ]|]
=[-X.[RY,RZ||+[-XIY.Z]]+ [ X,[Y.Z),]



Adding in the cyclic permutations of the second term yields the Jacobi Identity for the standard Lie
Bracket: [X 1Y, ,Z]] + [Y JI1Z,X ]] + [Z,[X Y ]] =0, which leaves us with the cyclic permutations of the
first and third terms = [.,.] satisfies the Jacobi Identity iff:
[X.IRY,RZ]- R([Y,Z),)] +[V.[RZ,RX]- R(Z,X},)]+ [ZIRX,RY] - R((X,Y],)] =0
Two ways of forcing this condition to hold lead to the Yang-Baxter Sufficient conditions:
i) Force each second term in the brackets to be zero:
[RX,RY]= R(IX.Y],)VX,Y € g
This sufficient condition is known as the Yang-Baxter Equation.
ii) Force the terms to conform to the Jacobi Identity for the standard Lie Bracket:
[RX,RY]-R([X.Y])=-[X,YIVX,YE g
We note that by bilinearity of the Lie bracket, it is actually possible to place any non-zero
constant in front of the RHS and not change the Jacobi Identity (i.e.
[RX,RY])-R([X,Y];) =-a[X,Y]). This leads to the family of sufficient
conditions, known as Modificd Yang-Baxter Equations (MYB(R:)).
Together these results enable us to connect the Integrable structure on the Poisson manifold to the Lax
representation on the Lie algebra. Taking an arbitrary smooth function, Ad-invariant function,q, we can

write the equations of motion (as shown above) for R satisfying MY B:

dL
d—t = {¢,L}R = [T,R(V¢)]

But is this linear bracket construction satisfactory? It would seem, keeping one eye towards eventually
achieving some sort of discretization, that a higher order bracket structure might be preferable. With this in
mind, let us look towards obtaining a quadratic bracket that is compatible with {.,.},.

In order to get a higher order bracket, let us first imagine that the r-operator is a tensor:
R=R"¢,®e, € g ® g, then we know that the Bracket defined:
ap dp _ a9 dp
ox“ ox” o ax"

Jacobi identity et al.) if R is skew. What we want to do is to connect this bracket to integrable systems.

) satisfies the definition of a Poisson Bracket (i.e. will satisfy the

{¢.9} = R""(

A more general way to approach the problem certainly is to recast this bracket in terms of the left and right
actions of operators:

Let G be the Lie group corresponding to Lie algebra g, then for L in G:

pL,A,_ : & = T, g are the derivatives of the left and right (resp.) actions of L

P1:Ay 1T, g — g, their duals. Then we have the bracket defined above equivalent to:
{h, B (L) = pL(X,)R(pL (X)) = AL (X,)R(A, (X,)), with X :=dh, as above.

PL(X)=LX, A (X)= XL
{h, b }(L) = LX,(R(LX,)) - X,L(R(X,L))



If we further constrain the algebra of the matrix group to be associative ([X,Y]=XY-YX) and to have an
invariant scalar product (((X Y),Z) (X K04 Z))). Then we can define a nice quadratic bracket:

{,hy},(L) = (L[X,,R(LX)]+ [R(X,L), X,).

So we wish to show three things about this bracket:

i) {..}, is skew and satisfies Jacobi Identity.
ii) {...}; and {.,.}; form a Hamiltonian Pair (linear combinations are still Poisson Brackets)
iii) Ad-invariant functions are in involution with respect to {.,.}

In terms of proving i) | am somewhat at a loss. Though I have been assured a proof exists by looking
through the literature (especially Semenov-Tyan-Shanskii’s) paper on R-matrix theory. However, he
intimates that the proof is both somewhat tedious and needs to be approached in terms of the de Rham
complex. Since the only familiarity I have with this is through Douglas Amold’s Colloquium on
Differential Complexes in FEM, I do not think I am equipped to attempt this proof. Since this is nota
major point of debate, or even really integral (NP1) to Suris’ approach, I will have to be happy just taking
his word for it.

For ii) let us just take some combination: k*(L+A I)=:h(L)A

{(hA 1L+ AD) = ((L+ ADJX,, RAL+ ADX )1+ [RCX,(L+ AD), X,])

={h,h,},(L) + M{h, b},
The proof of involution in iii) will be just like that of the proof for {.,.}5:

dL
—‘—ﬂ— = [L,R(XL)]; from the lax form of the linear bracket. Then using the fact h is Ad-invariant, meaning
XL = LX = {h,,h,},(L) =< L,[ X,,R(LX,)]+ [R(X,L),X,] >=< L[ X,,R(X,L)] + [R(X,L), X, ] >

But hy, h, are ad-invariant, and thus already known to be in involution with respect to the linear bracket. So
both terms in the inner product must vanish.

A better way in which to sec this, and get a more friendly quadrization, is to take the bracket as defined and
choose three operators, A,,A, skew, and S some linear operator such that R= A, + S= A, + § ’
Plugging this into the definition of the Quadratic bracket leaves:

{h,h ) (L) = {A(X,L), X,L) - (A,(LX,),LX,) + (S(LX,),X,L) - (s'(x,L),sz)

Before showing the involution property, it is important to recover the conditions on A,,A,,S for the bracket
to be Poisson as defined. Fortunately this is fairly simple. We know that the bracket will be Poisson if R
satisfies MYB. But, if two linear operators satisfy MY B, so does the sum of the two (follows from the
bilinearity of the Lie bracket as well as that of the inner product. So a sufficient condition for R to satisfy
MYB will simply be for A;,A,, and S to satisfy MYB.

The benefit of this way of writing the quadrization of the Bracket is when we look at the Hamiltonian

system we get with some Ad-invariant function:



%a{h Ly =L A(XL)-A(LX) L+L S(LX)-S"(XL) L

Again, Ad-invariance means that XL=LX, but this implies that, grouping together like terms:

=L (A+S)XL)-(A,+S")XL) L

=L R(XL)-R(XL) L

=[L,R(XL)]

Seeing that the two brackets yield the same Lax form for the equations of motion forces the conclusion that
the functions in involution for one must be in involution for the other. So involution of Ad-invariant
functions for the quadratic bracket follows easily.

Presumably it is possible to find brackets in this way for even higher orders (i.e. cubic brackets
and beyond), by refining the requirements on the Lie algebra. It scems that for an extremely high order
bracket one is trading in utility (if we keep refining eligible Lie algebras, the class of problems that can be
solved by the revelation of increasingly clever brackets will grow smaller).

With that said, let us return from our excursion into quadrization and look at R-operators which
arise from the simple operation of splitting the Lie group corresponding to the Lie algebra. Since these
form the basis for the Suris” recipe for integrable discretization, they are worth understanding. Again we
take g 10 be an associative Lie Algebra with non-degenerate, invariant scalar product. Because itis then a
linear space, we know from operator theory that we can split it into two subalgebras, g,, and g, such
that: g, ® g, = g. Defining m,.x. to be corresponding projections into the two subalgebras, we can define
an R-operator on this algebra as R := 7, — _. We then need to verify that R indeed satisfies the MYB
equation:

[, =7 )X, (7, -7 )Y]- (%, -7 )((7, - %)X, Y]+ [X, (7, - 7)Y])

(7, =7 )X, (7, -7 )Y]-(7, =2 (7, - 7)X, (%, + 7)Y+ (7, + 7)X, (7, - T )Y])
Letting X,,X ,etc. be the respective projections:

[z, -7 )X, (x, - m )Y )= (%, -2 )(X,.Y, + L]=[X Y, + L1+ [X .Y, - Y]+ [X_ Y, -Y.])
=X, -X.Y, -Y]- (%, -7 )Q2IX,.Y,]1-2[X Y ])
=[X,-X_Y,-Y]1-2[X,Y,]1-2[X_Y]

=[X¢’-K-K]+[X_9-Y+_Y.I=—[X9Y] '
Which is the desired result. It is also interesting to remark that in the above verification we get for free the

fact that (g,R) is a double algebra with: [X,Y], =2{X,,Y,]-2{X_ .Y ]
Since the R as given is an R-operator for a linear bracket, we know then that we get a Lax representation
for the equations of motion for Ad-covariant (AdU  f(T) = f(AdU T))functions f:g >G

% = [LR(f(L)] =L,z (f(L)) - 7_( f(L))], which because of ad-covariance of f, becomes:

% =L (fL)] = -[La(FL)).



The final step before applying this to differential equations is to define corresponding projections on Lie
group G, having Lie algebra g. Letting G,, G., be the subgroups corresponding to subalgebras g,.g. we can
define the group projection operators: I, and IT such that for T in G, T=IL(DIL(T). '

Finally we wish to attempt to solve the equations of motion given in Lax Form:
dT
The solution to the Differential Equation given by: I =[T,x,(f(D))) =T, n_(f(T))] with initial

condition T, is given by:

T(1) = T, (exp(tf (TONTIL, (exp(tf (T,))) = TL(exp(ef (T, ) TTIZ (exp(tf (T,)))
The proof is by a direct verification:

Letus define: P =TI (exp(tf (T;))); M =TI1_(exp(tf(T5))), then plugging in:

() = P"'T,P = MT,M"'
DT _ pq,p-P' PPT,P = MT,M™ - MTM™ M M
dt

=T P'P-P'P T=-T MM'+MM" T
Exploiting the fact that we have set ourselves up in an associative algebra:

ar - -
—d— =[T,P"'P]=-(T MM '1, the Lax equations we are looking for. However it remains to be shown
' .

that the projections of f(T) arc indeed the same as the two terms in the Lie Brackets.

exp(#f (T,)) = I, (exp(tf (TNTL_(exp(tf (T,))) = P()M (1)

exp(ef (T) f(Ty) = P M + P M = PMf(T;)
which by Ad-covariance of f(T):

=Pf(T)YM=PM+PM
= f(T)=P ' P+ MM

But, using the fact that the subalgebras are linear spaces, it is clear that the first term must lie in g,, with the
second term in g. By definition of direct sum, we know that the decomposition of f(T) into the two

subalgebras is unique. So we conclude:

x(fM)=P'Pin (f(T))=MM ~!. Which ensures that the solution given is a solution to the Lax
equations, thus concluding the verification. )
Now that the methodology of the proof has been placed in the open for the continuous system, the final step
in this process is to apply it to a proposed solution to the discrete evolution equations for an integrable
system:

Selecting some Ad-covariant function F:g G, the solution to the difference equation (the discrete

analogs of the Lax equations):
T.,= H:' (FCOHTII (F(T,)=TI.(F(T, ))TZ,H:'(F(T; )), with IC, T, is given by:

n+l



T, = I (F* (L)1, (F™(Ty) = IL(F (L) LI (F"(T,)
The verification will be very similar, again defining P, = I (F"(T); M, =T1_(F"(T;)) and
plugging into the difference equation:

FYT)=F,M,

T,=P'T,F, = M,T,M;

=T =P TP.,.=M

n+l n+l n+i n+l

= P-l PnPn.II;)PnPn-IP a= MnﬂM;anI;)Ml-sanM-l

n+l n a4l

M.,

n+l

Defining then two new combinations: L, = P;'P, ;U = M, M, the difference equation becomes:

T,.=L/T,L, =U,T,U;' the form of the “Discrete Lax Equations™. All that remains to show
is that once again our combinations are indeed projections of the Ad—covariant functions:

P M,  =F"(T)=P,M, F(T,), butjust as last time, the covariance of the function allows

nel" " n4l
us to “bring it inside”
P, M, =PF(T)M,

ety

= PP, M, M = F(T)

= LU, =F(T,)
Appealing again to the definition of direct sum concludes the verification.

So we can conclude this examination with Suris’ “recipe” for an integrable discretization of an
Hamiltonian system. If we are able to write our system in a way that admits a Lax representation:
% = [Lwe (f(L)]=~[L,7_(f(L))] then we may simply write the difference equation in the form
above with the function F(L)=I+hf(L)+O(h?) (a first order approximation to f, which will produce a first
order discretization x’=x+h{H,x}+O(h?) where H is the Hamiltonian). Clearly from.what we have seen
above, this is not the only admissible recipe (i.c. it seems feasible to form difference Lax equations for any
R operator that satisfies MYB). However, this approach is still a little disappointing. Though Suris
examines in some detail in his papers Toda and Volterra lattices, it seems that even for these well-studied
examples, it takes quite a bit of doing to set everything into the Lax form that is needed (seemingly) for his
recipes. The approach seems nice if you have a good intuition (for example Suris works mostly with gl(N)
in his examples) for which Poisson manifold and Lie algebra to work with in order to get a workable Lax
form. Without this intuition it seems that this approach leaves you stumbling around in the dark without
any hope of getting a discretization that can work. Basically telling you to pick an operator and hope it
satisfies MYB. It left me curious to see if this could even be done for a lattice with a multi-well potential
between particles or other quirky behavior. Though going through the proofs was fun for what it was, the
paper itself seems to raise more questions than it answers by proffering a seemingly simple tool
theoretically that looks nearly impossible to use in practice unless you already know the answer you are

looking for.
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