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Abstract

In this paper, we consider the dynamics of mechanical systems
where a holonomic constraint has been replaced with an additional po-
tential energy term whose minimum lies along the constraint. Specif-
ically, we consider the convergence of a sequence of integral curves
corresponding to solutions to a sequence of dynamic systems where
the additional potential is scaled by increasingly large constants. We
present the results, due to Rubin and Ungar (7], which show that if
the initial velocity lies along the constraint, then the integral curves
converge to the constrained motion. If, however, the initial velocity
has a component normal to the constraint, then the sequence exhibits
oscillatory motion in that velocity component, and the motion along
the constraint is affected as well. The theorem is illustrated by a
simple example.

1 Introduction

Many mechanical systems exhibit holonomic constraints; that is, the allow-
able positions of the body within its configuration space are restricted to a
submanifold of the configuration space. One example is the motion of a sim-
ple pendulum, where the fixed length of the pendulum restrict the motion to
lie in S rather than R%2. The dynamics of such a system exhibit additional
restoring forces which cause the body to remain on the submanifold [4].
Another way of introducing constraining forces of this type is by adding
a potential term to the system Lagrangian whose basin lies along the sub-
manifold. Such a term would produce forces in the direction of the gradient
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of the potential, and which would therefore cause the body to return to the
submanifold. The slope of the potential well would determine the size of the
constraining forces. It is possible that this would provide a good approxi-
mation for the constrained dynamics, or, conversely, that systems with large
potentials could be approximated by constraints. This could lead to simpli-
fied models for diverse systems such as rigid body motion [7], (8], flexible body
motion, fluid dynamics [2), statistical mechanics and quantum mechanics [8].

In this paper, we consider the validity of this hypothesis by asking whether
the dynamics of a system with augmented potentials converges to the con-
strained dynamics as the slope of the potential well is increased; that is, as
the potential is multiplied by a sequence of increasing constants whose limit
is infinite. The body of the paper presents a result due to Rubin and Ungar
[7] in this area. The motion of a simple pendulum is simulated in Section 5
to demonstrate the predictions of the theorem.

2 Constraints and Potentials: a little Geom-
etry

Before presenting the results of [7], we consider how one generates potentials
that are consistent with constraints in a geometric setting. Let M be a
Riemannian manifold with dimension m, and let Let L : TM — R be a
Lagrangian on M of the usual form L = T(z,z) — V(z). Let G : M —
R, s < m be a submersion on M. By the Submersion Theorem [1}, N =
G~1(0) defines a submanifold of M with dimension m — s. We define this to
be the submanifold to which we wish to constrain the motion. We can also
generate an augmented potential by modifying the Lagrangian to be

Li(z,£) = L(z, %) — /|G (2)||? (1)

where {u}32, is an increasing sequence of positive real numbers such that
pr — 0o. Clearly, the additional term has N as its set of (local) minimum
points, and hence generates restoring forces which point toward N. As &
increases, the size of the restoring forces increases. Note that for a given
submanifold NV, there are infinitely many submersions G which generate N.
We will have to address the effects of the choice of G on the resulting dy-
namics.



3 Constrained Motion with a Tangential Ini-
tial Velocity

We now present the results of [7]. This paper takes M = R™. For this reason,
we now leave the geometric framework, and consider the theorem as a result
in analysis, namely, on the convergence of a sequence of real functions, and
take T = %x . #. Insofar as the theorem is local, it is possible that is could
be extended to any Riemannian manifold, but the technicalities of that are
not considered here. It is clear, however, that this theorem is not valid for
infinite- dimensional manifolds. In [2], a proof of this theorem is presented
which applies to that case as well, but exposition of that proof is beyond the
scope of this paper.

In their paper, they consider the convergence of a sequence of integral
curves qx(t) generated from an initial condition zo, Zo. The theorem states
the following:

Theorem: Consider initial conditions (zo,Lo) € TN, and let zx(t) be the
integral curve corresponding to those initial conditions and the Lagrangian
Li. Then the following are true:

1. There ezists § > 0 such that z(t) is defined for t € [0,6] for all k.

2. The sequence {zx(t)}32, converges uniformly to a continuous function
z(t) for which z(0) = zo.

3. z(t) € N vt €[0,4].

4. The sequence {(t)}52, converges uniformly to a continuous function
i(t) for which £(0) = Zo.

5. There ezist continuous functions A(t), i = 1..s such that £+ VV (z) +
Y i Mi(t)VGH(z) = 0 identically in t.

Proof: We begin by constructing the Hamiltonian Hj associated with each
Lki

Hy = 533+ V(@) + mlG ()P (2)



Of course, Hy is constant along trajectories, and its initial value is given by
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H= '2‘33‘0 - %o + V(20) (3)
since G(z) = 0 by assumption. Note that H is independent of s, and hence
the subscript has been dropped.

Equation (2) implies that the kinetic energy is bounded by

%:'rk cip < H = V(ze) (4)

Choose D to be a closed region of M which contains z,. Since V(q) is as-
sumed to be C!, it is bounded on D, and hence the family of functions {zx}
is uniformly bounded on D. This implies that ; is complete on D for all &
[9], meaning solutions z(t) exist up to the boundary of D. It also guaran-
tees the existence of each solution on a common interval ¢ € [0, ], since the
boundary of D can only be reached in some minimum finite time correspond-
ing to the maximum possible velocity. Thus, Conclusion 1 is proven. Since
each zx(t) is confined to D, {z(t)} is uniformly bounded as well. Further-
more, the uniform boundedness of {x} on D bounds the growth of zi(t),
implying that {zx(t)} is equicontinuous. Together, the equicontinuity and
uniform boundedness of {z;(t)} imply by Arzela's theorem (3] that {z(t)}
is relatively compact in Clog). This implies [5] that {zx(t)} is sequentially
compact, i.e., that there exists a subsequence of {z,(z)} which converges to
some function z(¢). This proves Conclusion 2 for a subsequence. That z(¢)
is the limit of the entire sequence will be addressed later.
Next, note that equation (2) also implies that

pellG(a)l” < H — V(ze) (5)

Since the right hand side is bounded, and g — oo, we conclude that
IG{gx)||* = 0, meaning that g(t) € N, proving Conclusion 3 (for the conver-
gent subsequence).

Until now, the proof has not required the imposition of special coordinates
on the problem. To prove the remainder, however, we require two changes
of coordinates. The first change of coordinates uses the constraint equation
as the first s coordinates, i.e. ¢¢ = G'(z),i = 1,..,s. For the remaining
m — s equations, we introduce coordinates on each submanifold representing
an inverse image of some point in Rng(G) in such a fashion that curves
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of constant ¢' across submanifolds are C'. In this fashion, we generate a
change of coordinates whose Jacobian J is nonsingular. In these coordinates,
Equation (2) becomes

ST+ U@+ Y (@ = H ®)

=1
where U is V in g-coordinates. Next, we introduce coordinates

oL .
pg—a—qi, i=s+1,...,m (7

which replace the corresponding ¢*. We then transform the Lagrangian to
the Routhian R via

R=U() - 5" "N+ 3 nid (8)

t=s5+1

where ¢* is considered a function of p; for the final m — s terms. This is
reminiscent of the Legendre transform, except that we do not apply it to
all the coordinates. We represent R using the following generic polynomial
expansion:

R=U(q) - Z ai;(q)4'¢ +2 Z Z@(Q)Pi@j + Y a(gpp;  (9)
$,j=1 i=s+1 j=1 i,j=s+1

The Routhian coordinates have the effect of rendering the equations of motion
Lagrangian for the first s coordinates and Hamiltonian for the remaining

coordinates: 4 /R SR
Ei(a_di)za_qi—i-zpkq, i=1,...,s (10)
d
. = OB 4 _OR . _ 1 (11)
pi = aqi’ q _3111’ = RERRR L

In these coordinates, equation (3) can be written:

n ]
H= )Y pd-R+2U+my (¢ (12)
=1

t=s+1



or
n

OR
H= ) pig— R+ 3 (0 (13)
i=s+1 Pi i=1
Evaluating the first two terms using Equation (9) reveals that the pi¢’ terms
will cancel and H becomes

H= Z ai;(9)¢'¢ + Z Q)pip; + U(q) + s Z(q 2 (14)

i,7=1 i,j=s+1 i=1

We now see the significance of these coordinates, namely that the split the
kinetic energy into two separate quadratic functions of the ¢* and p; terms
with no coupling between them. Note that the ¢' terms represent motion
normal to the constraint submanifold, and the p; terms represent motion
along the constraint submanifold.

We now consider the convergence of each set of terms separately. Both
sets of terms are uniformly bounded as a consequence of z(t) being uniformly
bounded on D, as discussed earlier. Furthermore, Equation (11) implies that
p is uniformly bounded on D, and hence we conclude that a subsequence of
the p terms converge uniformly, by the same argument use earlier for the
convergence of zi(t) sequence. For the ¢ terms, however, Equation (10)
reveals that §i(t) is not uniformly bounded in k, so another argument must
be presented.

To address these terms, we begin by differentiating Equation (14) with
respect to time:

= (Z 0ii(9)d'¢ + 1k Z(Q) ) :t ( > a¥(q)pip; + U(q)) (15)

,2= 1 1,j=s+1

and we evaluate the right hand side to yield the following equation:

= (Z aij(9)d'd’ + Nkz g )2) Z Aid'd + ZB‘q (16)

i,j=1 i,7=1

where A;;, B; are continuous functions of ¢, p;, and hence are also bounded
on D. Integrating yields

Z aij(Q)d'¢ + e Z (¢) = f Z AydPdr + / Z Big'dr  (17)

i,J=1 i,j=1
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Examination of the left hand side reveals that it is zero at ¢ = 0, since the
initial velocity assumed to have no component normal to the constraint man-
ifold. Thus, the constant of integration on the right hand side is zero. This
is significant, as will be seen shortly. We now deal with each term separately,
starting with the final term. We present the following technical lemma from
[7] without proof:

Lemma 1:If {gi(t)} is e sequence of continuous functions which con-
verges uniformly to zero for t € [0, and if the g (t) possess uniformly
bounded continuous derivatives gi(t), and {hx(t)} is a sequence of contin-
uous functions which converges uniformly as k — oo, then f[: hi(7)gk(T)
approaches zero uniformly in t for t € [0, )] as k — oo.

Applying this lemma to the final term in Equation (17), we observe that
since B; is a continuous function of g, p;, it converges uniformly in k. Addi-
tionally, gi(t) is already known to have a subsequence converging to zero and
to having uniformly bounded derivatives. Thus, the conditions of the lemma
are satisfied (for the subsequence), and we may state that

t S
/ > Bigidr < & (18)
0 ._

i=1

where ¢, converges to zero as k — co. We may also remove the second term
of the left hand side of (17) and state

s t s
3 as(@id < [ 3 Adiddr + e (19)
0

i,j=1 i,j=1

Next, we note that since A;; is bounded, Y°; .| Ayd'd’ < C 30, (¢')” for
some C. Finally, we note that the remaining term on the left hand side is
derived from the kinetic energy, and hence is positive definite at all ¢. Its
eigenvalues are therefore bounded away from zero on D, and we may state
that ;. aiid'd’ > C* i, (¢)°. Substituting into (19) yields

Céi(t) < C/: Ok(T)dT + €& (20)

where ¢x(t) = Yoi ;o @40’



Applying Gronwall’s Inequality [Perko, p. 79] to this yields:

€k
Ct

from which we conclude that ¢(t), and hence gi(t) converge uniformly to
zero. This, combined with the earlier result that py(t) converges uniformly,
leads to the conclusion that i(f) possesses a uniformly convergent subse-
quence, thus proving Conclusion 4 (for the subsequence). Again, we note
that were the initial velocities normal to the manifold not zero, then the
right-hand side would not converge uniformly to zero, and the proof would
collapse.

Finally, we consider Hamilton’s principle with respect to Ly and restrict
the variations to satisfy 6z - VG*(zx) = 0, meaning the variations are con-
strained to lie along the submanifold. Hamilton’s principle states that

di(t) < et (21)

6Lt %fi)k . i‘k - U(.’L‘) - ukG(xk) . G(mk)dr =0 (22)

or

t 8
/ 0z - &y — 0z - VU(x) — 21 ZGi(xk)Jm VG (zp)dr =0 (23)
0

i=1

and the final term is eliminated by the previous restriction on éz, yielding
/Dt 6z - T — 6z - VU(zx)dT7 =0 (24)
Passing to the limit yields
/;téxwi:—&z-VU(z)dT:O (25)

from which we infer, using the theorem of Lagrange multipliers for con-
strained optimization problems, that z(t) satisfies

%+ VU(z) + Z XD VG (z) =0 (26)

for some continuous &¢(t). Thus, Conclusion 5 is proven. Though not stated
explicitly in [7], it follows from Conclusion 5 that z(¢) is in fact the solution
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for the constrained dynamics, since they, too, obey this equation. Equations
(26) and the given initial conditions uniquely define z(z). Since the 4 terms
were chosen arbitrarily, we conclude that any possible sequence of y terms
possesses a subsequence of solutions which converge to the same z(t), Z(t),
and conclude that the entire sequence must converge. *

4 Constrained Motion with Initial Velocity
Normal to the Constraint

In the previous section, the assumption that the ¢' terms normal to the
manifold were zero was crucial to the proof. We now consider the case where
those terms are nonzero. For simplicity, we consider a case where there is
only one constraint, z.e. s = 1. Note first that Conclusions 1-3 did not
depend on the tangency of the initial velocity, and hence we can already
conclude that gi(t) converges, as does pi(t) from the previous section. To
begin, we partition the energy equation (14) and define

ex(t) = anla) (6)° + p (ab) (27)

which is the energy corresponding to the motion normal to the constraint.
We can thus rewrite equation (14) as

ex(t) = H — Y a(qx)papiy, — Ulr) (28)
i,j=2

The variables on the right hand side are already known to converge, so we
can pass to the limit:

e(t)=H - _ a(q)pip; — U(q) (29)

i,j=2

1The final step in Rubin and Ungar’s proof appears somewhat mysterious. They intro-
duce the constraint on the variation for each z;(t), even though those solutions are not
constrained to lie on the submanifold. Perhaps the justification is that they already know
that the limiting case z(t) will lie on the submanifold, and therefore the inclusion of the
constraint on dz does not corrupt the derived equations of motion for x(t).



From here, we first seek equations of motion for ¢!, p;, 1 = 2..n. Returning
to Equation (11), we evaluate the right hand side using Equation (9) to get

ge' =2ai(ae)ds +2 D a%(ge)p; (30)
i,j=2
which integrates to
i) ~ ) = [ 2ai(@)it +23 " i (31)
j=2

Using Lemma 1, we conclude that the first term on the right hand side goes
to zero uniformly as ¥ — oo, and hence in the limit we have

t n
i) =40 = [ 23 ¥ aipesdr (32)
Jj=2
or .
¢ =2 a(g)p; (33)
j=2
Similarly, for pi, we have
; 3V(Qk) 3011(Qk) 2
m—,-o:-/[ = — = (i) + 34
pix(?) pi(0) o ot 3q‘ (Qk) (34)
a vl a Jt
22 1(‘11:) Pird k+Z a (Qk)pkjpm dr
j=2 =2 q

When we pass to the limit, the first and last terms simply lose the & subscript
as previously, and the third term goes to zero by Lemma 1. To deal with the
second term, we cite another technical lemma:

Lemma 2:If {hi(t)} is a sequence of continuous functions which con-
verges umforrnly for t € [0,)] as k — oo to a functzon h(t) then some
subsequence of fo hi(7)a11(q;) (qk('r)) dr and fo b (T) ek (qk('r)) dr converge
uniformly to the same limit, namely 1 [T h(r)e(r)dr.
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We can apply this lemma to the second term where
danl(ge) 1

he(t) = - 35
k() 3 anla) (35)
and conclude that in the limit,
. oV(g)  Oaulqg) elt) 60" ‘1)
i = — — + - 36
p 3()‘ Bq‘ 2a11(q Z ( )

=2

These equations, combined with Equation (29), represent the equations of
motion when the initial velocity is not tangent to the constraint submanifold.

Noting that equations for g(t), p(t) effectively involved removing from R
the terms corresponding to ¢!, ¢!, we can consider the new equations Hamil-
tonian be defining

Ry = Rlg=¢=0 37)
which yields 5 5 banla) el
g ORe . Ry  Oanlq) eft)
i = ——— + . 38
TS % M7 T a¢ d¢'  2anl(q) (38)
we then have
e(t) = H — Ro(q) (39)
which, if we differentiate and substitute in Equation (38), yields
(¢

i—2 3q 2(111 q)
which in turn integrates to

Ine(t) = In(ay(q)™?) + K (41)

Van(ge(t) = K (42)

where K is a constant determine by the initial conditions. If we redefine the
Hamiltonian to be

or, more simply

K

Ry=Ro+ 43
o (43)
then we recover Hamilton's equations for ¢(t), p(¢):
g Ry b = ORy .
=55 BT T ag i=2,...,m (44)

This result can be extended to the case where multiple constraints exist.
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5 Example

In this section we use the simple pendulum as an example to demonstrate
the theorem. The simple pendulum is given with the following Lagrangian
in R2: 1
L= (& +9") +gy (45)
where g is the gravitational constant, and subject to the constraint
Gz, y)=2*+y*-1=0 (46)
This yields the well known pendulum equation

§=—gsing (47)

where § = tan™!(y/z). We consider as approximations to that system the
augmented Lagrangian given in (1), which yields the following equations:

F = -2uG(z,y)z (48)
§ = —g-2uG(z,y)y (49)

We begin by simulating with zero initial velocity, which obviously lies in TN,
Figure 1 shows the response of x and y for g = 1, 10, 100, 1000 in the dashed
lines, and the response of Equation (47) in the solid line. The convergence
of the augmented potentials to the true solution is apparent. In fact, the
i, = 1000 case is indistinguishable from the true solution.

Next, we simulate responses for with a large non-tangential initial veloc-
ity. We now consider two different constraints: G(z,y) as given before, and
Gi(z,y) = €*G(z,y). The extra e* term is positive everywhere, so G; = 0
still generates the same constraint submanifold. This new constraint gener-
ates the equations

i = —me(G¥(z,y) +2G(z,y)7) (50)
i = —g-2ue*G(z,y)y (51)

Figure 2 shows the converged responses for the £ and y variables (u, =
10000). The response due to G(z,y) is shown using the dashed line, and
G,(z,y) using the dot-dashed line. As is seen there, both solutions converge,
but to different curves, and neither of them corresponds to the correct solu-
tion. Though it is not obvious from the plots, both solutions lie on the unit
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circle. This is consistent with the theory, which states that the solutions
will converge to some curve on the submanifold, though not necessarily the
correct curve, and that the choice of constraint affects the result. (Responses
of £,y were difficult to interpret due to noise from the integration, and hence
are not shown).

6 Conclusions and a little more Geometry

The theorems presented show that care must be taken in approximating
constrained dynamics by a constraining potential. While the theorem does
confirm the intuitive notion that the integral curves ought converge to the
constrained motion, the proof reveals that the convergence of the motion
normal to the constraint to zero is not trivial. The second result, that initial
conditions normal to the constraint submanifold fail to converge to the correct
result, is indicative of the care with which the approximate equations must
be used. (Note that it is possible to carefully construct a potential such
that the dynamics along the constraint submanifold will still converge to the
correct curve, as pointed in both {7] and [8]) Finally, the equations derived
for the oscillatory dynamics normal to the constraint submanifold are also
useful, as shown in [7], where these equations are used to derive a well-known
equation for the motion of a charged particle in an axisymmetric magnetic
field.

The theorem, as presented, is fundamentally a theorem in analysis. How-
ever, it is clear that several geometric concepts are lurking beneath the sur-
face. As shown earlier, generation of both constraints and potentials by a
single submersion can be done for arbitrary manifolds. A logical starting
point for a geometric formulation of the proof would be the use of Routhian
coordinates. In particular, the splitting of the kinetic energy into separate
quadratic terms in ¢ and p begs a geometric interpretation. The major hurdle
to an intrinsic formulation of the proof appears carrying over concepts like
uniform boundedness to an arbitrary manifold. It is possible that a Rieman-
nian manifold has sufficient structure to use these concepts. In [2], a similiar
theorem is proven for an arbitrary Riemannian manifold. A comparison of
the two proofs would no doubt be instructive in this regard.
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