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1 Introduction

It is a matter of common lore that a falling cat can right itself so as to land
on its feet. However, how is it possible that the cat can turn over while
maintaining zero total angular momentum? Angular momentum conserva-
tion still applies to cats. The answer lies in the cat’s ability to change its
shape. By changing its shape in a rotating manner, the cat forces its body as
a whole to rotate the other way to compensate and maintain the condition
of zero total angular momentum. Thus the cat can right itself while falling.

In the next section I will describe a dynamical model, due to Kane and
Scher (1], for a cat which shares salient features with observations of real
cats. Then I will introduce the geometric viewpoint for the problem, and
find the natural mechanical connection, following the work of Montgomery
[4]. This connection can then be used to derive the Kane-Scher dynamics.
Finally, I will mention how the cat’s problem is only one of a larger class of
isoholonomic problems.

2 The Kane-Scher Cat

Kane and Scher in 1969 produced the first falling cat dynamical model that
respects the observed dynamical features of falling cats. These features are

[1):
1. The cat bends, but does not twist, its spine.

2. The cat is held initially at rest upside down with its spine bent forward.
After release, it bends first to one side, then backwards, then to the
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other side, then forward again. When landing the general shape of the
cat is similar to when released, however the cat has rotated so that its
feet are pointed down.

3. The backward bend is mild compared to the forward bend. This reflects
physical constraints within the spine.

Their model consists of two bodies connected by a “no-twist” joint. We
will consider a simple model in which the two bodies are identical, and can
be thought of as cylinders. The no-twist constraint is equivalent to saying
that the two bottom rims of the cylinders can roll without slipping on each
other. (The no-twist constraint is, however, a holonomic constraint.) The
motion to execute a flip consists of one of the two bodies executing a loop
in the frame of the other, drawing out a cone. Take the axis of this cone to
make an angle o with the “stationary” body, and let the cone have opening
angle 8. This respects the features above in the following way: The loop to
draw a cone clearly is a simple version of the description in feature 2. By
bending forwards, sideways, and backwards to draw the cone, it does not
need to twist its spine. Beginning with some forward bend in its spine, by
an angle 8 + a, and then drawing a cone with opening angle g, the forward
bend is B + a but the backward bend is § — a. So, as long as « is positive
(the cat starts out bent forwards, as described), the forward bend is bigger
than the backward bend. See Fig. 1 for a photo of a falling cat with the
Kane-Scher solution superimposed.

Rather than go through the derivation of the differential equation that
the cat’s shape must satisfy to create an overall rotation, I will simply lay
out the Kane-Scher coordinate system and quote their final results. We will
see later that these results are consistent with, and derivable from, a more
tractable geometric argument. See Fig. 2 in reference to the coordinates
for the Kane-Scher solution. I have not burdened this discussion with the
full coordinate system of Kane and Scher because it is only necessary in the
derivation, which I do not reproduce here. It’s only purpose here would be
to show how awkward it is.

Let J and I be the axial and transverse moments of inertia of the bodies.
Let o be as above, the angle between the principal axis of body A and the
center direction of the cone swept out by the principal axis of body B, and
let B be the opening angle of this cone. Parameterize the motion around
the cone by an angle 4. ¢ is the orientation angle of the system in a fixed
external frame (the frame of the person who just dropped the cat). Kane
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and Scher showed that the orientation depends on the shape by the following
differential equation:

b _ (J/DS 0
@ (T-DI-T+/DA+DN1+T)7

where
= —v/2 sin g (cos asin B + sin o cos B cos 8) (2)

and
T = cosacos f — sin asin B cos 8. (3)

One can determine the overall reorientation of the cat by fixing « and J/I,
then integrating 6 from 0 to 27. As evidenced by Fig. 1, the Kane-Scher
model is capable of reproducing the motion of a real falling cat with remark-
able accuracy.

3 Geometry

Since the reorientation of the cat is a purely geometric effect, it makes sense
now to turn to a geometric framework for studying the same problem. First
let us take a few steps in a more general direction. We have a cat, moving
through space under free fall evolution, with two rigid body halves. Therefore
the overall configuration space of the body Q = SO(3) x SO(3) x R3. The
Lie group G = SE(3) of rigid body rotations and translations acts on the
body without changing the cat’s shape. Therefore the shape space S =
SO(3) x SO(3) x R3/SE(3) 2 SO(3) [2). An element in SO(3) describes
the relative orientation of one body relative to the other, which is sufficient
to determine the shape of the model cat. The projection map 7 : Q — S
provides the structure to define a principal bundle, with S as the base and
the group G as the fiber. Elements in the configuration space are denoted g
and elements in the shape space are denoted z.

A connection on this principal bundle defines a horizontal and vertical
subspace of the tangent space of configurations at ¢, T,@. In particular,
conservation of angular momentum defines a connection. Since were dealing
only with the angular momentum = 0 case in this paper, it is easy to see that
configuration changes that preserve angular momentum = 0 are orthogonal
to configuration changes that correspond to rotations of the body. A tangent
vector that corresponds to an infinitesimal rigid rotation is in the vertical
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subspace, and a tangent vector with angular momentum zero (an infinitesimal
shape change) is horizontal.

The angular momentum is a defined as a vector valued one-form on Q [4].
Each deformation 8q yields a vector M(g)dg which is the angular momentum
vector resulting from that configuration change. By this definition,

M(q)dq = g(I(z)g"dg + m(z)dz). (4)

Here m(z) is the angular momentum due to the shape change s(z) — s(z +
dz), and I(z) is the inertia tensor for the shape s(z), if all joints were locked,
called the “locked inertia tensor”. g € G is an element of the symmetry
group G = SE(3). The form g~'dg is the angular velocity with respect to
a frame fixed in the body (rather than from the perspective of an outside
observer).

Clearly, the kernel of the angular momentum one-form corresponds to
shape changes paired with angular velocities so that the angular momentum
caused by the shape change is compensated by angular velocity of the body
as a whole. This is exactly what the cat needs to do: change its shape so
that it acquires angular velocity to turn over.

If we set M(g)dg = 0, and multiply the angular momentum expression
by gI~'g~!, we find that

dg + gI(z) 'm(z)dz = 0. (5)
This looks just like a control problem, which can be rewritten as

= u

= —gl(z)"'m(z)(w), (6)

where u is the control - in our case the cat’s decision to change its shape
with derivative u. Montgomery (3] points out that the control problem is
probably the natural framing of the problem from the cat’s perspective. In
particular, a blindfolded cat which cannot sense its orientation fails to turn
over.

We can now define I'(z) = I(z)~'m(z) : xS — Lie(SO(3)), the connec-
tion on the shape space that corresponds to the angular momentum connec-
tion on the configuration space. This is the “natural mechanical connection”,
which we will use in its explicit form for the model cat in the following section.



4 The Geometric Cat

In keeping with the common pattern that geometric ways of framing problems
have simpler form, the coordinates used by Montgomery are much simpler
than Kane and Scher’s coordinates. The yz plane is defined by the principal
axes of the two bodies that make up the cat, with the y direction defined
as the direction of the bisector of the two body axes (“vertical” from the
observers standpoint). The z direction is orthogonal to this, and horizontal
from the observer’s perspective. The shape of the cat can be determined by
three angles (in keeping with the shape space being three dimensional, like
SO(3)). The first is the angle 9 between the two body halves. The others are
the angles §; and 8,, which measure the orientation of the feet relative to the
yz plane. The zeroes of 8; and 6, are set by requiring that when 8, = 8y =0,
the feet are pointing “up”. See Fig. 3 for a sketch of this coordinate system.

Following Montgomery [4], I will start by assuming that the two bodies
are free to rotate relative to each other (that is, it is a ball and socket joint,
not a special no-twist joint). We first need to calculate I’ = I ~!'m, the natural
mechanical connection. For notational convenience I follow Montgomery and
denote

sin(¥/2) = s (7)
and
cos(¥/2) =c. (8)
Then the angular momentum of the front body due to rotations along its
central axis, where /3 is the moment of inertia along this axis, is
my = I3(seg + cez)dly. 9)
And similarly for the back body:
mp = I3(seg — cez)(—dby). (10)
The locked inertia tensor for the shape determined by 4, 8; and 6, is:
I = 2diag(I, + mi®c?, I;s% + Izc* + mi%s?, [,c? + Iss?), (11)

where I; = I, are the moments of inertia for one of the bodies along axes
perpendicular to the symmetry axis through the center of mass of that body.
m is the mass of the body half (not to be confused with the angular momen-
tum form m(z)), and ! is the distance of the center of mass of a body half
from the pivot point.



I will now directly calculate ['(z). First, for notational convenience, I
will follow Montgomery and define & = I,/I3 and 8 = I,/(mi?) (not to
be confused with the angles @ and 8 in the discussion of Kane and Scher’s
model). Using this notation, we have

I = 2L diag(1 + Bc?, 8% + ac® + Bs?, ¢* + as?). (12)
So,
1 as oc
-1 - =
I=my 2 [c2 Fas? ® T e rad T Bs? eg] 46 (13)
= ((I)+62 + ‘I)_93)d9j (14)

where we use this to define @, and ®_. Similarly,
I"'my = (-0 ez + ©_e3)(—dby), (15)
and therefore
= (P,es+ P_ez)ddy + (—Drez + P_eg)(—dbs). (16)

The no-twist constraint corresponds to the cat’s front and back feet always
being turned the same angle from upright. That is, § = 8; = —6,. We could
add a constant here, since physiologically what that cat cannot do is move
the front and back with different angular velocities, but we choose to let that
constant equal zero, in keeping with the picture of the feet turned the same
angle from the vertical. Adding this constraint into the calculation of the
connection I', we see that for the fully characterized “realistic” cat,

as

= 2P _ezdl = -
['=20-es 2 + as?

esdo. (17)

Note that T points only along the z direction, so the cat can only rotate
around the z axis. This fact follows also if one calculates the angular mo-
mentum vectors for the two bodies, rotating in a way that preserves the
no-twist constraint. The y components of the vectors cancel, leaving only a
z component. Therefore, going back to thinking about the problem from the
standpoint that the body rotates to keep zero total angular momentum, the
cat’s rotating of its body parts has only a z component of angular momentum
and therefore the cat as a whole can only rotate around the z axis.
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Now, using the translation between notation that Montgomery provides,
we can show that this natural mechanical connection results in exactly the
same motion as Kane and Schers model. Here is a translation table:

Kane and Scher Montgomery
¥ | x,angular measure of rotation around the z axis

0 t, parameter value along curve

T cos(¢ + m) = z component of curve

J/ e

S V2sin? y 4L

1+T 252

1-T 2¢2

Starting with Kane and Scher’s differential equation, we have:

@ (J/D)s 18)
df (T-D1 =T+ (J/DH{1+T)|(1+T)1/?
dx _ av2sin? % "
=u = (—2c)[2¢2 + 2as?](25%)172° (19)
Working through the algebra, we see that
_ —asin® ¢df
X = [TF asd)(dco(9)2) sin(d)2)) (20)
_ —adf 1-—cosy @1
T 2+ as? 2sin(/2) )
= Lda I:i(l — COS¢)1/2] (22)
2 +as? [/2
—asdd
= Fras (23)
= T (24)

which is precisely the dynamics from optimal control of our control system.
So, we see that the outwardly complex Kane-Scher dynamics is simply a
result of the natural geometric nature of the problem.



5 Related Problems

How a cat turns over in free fall with no angular momentum is only one
of a class of related problems. Although I did not discuss it in detail, the
geometric method described, when thought of as a control problem, is the
problem of turning the cat with minimal power expenditure. This can be
generalized as the “Cat’s Problem”: Given a deformable body in free fall
with constant angular momentum, find the most efficient way to deform it
and achieve a desired reorientation. This is also equivalent to the problem
addressed by Shapere and Wilczek [5]. They studied the motion of amoeba
in an infinite-viscosity limit, where shape changes can result in linear motion.
Here the infinite viscosity of the fluid plays the role of angular momentum
conservation by defining a connection.

Montgomery [2] also places the cat’s problem in a larger context, as an
“isoholonomic” problem: Among all the loops with a given holonomy, find
the loop of minimum length. In the cat’s case, the length is determined by
the energy cost of motion, and the given holonomy is a rotation by = radians.
If we have a metric for determining lengths, which we can restrict to the hor-
izontal subspace, we then also have a “sub-Riemannian geodesic” problem:
Find the horizontal curve joining two points whose length, as measured by
the metric restricted to the horizontal subspace, is a minimum.

The cat’s problem as posed by Kane and Scher is a complicated dynamical
problem, requiring pages of algebra. However, by placing it in its geometric
context, and doing the calculations as much as possible geometrically rather
than in coordinates, the same result for the cat flip is obtained. In addition,
the geometric method, by allowing the problem to be stated as a control
problem, allows one to show that the motion is optimal.
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Figure 1. Reproduced figure (rom Kane and Scher [ 1], showing the success
of their model in reproducing cat dynamics
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Figure 2. Kane-Scher coordinates (as much as needed
for the discussion in this project)
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Figure 3. Montgomery’s coordinates



