Symplectic Integrators
and the Dynamics of the Rigid Body

Reese Jones

Using the rigid body as a model problem, several methods of numerically
integrating Hamiltonian systems will be illustrated. First, a brief exposition
of the dynamics of the rigid body will be given, followed by several method-
ologies for integrating the system of equations. Specifically, the methods
developed by Professor Juan Simo (Stanford) to conserve fundamental prop-
erties of the physical system will be treated in detail.



I. The Rigid Body

The rigid body (B) is a special case of a continuum subject to the con-
straint of rigidity, i.e.
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where X; is the position of a material particle (with label X; ) in a fixed
reference configuration and the function ®(X, t) describes the motion or flow
of the particle throughout time. This constraint severely restricts the allow-
able motions of the body, in fact the function ® must be of the following
form...
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where A(t) is an element of proper (or improper depending what configu-
ration is taken as a reference) orthogonal second order tensors, which will be
denoted as SO(3), and g{t) is an element of the Euclidean vector space R(3).
Since the orthogonality condition on A reduces its dimensionality from 9 to
3, the motion of the infinite number of particles which comprise B can be
parametrized by 6 real numbers. Call Q := SO(3) X R(3) the configuration
space of the rigid body.

A first description of the dynamics can be obtained from Euler’s Laws ...
balance of linear momentum
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where x := ®(X,t) and F is the total externally applied force and M is
the total externally applied moment (about the origin, a fixed point). Since
it is possible to write the velocity field as the sum the velocity of the center of
mass and a velocity relative to the center of mass due to rotation of the body,
the dynamics of rotation of the body can be decoupled from those describing



its translation.
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and since (, the (spatial) angular velocity tensor, is necessarily skew-symmetric
it can be associated with a (spatial) angular velocity vector, w, by...
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so the balances become
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where M denotes the total moment about the center of mass of the body
and J, the inertia tensor.
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(Also note that, for a rigid body, ignoring thermal effects the balance of
energy is a direct result of the balance of linear momentum and that the
balance of mass is trivially satisfied.) Now it is also possible to describe the
kinematics using the pullbacks of 2 and w: the body angular velocity tensor,
[ := ATQA and body angular velocity vector 7 := ATw . The corresponding
balance of angular momentum is...
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using the fact that the material time derivative of J,, the pullback of J,

is zero and defining T as the pullback of I1. This desciption is useful for nu-

merical methods where the mesh is convected with the motion of the body.
Since, once again, a decomposition exists for the kinetic energy...
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and noting that the dynamics associated with the position of the center
of mass , i.e. those of a particle, are simple and soluble relative to those de-
scribing the rotation, Lagrange’s and subsequently Hamilton’s equations will
only be developed for the latter. If the Lagrangian is taken to be identical
with the rotational kinetic energy of the rigid body, ignoring conservative
and non-conservative forces at the moment, and using that the rotational
configuration space can be parametrized by 3 real numbers, at least locally,
Lagranges equations become..
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(using the Euler equation derived from the varitional principle with no con-
straint on the form of the variations.) The ¢*,i = 1..3 could be choosen,
for example and for different reasons, to be Euler angles or unit quaternions
(the fourth component being depenedent). (Quaternions have the desirable
property of mapping all of SO(3) without singularities, unlike Euler angles,
but, unfortunately, the map is not invertible.) Now, by using the Rieman-
nian metric induced SO(3) by the kinetic energy, geometric interpretations
of Lagrange’s equations can be made. Most important of these is: A; and X;
represent elements of TSO(3), i.e. tangents, for the tensor and vector repre-
sentations, respectively. For instantance, if the ¢* ’s are choosen to be Euler
angles then the ); ’s are the corresponding (non-orthogonal) Euler basis.

In addition to the traditional formulation on the tangent bundle, it is
also possible to write Lagranges equations for the rigid body on so(3), the
Lie algebra associated with the Lie group SO(3). This alegbra is composed
of skew-symmetric linear transformations with the commutator acting as the
bracket; these tensors can be identified with vectors by the relation already
given for §2 and w, where the bracket naturally becomes the ordinary vector
cross-product. (It will be useful to note that there exist mappings, such as
the exponental and the cayley transformations, that take the algebra into the
group.) The Lie algebra approach has a direct connection to the traditional
one by the fact that elements of the tangent space, T4 SO(3), are obtained
by right (for spatial representation) or left (for body) action of members of
the algebra on the elements of the group.



A simple way of obtaining the new form of Lagrange’s equation can be de-
rived from the variational principle...
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by noticing that ...
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(where I is the pullback of an element TSO(3)) and consequently constrain-
ing the variations of 2 to be ...
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Similar expressions can be obtained using the spatial form of all the quanti-
ties.

Now, by using the Legendre transform: TSO(3) — T*SO(3) a Hamilto-
nian can be constructed from the Lagrangian parametrized by ¢’ ’s and their
rates...

and from the Lie algebra form...
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which both coincide with the naive concept of the Hamiltonian, as expected.
(Note this Hamiltonian is invariant under the group SO(3)). Now, given the
fact that (Q is not simply the material time derivative of A, it is not surprising
that the Hamilton’s equations (the second is basically conservation of angu-
lar moment, the first being an identity given by the Legendre transform)...
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do not follow directly from a cannonical two-form. (Since this two-form
is not readily availible it is hard to write the symplectic version Hamilton’s
equations: ix$) = dH ; however, it is possible to write the equations in Pois-
son bracket form simply by defining a non-canonical bracket...
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In the dynamics described, a rigid body in the absence of external forces,
the motion conserves two quantities: H, the Hamiltonian, due to the fact
Lagrange’s equations imply that the kinectic energy is constant, and II, the
angular momentum, which follows from Euler’s second law. Given these 'in-
tegral invariants’ it is possible to find coordinates which are only functions of
these quanties (a process similar to how holonomic constraints are dealt with
in Lagrangian dynamics, which in effect collects solutions into equivalence
classes based on initial values of the invariants) to reduce T* SO(3) to a space
isomorphic to the 2-torus. Another result of having four (i.e. a scalar and
a vector) integral invariants is: the system is completely integrable. (For
distinct principle moments of inertia, Jacobi elliptic functions are necessary,
simpler means are used to treat bodies with non-distinct moments.) The
property of integrability is destoyed by introducing a potential which breaks
the symmetry, as in the heavy top (which only has one component of Il pre-
served, relative to a fixed basis).

II. Integration Schemes

There are many ways of constructing numerical schemes to solve initial
value problems, such as the system of first-order equations derived from the
Hamiltonian formalism, most involve taking the differential equations into
difference equations and integrating though time by discrete steps. These
methods can differ in many ways: they can give the quantities at a future
time as an explicit function of the current ones or the relation can be implicit
or a combination of the two (e.g. predictor-corrector methods); they can
accomplish the update in a single algebraic step or require multiple steps;
they can work solely with the fields of interest or they can involve these
quantities’ derivatives. Most importantly, at least for Hamiltonian systems,



methods can be constructed preserve the various quantities that characterize
the structure of the physical system; these include the integral invariants,
the Hamiltonian being one, and the symplectic two-form. This two-form
characterizes and gives structure to the space where Hamilton’s equations
naturally reside: the symplectic manifold; the relation between this two-form
and Hamilton’s equations is akin to the role the metric plays in Lagrange’s
equations when they are viewed as taking place on a Riemannian manifold.

Integration schemes that leave the two-form unaltered are called sym-
plectic in the sense that they induce a symplectic transformation from the
current state to the future one. Infinitesimally, or in general for any linear
symplectic manifold, this is expressed as..
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where JJ is the representation of the two-form on the cannonical basis and
L is the linear operator associated with the symplectic transformation; (in
general for a manifold...
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Many systems of interest, including those induced by a finite element sim-
plification of the configuration space, lie in the category of symplectic vector
spaces. However, the rigid body with a configuration manifold composed of
orthogonal linear transformations is not one of them.

Since the composition of any collection of symplectic is still symplectic,
it is possible to build up the flow any system by a sequence of symplectic
transformations that advance the flow through time. One scheme particular
to Hamiltonian systems, namely generating functions, is capable of creating
symplectic transformations which lend themselves to the integration of the
Hamiltonian vector field. Difference schemes can be extracted from these
transformations by finding a generating function, approximating it upto the
desired accuracy and then finding difference representations of the necessary
derivatives. Fundamentally, this approach has its basis in the fact that gen-
erating functions provide solutions to the Hamilton-Jacobi equation and thus
a solution for the flow. There are other less ’natural’, in the sense of pre-
serving the two-form, schemes for Hamitonian systems, but all methods of



devising integration schemes are limited by the following theorem by Zhong
and Marsden: given an algorythm for a system whose conserved quantities
only depend on H, the Hamiltonian:

If {the] algorithm is [to be] symplectic, and [conserves] H exactly,
then it is the time advance map for the exact hamiltonian system
up to a reparametrization of time. In other words symplectic
algorithms cannot preserve energy for nonintegrable systems.

So, in general, the integration scheme must follow the exact flow in order to
be symplectic and conserve the Hamiltonian. This stipulation makes useable
symplectic algorythms rare since energy conservation, besides being a basic
balance law, is usually associated with stablity, at least in the sense of energy
norm.

Professor Simo takes a different approach to creating integrators suitable
for the dynamics of the rigid body; he concentrates on conserved quanties (in
this case angular momentum and energy) first, then taylors the algorythm, if
possible, to preserve the symplectic form. In a discrete environment, a clar-
ification must be made about what 'conserve’ means; it is usually defined as
preserving the quantity from time step to discrete time step (and not neces-
sarily in between). Professor Simo’s early developments produced integrators
which conserved angular momentum intrinscally and where forced to conserve
energy by a corrector step which left the angular mometum unaltered; this
step projected the predicted solution on to surface (in configuration space)
of constant energy. He was able to achieve this process through a couple
of different methods, most of which are fairly standard in numerical analy-
sis. It is not surprising that he would seek to maintain angular momentum
and energy before attempting imbue his algorythms with other properties,
since conservation of these quantities are direct results of the balance laws of
classical continuum mechanics. In addition to developing his own schemes,
Professor Simo surveyed traditional families of integrators for their symplec-
tic members. He found that the midpoint/centered Euler member of the
Runge-Kutta family,
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whick is actually also a member of one of the classes of integrators he



developed (and is related to the Crank-Nicholson version of linear multi-
step methods) is symplectic, energy and momentum preserving. In fact
this implicit algorythm, whose symplectic nature had been discovered earlier
(e.g. Feng Kan), is second order accurate and unconditional stable. Note,
care must be taken, in that f(t,;1/2) only corresponds to the combination
1/2f(t,) + 1/2f(ta41) on linear manifolds. Simo also found that the only
symplectic member of the Newmark family, standard integrators for second
order systems (e.g. those found in classical continuum mechanics) is the ex-
plicit central difference method:
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In Simo’s later work, he exploits an idea he touched on in earlier work:
the existence of a Lie algebra (so(3)) associated with the Lie group SO(3)
and closed form mappings from the algebra to the group. The beauty of
the availibility of a Lie algebra is that it is a linear space, connected to the
tangent bundle of SO(3) in the fashion previously described; this makes it
adaptible to a scheme that replaces what by necessity is a multiplictive up-
date on the group by a more tractible additive one on the algebra. Simo, in
keeping with his earlier developments, begins with a scheme...
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that has four imbedded parameters: « and the skew matrix ©, and bears
a strong resemblance to the undiscretized Euler equations. These parame-
ters are taylored to create a momentum and energy conserving integrator.
First he shows that momentum conservation is implicit in the scheme (i.e.
the flow or the map of the spatial momentum is constant):
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Now, to restrict that the linear transformation of A, keeps A4 in SO(3).
By solving for A, 4...
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and reconizing that o must be 1/2 (as in the midpoint method) and T, :
s0(3) — SO(3) must be the Cayley tranformation. So the rotation, A, is
updated by right translation and the momenta, T is updated by left trans-
lation:
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Conservation of energy is his next aim and through manipluation and sub-
stitution he obtains:
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which suggests that 8, the vector associated with ©, must be parallel to
the body angular velocity v at time t,41/2 . Therefore the update is of the
form:
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So he is left with a functional x(6) which acts as a geometric multiplier. The
hopes are to satisfy the conditions for symplecticity, which are most readily
availible in infinitesimal Possion version (i.e. inverse of the two-form), by
chosing this function. He shows that is actually possible for the free rigid
body, which is not so surprising since the system is completely integrable;
however, when the algorythm is extended to accomodate a nonzero potental,
preservation of the symplectic form is traded for conservation of energy (the
methodcannot follow the flow of the exact Hamiltonian). In fact he makes
the interesting observation that kinetic energy is conserved, only potential
energy is left unbound; this could be tied with a property of the action asso-
ciated with these Hamiltonians.
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