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and since Lx 9= iy fdg (by Cartan’s formula) and dg = iy fQ, it follows

that the Poisson bracket can be written as -~
= L X, [

The Poisson bracket is cleary bilinear and skew-symmetric. Hence, with the
Jacobi Identity, it forms a Lie algebra.

All but one of the following proofs of Jacobi identity uses the same general
method. The major step is to show that

Xiray =~ (X5 Xl - (1)

The Jacobi identity then easily follows. In the proofs of Abraham and Mars-
den, Libermann and Marle, and Souriau, this equation is proven directly. In
the proof of Arnold, a seemingly intuitive statement is made which is equiv-
alent to Equation 1. However, Arnold makes this statement without proof.
The remaining proof, that of Marsden and Ratiu, takes a completely different
approach, and then Equation 1 can then be easily shown as a corollary.

2 Marsden and Ratiu

The proof of Marsden and Ratiu makes use of the identity ¢} {f,g} =
{w; f,0tg} where ¢} is the flow of X}, and f,g,h € F(P), but first, the
following preliminary result will be shown:

d
‘(E =0 X‘P:f = X‘thf. (2)



This result follows from
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Jacobi Proof 1

Differentiate ¢} {f, 9} = {¢} f, ¥ig} with respect to ¢t and evaulate at ¢t = 0.
Computation on the LHS follows from the definition of the Lie derivative:

d v {9} = Lx, {f.9}

dt t=0
= {{f g } ’h’} .
Computation on the RHS uses Equation 2:

d er 2+ _ d
@, leifioigl = 4 t=OQ (X@f,Xg,;g)
= Q(Xg, 5.Xg) +2(Xp. Xz, o)
= {{fih}, g} +{f{9,h}}
Combining the LHS and RHS yields

{{f,9},h} = {{f,h}, g} +{f, {9, h}},

which is equivalent to the Jacobi identity by skew-symmetry.

3 Abraham and Marsden

The proof found in Abraham and Marsden proceeds by first proving Equa-
tion 1. This is achieved by defining a Poisson bracket for one-forms on a
symplectic manifold P.

Some notation used throughout this section is as follows:
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e oF indicates the vector field associated with the one-form «. Hence
i QEQ = q. ’ ™

e X* indicates the one-form associated with the vector field X. Hence
Xt =i XQ.

Definition 1 Given a symplectic manifold (P,Q2) and one-forms a, 8 € X* (P),
the Poisson bracket of & and B is given by {e, 8} = — [of, ,(3‘7]b .

Lemma 1 Given a symplectic manifold (P,S)) and one-forms a, 8 € X* (P),
{a, ,3} =—-Ly8+ Eﬁca +d (iaﬁigﬁﬂ) .

PROOF.
The proof uses the following formula for a 2-form Q:

d(X,Y,X) = Lx(Q(Y,2) - Ly (X, 2)+ Lz (QX,Y)) -
Q(X,Y],2)-Q(Y, 2], X) + Q([X, Z],Y).

Applying this formula to X = o and Y = £%, and using the fact the € is
closed, gives

0 = Lot (Q(82)) - Ly (2(e4,2)) + L7 (28, 5)) -
Q([o!,8],2) + (e, [8%,2]) - 2 (8 [o%, 2]) .

Now using the fact that i 4Q = o and Q (["8].2) =Q ({a, B}, Z) =
{a,B8}(Z), then

0 = Lu(B(2)-Ly(a(@) - Lz (igin®)
+{e.8}(2) +a (LuZ) - B(Ly2),
or simplified, this reads
0= L, (B(2))~ L (a(2)) +{a, 8}(2) - d (iasipe) (2).

Lemma 2 Given a symplectic manifold (P,Q?) and f,g € F (P), thend {f,g} =
{df,dg}.

-
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PROOF.
Apply Lemma 1 to {df,dg}. (df) = X}, so

{df,dg} = —Lx,dg+ Ly dg+d (ix,ix,0)

= —d (ﬁng) +d (Eng) +d (inngQ)
= d{f,g}+d{f,g} —d{f.g}
= d{f,g}.

Lemma 3 Given a symplectic manifold (P,Q?) and f,g € F (P), then X(54) =
- [Xf , Xg] -

PROOF.
Xy = (@d{f,g}) , = {df,dg}’
b
~ —([(df)",(dg)”]) = —[X7,X,]
Jacobi Proof 2

Jacobi’s Identity is now a simple computation.

{{fag}vh}+{{h’f}1g} = ‘CXh{f:g}'l_‘CXg{h’f} (3)

= Lx,CLx,f-Lx,Cx,f (@)
= L_ [Xg,Xh]f (5)
= Lxnt (6)
= —{{g,h},f} (7)

4 Arnold
Lemma 4 The Lie Bracket of two vector fields
[X,Y]=LxLy —LyLx

s a first order differential operator.



PROOF.
Let the local coordinates of P be (z, ..., z,), and let X and Y have compo-
nents (X, ..., X») and (Y3, ..., Yy), respectively, then

3 0
LyLyy = ZXia—xi (ZYJB?JSO)
i 3
_ oY; dyp 8%p
- Xl 61‘,' 61‘]' + 'YJB:L',-@:::J- |

By equality of second partials, the second partials in ¢ vanish when Ly L xy ¢
is subtracted. Hence,

_ (9 _9X;\ O¢
[X’ Y] - (X‘ 6:12,' K 6.’8,‘ ) 618]' '

Jacobi Proof 3
The sum {{f, 9}, h}+{{g, h}, f}+{{h, f}, g} is solely a linear combina-

tion of the second-order partial derivatives of f, g, and h. The terms which
contribute to the second derivatives of f are

{{fig} 0} = Ly, {f,e} = Lx,Lxf
and

{{r.f}.9} = Ly, {nf} = -Lx Lx,f.
Hence,

{{f’g}ah} + {{h: f}’g} =- [XQ’Xh] f

By Lemma 4, [X,, X}] is a first-order differential operator, so there are
no second-order partial derivatives of f which contribute to the sum. The
same statement can be made for g and h. Hence, the Jacobi identity holds.

The statement that the Jacobi sum is a “linear combination of second-
order partial derivatives” is not obvious. With this assumption, all first-order
parial derivatives in f must sum to zero, giving

—[Xg, Xn] f — Xggn} f =0,

which is equivalent to Equation 1. Hence, this statement together with
Equations 3- 7 found in the Abraham and Marsden proof completes the
Jacobi identity without using Lemma 4.

6



5 Libermann and Marle

The proof of Libermann and Marle first shows that (d {f, g})* = [(d 1)F, (dg)’] )

or equivalantly X4 = — [X, X,], by computations using the formulas for
Lie derivatives and interior products and the fact that € is closed.
These formulas are:

i[X, Y)®= Lyiya—-iyLya, (8)
and
Lya=diya+iyda. (9)
Jacobi Proof 4
PROOF.
ix, x,|® = £x,ix,®—ix,Lx,Q
= (aix,ix Q+ix,dix ) - iy, (dix,Q +iy,d0)
= diy,iy Q+iy,d%—ix d*f
= diy,iy
= —d{f.g}

Hence, Equation 1 holds.
The Jacobi identity now proceeds as in Equations 3— 7 found in the
proof of Abraham and Marsden.

6 Souriau

Souriau proves the Jacobi identity in terms of derivations, so it is necessary
to first define derivations and then write the Lie derivative, Lie Bracket, and
other necessary formulas in terms of derivations.

Derivation

A derivation § on a manifold P with vector field X € & (P) produces a
new variable

¢y = Dg (z) X (z),
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where y = g (z).
Letting y = z gives dx = X (z), so any vector field can be written in the
form z — éz.

Lie bracket

Given two vector fields,  — 6z and z — &'z, on P, there exists
another derivation denoted [4,4'] called the Lie bracket of § and &§'. This
derivation is defined by

6,6y = 6[6'y] — &' [69],
if 66’y and 8’8y exist.

Lie derivative

Given a vector field, f(z), and a field of covariant operators of degree
m, g (z), on P, the Lie derivative of the field g in the direction of the vector
field f is a field of covariant operators on degree m on P denoted by [f, g].
If X (z) = éz and g (z) = ¢ then another notation for the Lie derivative is

dcp = [£,9)(z).

The general definition of the Lie derivative for a field of covariant operators
of degree m is not given here, but two special cases of m are:

o If the field ¢ is a vector field 8’z on P, ie ¢ = §'z, then the Lie derivative
becomes the Lie bracket:

08’z = [6,8] z. (10)

o If the field ¢ is a scalar field f on P, ie f € F (P), the Lie derivative
reduces to

ocf =4f, (11)

when the 4 f exists.

A few formulas useful in proving the Jacobi Identity will now be stated.
Given a tensor field x — ¢ of degree m > 1 and a vector field z — dz,



a contraction £ — ¢ (6z) is a m—1 tensor field. The Lie derivative of this
contraction in the direction of another vector field z — &’z is given by

¢ e (62)] = [8¢] (62) + o (8L02).. (12)
Next is Cartan’s formula written in the language of derivations:
bcp = [dy] (6z) + d [ (62)] . (13)

Noticing that dy (6z) = d., it follows from Cartan’s formula that
8¢ [dy] = [a%¢] (8z) + d [de (5z)) = d [8c4) - (14)
Notation

In the notation of Souriau, the equivalent of a Hamiltonian vector field is
denoted by grad f, where

df = —Q(grad f).

In more familiar notation, grad f = —X; and —Q (grad f) =i X fQ.

Definition 2 The derivation §/ associated with f € F (P) is defined by
6z = grad f.
Lemma 5 The Lie derivative 5£Q is zero for oll f € F (P).
PROOF.

610 = [dQ] (6/z) +d [Q(¢/z)] by eqn 13
= 0+d[-df]=0.

The Poisson bracket in the notation of Souriau becomes

{f.g} = Q(grad f)(grad g)
— [df] (grad g) = [dg] (grad f),

or in terms of derivations,

{f.g} =08/g=-6F. (15)



Jacobi Proof 5

PROOF.
Apply 6£ to dg = —Q (%) . (The right hand side written in more familiar
notation is just ix (2.)

LHS:
fldg) = d [Jﬁy] by eqn 14
= d[éfg] by eqn 11
= d{f,g} byeqn 15
= —Q(grad {f,g})
RHS:
5 -0 6%) = - [5{9] (5%)—9(6{:599:) by eqn 12
= —Q([|¢7,6) z) by eqn 10 and Lemma 5
Hence,

(67,6 z = grad {f, g},
or using Definition 2,
[5f’5g] = §lha}, (16)

which is Equation 1 written in derivations.
Apply Equation 16 to h € F (P) yields

&7 [69h) — 69 [67h] = 61/9}h,
and, by equation 15, this is

{f{g,h}} — {9.{f,n}} = {{f. 9}, h},

or

0= {{f,g}’h'}"'{{g’h}’f}'*'{{h1f}ag}'
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