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1 Introduction

In this paper I hope to illustrate how variational integrators can be used in the
study of momentum and energy transfer, perhaps as a means to understand friction
and dissipation. We will first be looking at a system of two colliding mass-spring
chains, denoted Ct for the top chain and Cb for the bottom chain. The particles
between chains are coupled by a nonlinear potential V2. This creates a repulsive
force making the model reminiscent of elastic collisions. All the springs are linear
with spring constant k, and all masses are equal with masses mt = mb = 1. In
the final section will will switch the nonlinear coupling into an attractive force and
study how Ct transmits the energy to Cb from a random perturbation of a stable
equilibrium. This last idea is intended to model heat.

C t

C b

Figure 1: A schematic diagram of the model to be studied. The
gray lines represent the nonlinear coupling between
the chains.
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Rather than showing videos, the information from a given trial can be easily
shown in a 2d plot of time versus position. Figure 2 depicts the positions of the
masses in a typical collision.
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Figure 2: A typical collision of Ct and Cb. The red lines depict
the position of the masses in Cb, while the blue lines
depict the position of the masses in Ct. One can
observe a mixture of standing and traveling waves
which form after the collision.

Through numerical experiments and comparison with hard-ball systems we
attempt to understand if and how this system can produce friction-like behavior.

2 The Model

As shown in the schematic diagram of figure 1 we have two mass-spring chains of
n masses, Ct and Cb. We will ignore the possibility of hardball-collisions 1.

1Ignoring hardball collisions and using the potential V2 given in our model is qualitatively
similar to using a Morse potential and restricting the y-coordinate of Ct to be 1 and that of Cs

to be 0. Such a restriction in a Morse potential would prevent particles from getting near the
singularity at 0 and the experienced potential of one particle from the point of view of another
will “look” like a smooth bulge with exponential radial decay.
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2.1 Equations of Motions

Let qt, qb ∈ Rn store the positions of particles in Ct and Cb respectively. The
potential energy from the linear springs is given by

V1(qt, qb) =
k1

2

n−1∑
i=1

(qi+1
t − qit − l)2 + (qi+1

b − qib − l)2

Where l is the natural length of the spring, by default we set this to 1
N

. By default
we set the spring constant k1 = 1.0. The potential energy for the coupling between
Ct and Cb will be

V2(qt, qb) = k2

n∑
i,j=1

exp

(
−(qit − q

j
b)

2

2σ2

)

By defaults we set k2 = 0.001. From observation a higher k prevents a lot of
interesting interaction for initial velocites less than 1. Together, these potential
functions give the total potential energy of V = V1 + V2. The mass of the each
particle is simply m = 1 and so our kinetic energy can be written

K =
m

2
‖q̇‖2

We construct the Lagrangian

L(q, q̇) = K(q̇)− V (q)

The Euler-Lagrange equations are the familiar equations of motion for a particle
in a potential,

mq̈ +∇V (q) = 0

Explicity these are

mq̈lt + k1(ql+1
t − 2qlt + ql−1

t ) + k2

(
n∑
j=1

1

σ2
(qlt − q

j
b) exp

(
−(qlt − q

j
b)

2

2σ2

))
= 0

and similarly for qlb

mq̈lb + k1(ql+1
b − 2qlb + ql−1

b )− k2

(
n∑
i=1

1

σ2
(qit − qlb) exp

(
−(qit − qlb)2

2σ2

))
= 0
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2.2 Conservations of Momentum

As an exercise we show explicitly how to show conservation of linear momentum.
It’s easy to see that the continuous system is invariant under the action of the group
G = R of uniform translations in position, simply substitute φr(q

l) = ql(t)+ r into
the Lagrangian (allowing for the abuse of notation that q+ r is the vector qit,b+ r).

L(q + r, q̇) =
m

2
‖q̇‖2 − V (q + r)

and use that

V1(q + r) =
k1

2

n−1∑
i=1

((qi+1
t + r)− (qit + r)− l)2 + ((qi+1

b + r)− (qib + r)− l)2

=
k1

2

n−1∑
i=1

(qi+1
t − qit − l)2 + (qi+1

b − qib − l)2

= V1(q)

and that

V2(q + r) = k2

n∑
i,j=1

exp

(
−((qit + r)− (qjb + r))2

2σ2

)

= k2

n∑
i,j=1

exp

(
−((qit + r)− (qjb + r))2

2σ2

)
= V2(q)

We see that the exponential map from the lie-algebra g = R is exp(ξ) = ξ, thus
infinitesimal generator for ξ ∈ g is

ξQ =

ξ...
ξ


The corresponding momentum map J : TQ→ g∗ satisfies

〈J(q, q̇), ξ〉 = 〈FL(q, q̇), ξQ〉
Where the fiber derivative FL = ∂L

∂q̇
in this case. Putting together the pieces we

find

J(q, q̇) = q̇TM ·

1
...
1

 =
∑
i

mq̇i

We will see later that the analogous arguments for discrete mechanics produce a
slightly different discrete momentum.
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3 Variational Integrators

A variational integrator is formed by maximizing an approximation of the action in-
tegral, rather than working with the Euler-Lagrange equations directly. Assuming
the configuration manifold is a vector space, we can approximate the Lagrangian
L : TQ→ R with Ld : Q×Q→ R defined by

Ld(q1, q2) = L(
q1 + q2

2
,
q2 − q1

∆t
)

Where ∆t is some sufficiently small interval of time. We then define the discrete
action integral

Sd[q] =
N−1∑
k=1

Ld(qk, qk+1)

Which upon setting ∂Sd

∂qk
= 0 we find

D1 · Ld(qk, qk+1) +D2 · Ld(qk, qk+1) = 0

A trajectory [q] = {qk}Nk=1 that satisfies the above equation will maximize Sd[q] ,
and hence approximately maximize the action integral of the continuous system
over short periods of time (a concern of backward error analysis).

In the case of the typical L = K − V type of Lagrangian the discrete Euler-
Lagrange equations are

M

(
qk+1 − 2qk + qk−1

h2

)
+

1

2

(
∇V (

qk+1 + qk
2

) +∇V (
qk + qk−1

2
)

)
= 0

This is the method we implement on the Lagrangian explained in section 2 (See
the Appendix for code).

3.1 Conservation of Discrete Momentum

As an exercise I’ll explicitly show the symmetry that will give conservation of linear
momentum for the system. Let our group be G = R. We define the action on Q
to be

Φg(q) = qi + g

That is, we just add g to each coordinate. The action on Q×Q is simply Φ(q0, q1) =
(Φ(q0),Φ(q1)). It’s easy to see that this action leaves Ld invariant.

Ld(q1 + r, q2 + r) = L(
(q1 + r) + (q2 + r)

2
,
(q2 + r)− (q1 + r)

∆t
)

= L(
q1 + q2

2
+ r,

q2 − q1

∆t
)
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because Φ leave L invariant

= L(
q1 + q2

2
,
q2 − q1

∆t
)

= Ld(q1, q2)

The lie algebra is again g = R, and the exponential map is exp(ξ) = ξ ∈ G. The
infinitesimal generator from Φ is

ξQ×Q =

ξ...
ξ


, In the arena of discrete mechanics this symmetry implies a discrete momentum
map satisfying

J−Ld
(q0, q1) · ξ = 〈Θ−Ld

Ld, ξQ×Q〉(q0, q1)

Where Θ−Ld
is the minus discrete Lagrangian one form [1]. In this case

Θ−Ld
Ld =

−1

∆t2
(q1 − q0)TM − 1

2
dV

(
q1 + q0

2

)
So that J−Ld

is

J−Ld
(q0, q1) =

∑
i

1

h2
m(qi1 − qi0) +

1

2
dV i

(
q1 + q0

2

)
Not quite what I’d expect. If you caught me off-guard I’d expect the momentum
to be Jguess = m

h

∑
i (q

i
1 − qi0), but this is not quite conserved by the algorithm.

Although Jguess does seem to oscillate quite rapidly with low amplitude (like 10−14)
about a constant value, and doesn’t bias towards any one direction. This is likely
related to what occures when we take the continuum limit of the discrete momen-
tum times the time-step h. If q1 = q(h+ t) and q0 = q(t) we see

lim
h→0

(h× Jd(q(t+ h), q(t)) =
∑
i

mq̇i + 0 = J(q, q̇)

4 Numerical Performance

We start in an arrangement where all the particles within each chain are spaced l
apart (This is the equilibrium arrangement when V2 is absent). We make a series
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Figure 3: Depicts the position of the particles. Red is for Cb
and blue is for Ct, it appears I mismatched my label
so that Ct is below Cb.
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Figure 4: Energy Preservation properties, Note the scale on the
y-axis. The largest change in total energy is 3.3944×
10−04 of the largest change in potential energy.
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of observations on the quality of the integrator for Ct and Cb initially separated
by a distance of 3, heading towards each other with an initial velocity v0 = 0.1
and. The evolution of the particles is depicted in figure 3

We observe that the algorithm does a very good job of preserving energy and
symmetries. Figure 4 depicts how energy evolves in time.

to find φ∗L = L. This gives us conservation of linear momentum via Noether’s
theorem. This is shown to hold for a general system of N particles on the config-
uration manifold Q = R3N in [1], section 11.4. The momentum map is found to
be J(ξr)(q, p) =

∑
p. In the discrete case we notice that Ld is invariant under the

same symmetry since Thus Ld is invariant as well and we can apply the discrete
Noether’s theorem as described in [2]. We get a discrete momentum map∑

i

1

h2
m(qi1 − qi0) +

1

2
dV i

(
q1 + q0

2

)
We observe the conservation of this momentum in figure 5. The approximation
of Jguess mentioned early was found to oscillate about a constant value with make
deviation on the order of 10−14.

0 10 20 30 40 50 60 70 80 90 100
2

2

2
discrete momentum

time

J

Figure 5: Illustration of Momentum Preservation, it appears
it’s of machine precision from the looks of the scale
on the y-axis

Additionally since we’ve set the initial conditions equal modulo space trans-
lation, this system should exhibit a symmetry when moving in a frame with the
center of mass with each spring chain separately as a result of conserving linear
momentum. For fun’s sake we can literally observe symmetry in figure 6 noting
how both wobble equal and opposite to each other, even after very long times.
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Figure 6: The top plot depicts positions of particles of Ct in a
frame that moves with its center of mass. The lower
plot does this for Cb.
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5 A Hypothesis on Friction and Kinetic Theory

In this section I’m going to take a stab at explaining of Rayleigh friction in a
hard-ball system using conservation of energy and momentum, I don’t have any
references for this, and would invite input here. Nonetheless some of the thinking
used here leaks into the next section so I chose to include it for the sake of under-
standing motivations later.
In a perfectly elastic collision between billiard balls momentum p = m1v1 + m2v2

and energy E = m1

2
v2

1 + m2

2
v2

2 are both conserved. This is enough info to solve for
the velocities after the collision. For simplicity assume v2 is normally distributed
with mean 0. Let the velocity of ball 1 after collision be vf1 . The expected value
of vf1 is

〈vf1 〉 = 〈v1(m1 −m2) + 2m2v2

m1 +m2

〉 = v1
m1 −m2

m1 +m2

This tells us how a collision will change velocity. After 500 collision we should
expect a velocity of

〈v(f,500)
1 〉 = v1

(
m1 −m2

m1 +m2

)500

The definition of temperature used in kinetic theory is proportional to the collision
rate of the molecules. Let C = αT be the collision rate. Thus we expect C∆t
collisions in a time ∆t. If 〈v(t)〉 is the expected velocity of ball 1 at time t we
expect the velocity at time t+ ∆t to be

〈v(t+ ∆t)〉 =

(
m1 −m2

m1 +m2

)αT∆t

〈v(t)〉

Taking the logarithm on both sides and rearranging we get

1

∆t
(log〈v(t+ ∆t)〉 − log〈v(t)〉) = αT log

(
m1 −m2

m1 +m2

)
Taking the limit as ∆t→ 0 we get

d

dt
〈v(t)〉 = αT log

(
m1 −m2

m1 +m2

)
〈v(t)〉

Assuming m1 > m2 then

αT log

(
m1 −m2

m1 +m2

)
< 0

and the dynamics of 〈v〉 are the same as q̈ = −γq̇, the standard friction law.
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6 Momentum Transfer

Just as in the hard ball system we observe transfers of momentum in our system.
The average momentum of each chain after each collision is a little less than it was
before perhaps due to internal motion of each of the chains. See figure 7
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Figure 7: An example of transfer of linear moment from Ct to
Cb, observe that both emerge with angular momen-
tum closer to the average after the collision. In this
case the average is 0.

We now show results of some numerical experiments and attempt to connect
them to the analysis done in the section on kinetic theory. One of the require-
ments to mimic the momentum transfer mechanism of the previous section is that
the percent change in speed resulting from a collision be independent of the pre-
collision velocity. In the last section that percentage was always m1−m2

m1+m2
regardless

of velocity. I ran the model at various pre-collision velocities to see if this is the
case. It appears not, see figure 8

If collisions could in some way be interpreted as producing Rayleigh friction
(upon taking a continuum limit), it would need to be in a way fundamentally
different from the hard-ball system, since the momentum change appears to be
velocity dependent here. We can start by first considering two fundamental dif-
ferences between collisions of Ct and Cb vs collision of billiard balls. The first is
that the momentum transfer for billiard balls depends solely on shape, energy, and
momentum, and the solution becomes ill-conditioned as curvature increases. In
contrast our system uses a smooth potential to do the momentum transfer and the
particles have no shape at all, they are points (infinite curvature, if that’s mean-
ingful). In fact our particles can pass through each other. If one passes through
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Figure 8: Ratio of initial to final velocity for various velocities.

another at a speed v both will experience an impulse from V2 proportional to the
time spent close to one another. This time spent is inversely proportional to v,
and provides one hypothesis as to why figure 8 looks a bit like 1

v
. This also sug-

gests that in order for a potential to mimic the “friction” I interpreted from the
hard-ball system requires a singularity somewhere. A potential with a singularity
may have the property that moving at higher speeds is countered by a steepen-
ing potential and can produce a change in momentum that doesn’t decrease with
increased speeds. Additionally, such a singularity would make it impossible for
particles to pass through each other. The second difference is that the billiard
balls practice elastic collisions, while Ct and Cb have internal degrees of freedom,
and if you close your eyes to those degrees of freedom the collisions will appear
inelastic. This difference is a bit less dramatic, but should result in a superficially
faster than expected loss of average momentum and energy of Ct and Cb (again,
with eyes closed to there internal dynamics, the full system is still conservative
and momentum preserving).

7 Modeling Heat

One idea worth investigating further is how to use mass-spring chains to model
heat. A popular model from solid state physics is known as the Frenkel-Kontorova
Model (FKM) where a chain of masses is dragged over a substrate with sinusoidal
potential. The model exhibits lots of interesting behavior. It serves as a means of
modeling material impurities and kinks in crystal lattices among about a thousand
other things. In the continuum limit the FKM becomes the Sine-Gordon equation
(SGE) which we know to be a Hamiltonian system with soliton solutions, which
exist in the analogous form in the FKM. Despite the complete integrability of the
SGE, such tidiness does not flow down to the FKM, as the discrete complexities
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become possible. It is known that the FKM is capable of producing Rayleigh
friction if one tries to include the unknown internal dynamics of the substrate
through a stochastic transition operator (see [3], chapter 7). A diagram of the
original FKM is shown in figure 9.

substrate potential

Figure 9: A diagram of the Frenkel Kontorova model. In the
original model the substrate potential is independent
of the motions of the masses.

Here we consider Cb our substrate, bearing the flavor the FKM model. We
place Ct above Cb in a stable equilibrium so that total energy is zero and the
masses are in a potential well. We then then add a random perturbation to the
particles of Ct so that the energy of the system can be completely attributed to
this random perturbation. Upon running the integrator we can view if and how
this energy is exchanged to Cb in a deterministic way (the only thing random is
the initial condition). First we must find a stable equilibria to perturb.

7.1 Finding Stable Initial Conditions

Finding a stable initial condition amounts to finding where ∇V = 0. This problem
is probably not analytically solvable, and fails to converge under Newton-Raphson
from singular derivatives. In order to find an equilibria I added a weak friction
force by apending the term 1

∆t
(q2 − q1) to the Discrete-Euler Lagrange equations.

This dissipative system will guide trajectories towards an equilibrium of the sys-
tem. Upon re-substituting this computed equilibrium into the original conservative
system I observed it to be stable.

7.2 Numerical Results of the Heat Model

Given the stable initial condition q0 we add a normally distributed vector with the
average adjusted to 0 to the Ct part of q0 to get q1 in an attempt to model thermal
noise. The idea is that Ct will be “hot”, and Cb will be “cold”. The particles
trajectories of Ct should look very disordered to the naked eye. We then run the
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simulation and observe if and how energy is transferred from Ct to Cb through the
non-linear coupling. The positions of the masses is shown in figure 10
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Figure 10: Time Evolution of mass positions. Ct is blue, in-
tended to be the “hot” substrate, while Cb in red
is intended to be the cold substrate. We observe a
slow transfer of kinetic energy to Cb, it appears to
only be absorbing certain resonant frequencies.

I do not observe a “heat-like” energy transfer. The energy dynamics are de-
picted in figure 11. The energy settles but doesn’t equilibrate. The oscillations in
Ct are pretty wild. The power spectrum of the signals qt(t) and qb(t),the positions
in the top and bottom chains respectively, can shed some light. We show the power
spectrum in figure 12
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Figure 11: Energy transfer from Ct to Cb is slow, and does not
seem to settle to an even distribution between Ct
and Cb. For reassurance, my time step is about one
tenth the natural frequency

It seems energy is trapped in high-frequency modes. Roughly speaking, as a
mass qt of Ct wobbles by a mass qb of Cb, the potential V2 only “turns on” in a region
of size σ. Similar to the argument made in section 6, explaining why the change
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in velocity after a collision appeared ∼ v−1. If qt is in this region for a time-span t
then by equating impulse with change in momentum, it can alter the momentum
of qb by an amount ∼ t. If qt is dominated by high frequency signals, then t ∼ f−1

is bound to be really small, and change in momentum follows ∆p ∼ f−1 is small
as well.
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Figure 12: We observe that for the most part, ‖q̂1
t ‖ and ‖q̂1

b‖
are relatively close at low frequencies, and the reso-
nant modes nearly match. At the higher frequencies
the energy seems stuck in Ct.

8 Future Work

We have seen that variational integrators serve as a great tool for analyzing the
intricacies of momentum and energy transfer between coupled systems. Possible
future directions for this project would be to get a better grasp on the analytical
side of inelastic collisions and the friction like properties of the FKM and the
ramifications of random initial conditions. Unfortunately I learned too recently
how to begin to deal with this. We begin with a density ρ(qt, qb, q̇t, q̇b), the one
we’ve chosen in the section on heat would be a product of normal distribution
for the Ct part and impulse functions for the Cb part. Then we note that the
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distribution evolves according to

∂ρ

∂t
= −{ρ,H}

Where we’ve converted to the poisson bracket form of the system [4], which we
could just as easily pullback to the Langrangian side. Then the expected value for
the energy of Cb would be

〈Eb〉 =

∫
Q

(m
2
‖q̇b‖2 + Vb,springs(qb)

)
ρ(q)dQ

and it would evolve in time according to

d

dt
〈Eb〉 = 〈∂V

∂qb
+ dVb,springs〉+

∫
Q

(
m

2
q̇b

2 + Vb,springs(qb))
∂ρ

∂t
dQ

The details for the distribution i’ve chosen seem to propagate complexity, and I’m
not done working through it yet. Additionally I have some concerns with the non-
homogenous nature of finite mass spring chains. A way to amend this is to use
rings instead, i.e. a model of two rings of mass springs constrained to a distance
of 1 from each other but free to rotate, this could be easily modified to mimic the
FKM with periodic boundary conditions. I initially wanted to do something like
this. I got bogged down in debugging, and an overly complex choice of integrator.
So for now I chose to compromise in the interest of time. I suspect I’m close
to getting the two ring model off the ground soon though. For comparison with
hard ball systems, using different potentials (ones with a singularity at the origin)
should produce different results, and the dependence on the shape of the potential
in general seems like a fun problem. A simultaneous though less urgent pursuit
would be trying to understand the connection between friction and randomness,
which at the moment is just a notion for me.

16



9 Appendix: Matlab Code

Here’s the program I used to implement the scheme outlined in section 2.

function [q,t,K,K_b,K_t,V,V_b,V_t,p_b,p_t] = model11(v0)
% Simulates two Hookean mass spring chains with
% a nonlinear coupling between each other. The
% positions of the masses are stored in the vector q.

global N l k k_a sigma
N = 20;
l = 1./N;
k = 1.0; % spring constant
k_a = 0.001; % coupling (+ for repulsion)
sigma = 0.1;
mt = 1.0; % mass of springs on top
mb = 1.0; % mass of springs below

M = [mt*eye(N) zeros(N);zeros(N) mb*eye(N)]; %mass matrix
h = min(2*pi./(10*sqrt(k)),0.1); % time-step size
step_max = 1000; %number of time steps to implement

% initial conditions
qt0 = (l.*(1:N)’)-3;
qt1 = qt0 + h.*v0;
qb0 = l.*(1:N)’;
qb1 = qb0;% - h.*v0./2;

% initialize q
q = zeros(2*N,step_max);
q(:,1) = [qt0;qb0];
q(:,2) = [qt1;qb1];

% run integrator
display(’running integrator’)
V = zeros(1,step_max-2);
V_t = zeros(1,step_max-2);
V_b = zeros(1,step_max-2);

K = zeros(1,step_max-2);
K_t = K;
K_b = K;
p_t = K;
p_b = K;
for ind = 3:step_max

q1 = q(:,ind-1);
q0 = q(:,ind-2);
q2 = 2*q1-q0;
error = 1;
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while error > 10^(-8)
[V1,dV1,d2V1, Vt_1, Vb_1] = potential(0.5.*(q0+q1));
[V2,dV2,d2V2, Vt_2, Vb_2] = potential(0.5.*(q2+q1));
F = (1./(h^2)).*M*(q2-2.*q1+q0)+0.5.*(dV1+dV2);
error = max(abs(F));
q2 = q2 - ((1/h^2).*M+0.25*d2V2)\F;

end
q(:,ind) = q2;
V(ind-2) = 0.5*(V1+V2);
V_t(ind-2) = 0.5*(Vt_1+Vt_2);
V_b(ind-2) = 0.5*(Vb_1+Vb_2);
vel = (q2-q0)./(2*h);
K(ind-2) = 0.5.*(vel’*M*vel);
vel_t = vel(1:N);
p_t(ind-2) = mean(mt*vel_t);
K_t(ind-2) = 0.5*mt*(vel_t’*vel_t);
vel_b = vel((N+1):(2*N));
p_b(ind-2) = mean(mb*vel_b);
K_b(ind-2) = 0.5*mb*(vel_b’*vel_b);

end
t = h.*(1:(step_max-2))’;
store = q;
q = store(:,2:(end-1));

display(’done integrating’)
beep
end

function [V, dV, d2V, Vt, Vb] = potential(q )
% [V, dV, d2V, Vt, Vb] = potential(q )
% Gives the potential and fist and 2nd derivatives
% of the potential function V = V_1 + V_2

global N k k_a l sigma

%--------------------------------------------
% HOOKEAN SPRINGS
% Here we construct V_1, dV_1, d2V_1
% The linear spring potential
%--------------------------------------------
TOEPb = spalloc(N,N,3*N);
TOEPb = spdiags(ones(N,1),0,TOEPb);
TOEPb = spdiags(-ones(N-1,1),-1,TOEPb);
TOEPb = TOEPb+TOEPb’; % Toeplitz Matrix
TOEPb(1,1) = 1;
TOEPb(N,N) = 1;
TOEPt = TOEPb;

qt = q(1:N); % top row
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qb = q((N+1):2*N); % bottom row

dVb = k.*TOEPb*qb + [k*l; zeros(N-2,1);-k*l]; % bottom row springs
dVt = k*TOEPt*qt + [k*l;zeros(N-2,1);-k*l]; %top row springs

DIFF = speye(N);
DIFF = spdiags(-ones(N-1,1),-1,DIFF);
DIFF(1,1) = 0;

Vb = (k/2).*norm(DIFF*qb-l.*[0;ones(N-1,1)]).^2;
Vt = (k/2).*norm(DIFF*qt-l.*[0;ones(N-1,1)]).^2;

dV_1 = [dVt;dVb]; %diff pot from springs
V_1 = Vb + Vt; %potential from the springs
d2V_1 = [TOEPt zeros(N); zeros(N) TOEPb]; %2nd deriv pot

%------------------------------------------
% THE NONLINEAR COUPLING POTENTIAL
% here we construct V_2, dV_2, D2V_2
%------------------------------------------
Delta = repmat(qt,1,N)-repmat(qb’,N,1);
V_mat = exp((-1/(2*sigma.^2)).*(Delta.^2));
V_2 = k_a.*sum(sum( V_mat )); %coupling potential

dV_2t = ((-k_a/(sigma^2)).*Delta.*V_mat)*ones(N,1);
dV_2b = ((k_a/(sigma^2)).*Delta.*V_mat)’*ones(N,1);
dV_2 = [dV_2t; dV_2b]; % diff coupling potential

d2V_2tt = diag( ((k_a.*( (-1/sigma^2))+(1./sigma^4).*Delta.^2 ).*V_mat)*ones(N,1) ) ;
d2V_2bb = diag( ((k_a.*( (-1/sigma^2))+(1./sigma^4).*Delta’.^2 ).*V_mat’)*ones(N,1) ) ;
d2V_2tb = k_a.*V_mat.*((1/(sigma^2))-(1/sigma^4).*Delta.^2);

d2V_2 = [d2V_2tt d2V_2tb;d2V_2tb’ d2V_2bb]; % 2nd deriv coupling pot.

%-----------------------------------------------------
%Here we sum things to get total potential and derivatives
%-----------------------------------------------------
V = V_1 + V_2; %total pot
dV = dV_1+dV_2; %total diff pot
d2V = d2V_1 + d2V_2; %2nd deriv pot
end
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