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1 Introduction

A free rigid body with one rotor can be used as a model of satellite with one
input. Stabilization of this type of body is of practical importance in analyzing
the ability of a two or three rotor system to continue operation with one or more
actuator failures as well as in understanding the capability of such a system
to perform certain missions. This and similar systems have been extensively
studied by the aerospace community in relation to spacecraft orientation, robotic
devices, vehicle dynamics and other applications of rigid body motion, see the
references in [2] for a detailed description of the applications of interest to the
aerospace community.

There have been many papers discussing control of such a system as a model
for satellite control and as a test case for the development of actuated rigid
bodies such as the work described in [2], [3] and [4]. It is also an interesting
system to study in terms of reduction theory and mechanical connections as in
[6] and [7].

The paper of Bloch et. al [3] describes how to stabilize rotation of a free
rigid body about its intermediate axis through the application of internal torque
from one rotor placed its third principle axis, through an appropriate feedback
law. Stability is proved using the energy-Casimir method. In this report the
system is studied in the reduced space obtained in [6] and the results obtained
in [3] are derived in more detail. A simulation of a rectangular free rigid body
with a rotor on its third principle axis is carried out to verify the analytical
results.

The paper is organized in the following manner; section (2) gives a brief
overview of the system. Section (3) describes in detail the derivation of the
system Lagrangian and the corresponding equations of motion. The Legendre
transformation to Hamiltonian equations (Euler Poincaré Equations) is also
provided in section (3). In section (4) the selection of an appropriate control
law to stabilize the system about its intermediate axis is described. Also in
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section (4) a stability proof based on the Energy Casimir method from [3] is
re-derived. Then in section (5) the momentum spheres for various controller
gains are shown to collaborate the analytical results. The final section of the
paper outlines directions for future study.

2 System Description

The configuration (shape) space of a free rigid body with one internal rotor
aligned with the third principle axis of the carrier body, as in [1] and [3] is
Q = SO(3) × S

1. Where SO(3) describes the rigid body’s attitude (i.e. body
coordinates in relation to the fixed reference frame) and S

1 describes the rotor
angle. The complete phase space of configurations and spatial momenta is
T ∗SO(3) × T ∗

S
1.

The reduced phase space as derived in a manner consistent with [3] and
chapter 13 of [6] is so(3)∗ ' R

3 × R and is identified with the body angular
momenta Π and the conjugate momenta to the rotor angle.

Other properties of this system that are of interest are described in papers
and books such as [1], [3], [7] and many others.

3 Equations of Motion

The kinetic energy of the system is derived by adding the kinetic energy of
the free rigid body to the kinetic energy due to the addition of the internal
rotor. There is no potential energy in the system, as it is assumed that the
fixed (spatial) coordinate frame sits at the center of mass of the free rigid body
and that the principle axis of the body are initially aligned with the coordinate
frame. The body then rotates around in this coordinate frame and defines
body coordinates that are related to the spatial coordinates through a rotation
R ∈ SO(3) of each of the principle axes from the fixed frame. The kinetic
energy of the system is computed based on the assumption, as in [6], that “the
mass distribution of the body is described by a compactly supported density
measure ρ0d

3X in the reference configuration.”
Based on the foregoing assumptions the Lagrangian of the isolated (i.e. with-

out the rotor) free rigid body in the body frame is (as in [6])

L =
1

2

∫

B

ρ0(X)‖V(X, t)‖2d3X

=
1

2

∫

B

ρ0(X)‖Ω̂X‖2d3X (1)

In (1), V(X, t) is the velocity of the rigid body in body coordinates and the
spatial angular velocity, ω, (i.e. from the relation v = ω × r = ω̂r) is related
to the body angular velocity, Ω, through the rotation matrix, R ∈ SO(3), that
transforms body coordinates X to spatial (fixed) coordinates (i.e x = RX ). The
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explicit relationship, from [6], is;

ω̂ = RΩ̂R−1

One can then use the inner product defined in [6] as

〈a, b〉 =

∫

B

ρ0(X)(a × X) · (b × X)d3X (2)

to simplify the expression (1) to

L(Ω)carrier =
1

2
〈Ω,Ω〉 (3)

In this case one can compute the mass moment of inertia Icarrier = (I1, I2, I3)
for the free rigid body using an orthogonal basis (E1,E2,E3) for the body
coordinates using the following equation, from [6]

Ii = Ei · IEi =

∫

B

ρ0(X)
(

‖X‖2 − (Xi)2
)

d3X (4)

As mentioned previously the expression in equation (2) represents the kinetic
energy of only the free rigid body (or outer carrier without the rotor). In order
to compute the Lagrangian for the total system the kinetic energy of the rotor
must be added.

The kinetic energy of the rotor about the third principle axis of the free rigid
body is

L(Ω)rotor =
1

2
〈Ωrotor,Ωrotor〉 (5)

where Ωrotor = (Ω1,Ω2,Ω3 + α̇), Ω = (Ω1,Ω2,Ω3), is the body angular velocity
of the carrier, α is the rotor angle and the moments of inertia for the rotor in
about each axis are J1, J2, J3.

The total system Lagrangian is:

L(Ω)system =
1

2
(〈Ω,Ω〉 + 〈Ωrotor,Ωrotor〉) (6)

This can be expressed in components, as in [1]

L(Ω)system =
1

2
(λ1Ω

2
1 + λ2Ω

2
2 + I3Ω

2
3 + J3(Ω3 + α̇)2)

which is the rotational kinetic energy of the rigid body with λi = Ii + Ji. For
the purpose of this report it is always assumed that I1 > I2 > I3 and J1 = J2.

The Euler-Lagrange Equations, (called the Euler-Poincaré equations for gen-
eralized Rigid Body motion), can be computed from

d

dt

∂L

∂Ω
=

∂L

∂Ω
× Ω (7)
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as described in [6]. Carrying out the computation yields

∂L

∂Ω
= [λ1Ω1, λ2Ω2, λ3Ω3 + J3α̇]

T

∂L

∂Ω
× Ω =





λ2Ω2Ω3 − Ω2(λ3Ω3 + J3α̇)
Ω1(λ3Ω3 + J3α̇) − λ1Ω1Ω3

λ1Ω1Ω2 − λ2Ω1Ω2





d

dt

∂L

∂Ω
=

[

λ1Ω̇1, λ2Ω̇2, λ3Ω̇3 + J3α̈
]T

Finally the Euler-Poincaré equations of motion are:

λ1Ω̇1 = λ2Ω2Ω3 − Ω2(λ3Ω3 + J3α̇)

λ2Ω̇2 = −λ1Ω1Ω3 + Ω1(λ3Ω3 + J3α̇) (8)

λ3Ω̇3 + J3α̈ = λ1Ω1Ω2 − λ2Ω1Ω2

l̇3 = u

The conjugate (angular) momenta, to each Ωi i = 1, 2, 3 are given by the
Legendre transformation as Πi = ∂L

∂Ωi

. Similarly the conjugate momentum to α̇

is l3 = ∂L
∂α̇

.

Π1 = λ1Ω1

Π2 = λ2Ω2 (9)

Π3 = I3Ω3 + J3(Ω3 + α̇) = λ3Ω3 + J3α̇

l3 = J3(Ω3 + α̇)

Applying the Legendre transformation directly to equations (8) yields the
following set of Euler equations

Π̇1 =

(

1

I3
−

1

λ2

)

Π2Π3 −
l3Π2

I3

Π̇2 =

(

1

λ1
−

1

I3

)

Π1Π3 +
l3Π1

I3
(10)

Π̇3 =

(

1

λ2
−

1

λ1

)

Π1Π2

l̇3 = u (11)

The equivalence of equations (8) and equations (10) is proved in [7].
It is interesting to note that equations (10) can also be computed using the

relationship
Π̇ = Π × Ω (12)

which suggests that spatial momentum π = RΠ is conserved because

π̇ = ṘΠ + RΠ̇ = R(Ω × Π + Π × Ω) = 0 (13)

This relationship cannot however be derived from the rigid body Lie-Poisson
bracket, (described in section 4), and the kinetic energy, (or Hamiltonian H(Π)),
that is computed by directly applying the Legendre transformation.
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4 Stabilization about Intermediate Axis

For ease of system analysis one wants to chose the control law such that the sys-
tem is conservative in sense and that the momentum spheres ‖Π‖2 are constant.
In this particular case setting l̇3 = u = kΠ̇3; which implies that l3 = kΠ3 + c

where c is some constant; makes d
dt
‖Π‖2 = 0. Without loss of generality one

can let c = 0 so that the closed loop equations (10) become

Π̇1 =

(

1 − k

I3
−

1

λ2

)

Π2Π3

Π̇2 =

(

1

λ1
−

1 − k

I3

)

Π1Π3 (14)

Π̇3 =

(

1

λ2
−

1

λ1

)

Π1Π2

(15)

The rigid body Lie-Poisson bracket is given in [6] as

{F,G} = −Π · (∇F ×∇G) (16)

Using this bracket and the closed loop equations (14) one can define a Hamil-
tonian H(Π) using relationship from [6], such that the system is Hamiltonian
in the Lie-Poisson structure of the reduced space so(3)∗ ' R

3. Explicitly the
Hamiltonian must satisfy;

Ḟ = {F,H}

d

dt
F (Π) = {F,H}

∇F · Π̇ = −Π · (∇F ×∇H) (17)

= ∇F · (Π ×∇H)

⇒ Π̇ = Π ×∇H (18)

One such Hamiltonian function is given by

H(Π) =
1

2

(

Π2
1

λ1
+

Π2
2

λ2
+

((1 − k)Π3)
2

(1 − k)I3
+

c2

(1 − k)J3

)

(19)

As previously discussed the control was selected in order to conserve the
momentum spheres ‖Π‖2. Defining a function CΦ such that

CΦ = Φ

(

1

2
‖Π‖2

)

(20)

= Φ

(

1

2
(Π2

1 + Π2
2 + Π2

3)

)

(21)
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one can use the definition of the rigid body bracket from [6], CI (for the case
where Φ = I), and an arbitrary function F to show that

ĊI = {CI , F} = −Π · (∇CI ×∇F ) = −Π · (Π ×∇F ) = 0 (22)

This can easily be generalized for other functions Φ. This shows that functions
of the form CΦ Poisson commute with every function. This type of function is
called an energy Casimir and it is clearly conserved along the flow of the system.

Using the Casimir function CΦ and the Hamiltonian function H(Π) defined
in equation (19), one can prove the following Theorem from [3].

Theorem 4.1 For k > 1− I3

λ2

and l3 = kΠ3, the system described by equations
(10) can be stabilized about its intermediate axis.

Proof Following the steps of energy Casimir method described in the intro-
duction of [6]. The function HCΦ

= H + CΦ has a critical point at the relative
equilibrium (0, C, 0) of equations (10).

Step 1 The first variation of (H + CΦ) must vanish i.e. δ(H + CΦ) = 0. The
first variation is

δ(H + CΦ) = Π1

(

Φ′(
1

2
‖Π‖2) +

1

λ1

)

δΠ1

+Π2

(

Φ′(
1

2
‖Π‖2) +

1

λ2

)

δΠ2

+Π3

(

Φ′(
1

2
Π2) +

(1 − k)

I3

)

δΠ3 (23)

Setting this equal to zero yields the following three conditions;

Φ′(
1

2
‖Π‖2) +

1

λ1
= 0

Φ′(
1

2
‖Π‖2) +

1

λ2
= 0

Φ′(
1

2
Π2) +

(1 − k)

I3
= 0 (24)

Step 2 The second variation δ2(H + CΦ) is

δ2(H + CΦ) =

(

Φ′(
1

2
‖Π‖2) +

1

λ1

)

(δΠ1)
2 +

(

Φ′(
1

2
‖Π‖2) +

1

λ2

)

(δΠ2)
2 +

+

(

Φ′(
1

2
‖Π‖2) +

(1 − k)

I3

)

(δΠ3)
2 (25)

+ Φ′′(
1

2
‖Π‖2) (Π1δΠ1 + Π2δΠ2 + Π3δΠ3)

2

6



Step 3 Definiteness Filling equation (24) into equation (25) and noting that
for motion about the intermediate axis relative equilibrium of interest is
Π = (0, C, 0) yields the following equation for the second variation

δ2(H + CΦ) =

(

1

λ1
−

1

λ2

)

δΠ2
1 +

(

(1 − k)

I3
−

1

λ2

)

δΠ2
3

+C2Φ′′(
1

2
‖Π‖2)(δΠ2)

2 (26)

By assumption
(

1

λ1
−

1

λ2

)

< 0

since I1 > I2. Also, one can select CΦ such that Φ′′( 1
2‖Π‖2) < 0. Therefore

for k > 1 − I3

λ2

the equation is always negative (i.e. we have sign definiteness).
As such for a large enough k one can stabilize rotations about the intermediate
axis.

QED

5 Simulations

In order to verify conservation of the momentum spheres ‖Π‖2 and to verify
the result proved in Theorem 4.1, the system was simulated using Matlab. For
the simulation the rigid carrier was described as a rectangular block with the
dimensions 0.75 × 1.0 × 1.5 and unity mass. The rotor was described by a
cylinder a radius of 0.125, length of 0.375 and mass = 0.5. These dimensions
respect the conditions I1 > I2 > I3, J1 = J2 and I1 + J1 > I2 + J2 > I3 + J3.
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Figure 1: Stationary Rotor
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Figure (1) shows the momentum sphere with k = 0. As expected it closely
resembles the canonical picture (described in Theorem 15.9.1 of [6]), of the mo-
mentum sphere for a rigid body. As such, rotation around the (short) first
and (long) third axis, the relative equilibriums (C1, 0, 0) and (0, 0, C3) is spec-
trally stable and rotation about the intermediate axis, the relative equilibrium
(0, C2, 0) is unstable, (note C1, C2, C3 are constants that define the shape of the
momentum sphere). The system also respects the Hamiltonian structure in that
the stable relative equilibriums are centers and the unstable relative equilibrium
is a saddle, which means that there is no energy generated or lost at any point
in the phase space (i.e. the volume of the phase space is conserved).
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Figure 2: ‖Π‖2
2 Sphere k=0.45
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Figure 3: ‖Π‖2
2 Sphere k=0.475

The critical value of k = 1 − I3

λ2

' 0.4624 is where the intermediate axis
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stability property changes. The plots in figures (2) and (3) indicate that a
bifurcation does indeed occur at this critical value of k = 1 − I3

λ2

. One can see
that rotation about the intermediate axis is unstable for k = 0.45 but for values
of k > 1 − I3

λ2

as in figure (3), where k = 0.475, rotational stability about the
intermediate axis is obtained, which verifies Theorem 4.1.

For values of k > 1 − I3

λ2

, such as k = 0.475, the y-axis changes from the
intermediate axis to the long axis and the z-axis changes from the long axis to the
intermediate axis. In the resulting system the primary axis relative equilibrium
(C1, 0, 0) remains an energy minimum (as described in [6]), the intermediate
axis relative equilibrium (0, C2, 0) is an energy maximum and the third axis
relative equilibrium (0, 0, C3) becomes a saddle.

At the critical value of k the equations of motion (eqns. 14) become degen-
erate as shown in equations (27).

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Figure 4: Critical k

Π̇1 = 0

Π̇2 =

(

1

λ1
−

1

λ2

)

Π1Π3 (27)

Π̇3 =

(

1

λ2
−

1

λ1

)

Π1Π2

In these equations (27) Π1 is clearly a constant and as such the second and third
equations define the following ellipse;

Π2
2 + Π2

3 = constant. (28)

At this point there is only one relative equilibrium (C1, 0, 0) about the x-
axis. Figure (4) shows a simulation of the momentum sphere at k = 1 − I3

λ2

.
The simulation verifies the analysis indicating that as the equilibrium of the
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intermediate axis transitions from being a saddle to maximum that at some
critical value of k the long axis becomes the only equilibrium in the system.

It is interesting to note that there is another bifurcation that takes place
around k = 1 − I3

λ1

; which also indicates another degenerate point in the equa-
tions of motion; however in this case the remaining relative equilibrium is around
the y-axis (0, C2, 0). Through this bifurcation the stability properties of the in-
termediate axis (z-axis for k > 1− I3

λ2

) and the short axis (x-axis for k > 1− I3

λ1

)
are exchanged.
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Figure 5: ‖Π‖2
2 Sphere k=1

Figure (5), which shows a simulation with k = 1, illustrates the resulting
system. The second bifurcation results in the third axis relative equilibrium
(0, 0, C3) becoming an energy minimum, the y-axis relative equilibrium (0, C2, 0)
remaining an energy maximum and the x-axis relative equilibrium (C1, 0, 0)
becoming a saddle. Stability of rotations about the intermediate continues for
larger values up to and including k = 100. I did not simulate larger values of
k > 100 for the purpose of this study. I might expect the rotations about the
intermediate axis to become unstable at larger gains as the form of the control
u = kΠ̇3, is like a derivative action and this is known to become unstable for
large gains.

6 Conclusions and Directions for Future Work

A rigid body with a rotor aligned along its third principle axis can be modeled as
a Hamiltonian system. The Hamiltonian structure is derived by what is referred
to in [3] as deforming the open loop equations of motion with an appropriate
feedback gain and appropriate selection of the Lie-Poisson bracket. Stability of
this new system can be analyzed using Energy-Momentum methods such as the
Energy-Casimir method described in this report and in [6].
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Simulations confirm the results obtained in [3] regarding the stabilization of
rotations about the intermediate axis of a free rigid body with one rotor using
a feedback system.

Also in the paper [3] the fact that the Hamiltonian structure induced by se-
lecting the rigid body bracket to define the Lie-Poisson structure on the reduced
space so(3)∗ ' R

3 induces a different system Lagrangian. In this new structure
the new velocities for the system are ω̃i = ωi for i = 1, 2, 3 and ˙̃α = α̇

1−k
− kΠ3

(1−k)J3

.

This Lagrangian is quadratic in the velocities and thus defines a geodesic, study
of this geodesic and the associated phase of the system would be the next step
in studying the system.

Furthermore the work in this paper and specifically the derivation of the
Hamiltonian for use in the energy Casimir proof of Theorem 4.1 is an example
of designing a controlled Hamiltonian, this is closely related to the concept of
controlled Lagrangians discussed in papers such as [5] and [4]. Another direction
of future work would involve the study of these types of systems.
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