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1. Some Generalities on Coadjoint Orbits 'f \' //\

Let G be a Lie group with Lie algebra g, and let 0 < g* be a coadjoint orbit of G.
Then (0 wp) is a symplectic manifold where (w)y(§ wnp) =-p(En)). Here u €0,and §
= —adgu.
In fact wp is the unique symplectic form on O which makes the inclusion O — g* a Poisson
map where g* has the - Lie-Poisson structure. Indeed, if  is a symplectic form on O which
makes the inclusion O — g* a Poisson map, then for all smooth functions F,H on g*
{Flo, Hlg) = {F, H} |0. This implies that (dF)y(XH| o) = -u([ & 8H ]) It follows that

XHIgW =n o ad &4 . The uniqueness of ® is an immediate consequence of this. The group

G acts transitively and symplectically on O and has an equivariant momentum map J: 0 —
d » ~

g* given by J(v) = -v. Indeed, §o(v) = F | =0 exp(td) 'v= v =-adgv, and JE)V) =-v(§) so

(@o)uEoV)N V) = V(IEND) = -(p v)* & = dJ(E)M v).
Fix i € 0, and let Gy be the isotropy subgroup of G at u. Then Gy, is a closed

subgroup of G with Lie algebra gy, ={&eg I§-n =0 ). If G is connected and simply
connected, then 0 = G =~ G/ Gy is simply connected if and only if G, is connected. Itis a

non obvious fact that under the assumption that G is connected and compact, G- is simply
connected. Consideration of the connected group SL(2,R) shows that the compactness
assumption cannot be dropped.

2. Prequantization of (0, wg).

Assume that the cohomology dlass [wole H%(O,R) lies in the image of the natural map

e: HX(0,Z) - H2(0,R). Then there exists a line bundle L with connection a € QI(L*,C*)
whose curvature is ®p , and with Hermitian structure H on L under which parallel
translation is an isometry; here L* is L minus its zero section. If O is simply connected, then
(L,o) is unique up to equivalence. Let e (L,a) be the Lie algebra of all vector fields n on L*
which are C*invariant, and satisfy Lya = 0 and n[|H|2] = 0. It is shown in [Ko 1970] that
there is then a Lie algebra isomorphism 5: C*0OR) "= e (L) and an associated
representation of C*(O,R) ™ on the space S of smooth sections of L given as follows:
8(f) s = (V; + 2mif) s ; here C™(O,R)™ is C™(0,R) with the bracket (f,h)™ = - {f,h}.



3. Invariant Complex Polarizations

A G-invariant complex polarization of O is given by a lagrangian subbundle F of the
complexified tangent space TO ® C such that g- F, =Fg., forallge G,ue 0. Fixp e 0;

then the map G0 given by g— g 1 is equivariant. Since |l is also a surjective
submersion, it is not hard to see that there is a 1-1 correspondence between subbundles of
TO ® C on the one hand and subbundles of TG ® C that contain Ker Tﬁ and are invariant
under Rp V h e Gy, on the other. Moreover, this correspondence preserves involutivity as
well as (left) G-invariance. Since a left-invariant involutive subbundle of TG ® C
corresponds exactly to a complex subalgebra of g , we see that (after fixing |1 € 0) specifying

a G-invariant complex polarization of 0 is equivalent to specifying a complex subalgebra m
of g ® C satisfying the following conditions.

i) m>ogu®C,

ii) dim(m/gu®C)=dim(g® C/m),
iii) wWimmp=0,
iv)  mis Gy-invariant.

We note that if Gy, is connected, then condition i) implies condition iv).

The polarization F is called totally complex if FF=0. The corresponding condition

onm is that m N m c g (note that the reverse containment is automatic).

In the case of G = SU(2), we can identify coadjoint orbits with spheres centered at the
origin in R3. The symplectic form on Sf is % times the standard area form. Let p = (0,0,r).

Then Gy = {(a -0_) | lxl2=1 } There are exactly 2 G-invariant polarizations on S 3
0 o

corresponding to the holomorphic and anti-holomorphic structures on Sf.

4. Induced Representations

Suppose that H is a closed subgroup of the Lie group G and that p: H - GL(V) is a
representation of H on the finite-dimensional complex vector space V. Let Fp(G,V) =

(fe C7(G,V) | f(hg) =p(h)- f(g) YV he H, ge G). Then Fp(G,V) is a complex vector space.
Define pG: G — GL(Fp(G,V)) by pG(g) * f = foRg. Then pGis a representation of G called the
induced representation of p to G.

The group H acts freely and properly on G x V by h- (g,v) = (hg,p(h) * v). Let E denote
the orbit space. Then E has the structure of a complex vector bundle over the right coset
space H\G. It is not hard to show that Fy(G,V) = {smooth sections of E} and that the natural
representation of G on {smooth sections of E} is equivalent to pG. Often H\G has the

structure of a complex manifold and E has a holomorphic structure. One may then consider
only the holomorphic sections of E. This is referred to as holomorphic induction.



Itis easy to see that 2mip: gy — iR is a Lie algebra homomorphism. It is proved in [Ko
1970] that  is the derivative of a Lie group homomorphism Gy — T if and only if [wp] is an
integral cohomology class.

5. Quantization of Coadjoint Orbits

Let CFO,0) = {fe C=(00,0) |df - X=0V complex vector field X taking values in F},
and let C(0,0) = {fe C7(0,C) | {£,CHO,0)) < CHO,C) ). Note that since F is involutive,
f e CH0,C) if and only if Xt takes values in F. Since Xif h} = - [X¢ ,Xn], we see that CHO,C) is
a subalgebra of the Lie algebra C™(0,C). The Jacobi identity implies that the normalizer
C}:(O,C) of Cp(0,C) is also a subalgebra of C*(0,C). If O is' replaced by a cotangent bundle
T*Q and if F is the vertical polarization, then CE(T*Q,C) = (fe C™(T*Q,C) | f factors
through T*Q — Q}, and C}:(T*Q,C) = {fe C(T*QC) |V qe Q, fl T is a polynomial
function of degree < 1}. Suppose f: 0 — R is such that the flow ¢ of X; preserves F and
suppose h € Cr(0,C) so that X, takes values in F. Then ¢ :Xh takes values in F for all t and
hence [Xf , XRp 1= ad-t | 1=0 (p:Xh also takes values in F. Thus {f,h} € Cr(0,C), and hence f €
CHO,0).

Each vector £ € g ® Cgivesrise to 3(&): 0 — Cwhere 3(2‘,)(\/) =-v(). Now 3(&) can be
considered to be defined on all of g*, and since it is linear, %Q =-E. The corresponding

Hamiltonian vector field is Xje (V) =v oad % =-voadf = & 'v=Ep(v). IfEisreal, the
1

time t advance map of this vector field is given by the action of the group element exp(t&).

Since F is G-invariant, it follows that 3(&) € C}:(O,C). The same conclusion holds even if £ is
not real.

6. Loose Ends

The irreducible representations of SU(2) are well-known. Up to equivalence, there is
exactly one in each positive dimension. It is also known that if T is the tautological line
bundle over CP! = P(C?) = 52, then T generates the Picard group HI(CP!,0*) = H2(CP1,Z) ~
Z. Moreover, if n is any positive integer, T®" has only one global section, namely the one
that is identically 0, while if n <0, then the global sections of T®n form a (1-n)-dimensional
complex vector space and the natural representation of SU(2) on these generate all the
irreducible representations of SU(2).

This result generalizes to arbitrary compact Lie groups in the form of the Borel-Weil
Theorem. This needs to be discussed more thoroughly from the viewpoint of geometric
quantization.




