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This project’s presentation will be divided into two main
categories; the experimental, and the non-experimental research.
The experimental section is itself divided into roughly four
seperate experiments. I looked at a simple sin wave simulation of
a time-series, the logistic map, the Henon mapping, and finally a
simple circuit’s response to a driving oscillation. The research I
did investigates the relation between chaos theory and observed
time series EEG. 1In addition to all the research, a good deal of
my time this semester was spent Jjust acquiring a basic
understanding of the subject from a simple mathmatical perspective.

Some of the texts I found most helpful were:

Abraham, Ralph; Shaw, Chris; Dynamics: the Geometry of
Behavior; vol 1-4; UC Santa Cruz, Ariel Press, 1988.

Berge, Pierre; Order within Chaos; Hermann, Paris, 1984.

Ruelle, David; Chaotic evolution and strange attractors;
Cambridge University Press; 1989.

Peitgen, Jurgens and Saupe;Chaos and Fractals, new frontiers
of Science; Springer-Verlag; 1992.

This project was undoubtedly one of the most exciting and
stimulating in my academic career. I thank you again Dr. Marsden

for giving me the opportunity of studying this subject.
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Dan Ernst
714-8546597
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PART I

Bxperinental Section



Abstract:

This experiment looks at the similarities in systems that exhibit
chaotic behavior. We determine the topological equivalence of the
bifurcation diagrams of two mathematical and one physical system
that follow the ’‘period doubling route to chaos’. The Feigenbaum
number calculated from observation was less than .21% off from the
accepted value.

Introduction:

Historically, Physics has been concerned with simplicity.
Physics seeks to understand from first principles, that is from the
most basic ground up. With the advent of chaos theory, suddenly
complexity has become a focus. The belief in the possibility of an
understanding of phenomenon from first principles alone was most
famously vocalized in LaPlace’s comment, "when we know the present
precisely, we can know the future."

Heisenberg challenged this determinism from one end, pointing
out that the assumption of the possibility of ever knowing the
present precisely is false. There is a limit to the precision with
which we can specify the state of a system, thus LaPlace’s
determinism is fundamentally flawed.

Lorentz, Ruellle, and those involved in the beginnings of
Chaos theory attack from the other end. There are systems in which
the propagation of error increases exponentially. That is, the
error in the signal measurement rapidly increases beyond the
proportion of the original signal, and thus loses any measurable
connection to its past history. This gets at the point that

determinism and predictability are not equivalent. A system’s



behavior can be completely determined by a simple process, yet the
simplicity of this process may not be reflected in a simple result.
Theory:

Chaos theory directly relates to Physics in the study of the
dynamics of dissipative systems. If a system is dissipative, then
its trajectory in phase space converges to an attractor. There are
three types of simple attractors. The simplest is a point
attractor, where all trajectories in the basin of attraction
converge to a particular point. By ’basin of attraction’, I mean
the set of all initial conditions that give rise to a trajectory
that converges towards the attractér. The second type of attractor
is the limit cycle, where the trajectory is periodic in time. The
Fourier spectrum of a limit cycle is one fundamental frequency
spike with the possibility of harmonics of that frequency
(depending on the shape of the time series’ waveform). The third
type of simple attractor is the torus of dimension r, where r is
the number of independent fundamental frequencies present in the
signal.

What Lorenz discovered is that there is a fourth type of
attractor, the ’strange attractor’. fStrange attractors’, as
termed by Ruelle, are characterized by sensitivity to initial
conditions (s.i.c.). That is, two initially close trajectories in
phase space diverge rapidly. Regardless of how arbitrarily close
any two initial positions are, their behavior as projected far into
the future can be radically different, and in fact completely
uncorrelated. Furthermore, rather than form a finite series of

discrete points, a single trajectory’s projection onto a strobe
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plane (Poincare’ section) will fill a broad region that we call a
strange attractor. This is to say, the trajectory is not periodic.
If we let the system run an infinite length of time, it will
produce an infinite number of different points all along the

strange attractor. This is why we can say that the trajectory fills

the region; for any arbitrary point on the attractor, our
trajectory will either pass through it or get infinitely close.
If the trajectory is aperiodic in this way, "if the power spectrum
has a continuous part", then we have what Berge’ defines as chaotic
behavior.

Since the system is a completely determinate one, we know that
two different trajectories will never cross. But then how is it
possible, that every trajectory fills the region we call the
’strange attractor’? The best way to visualize this is to look at
the cCantor set, figure TI1. The Poincare’ section of two
trajectories can be seen as two inter-embedded Cantor sets. When we
project these sets over an infinite amount of time, each fills the
entire region without ever overlapping. This type of fractal
structure is precisely what we observe in the Henon map that is the
second part of my experiment.

Along with qualitative properties such as the type of self-
similarity implicit in fractal structures observed here, and
s.i.c., there are also quantitative properties of chaotic behavior
that appear to be universal. Michell Feigenbaum observed that
there are universal numbers delta, J., and epsilon, & , that
characterize the bifurcation diagrams of systems that follow the

period doubling route to chaos.
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There are several routes that a deterministic system can take
to chaotic behavior. Perhaps the simplest to examine is what has
come to be known as ‘the period doubling route to chaos’ or
‘Feigenbaum’s universality’. Central to the study of this
phenomenon is the quadratic iterator: x(i+l) = rx(i)*(1l-x(i)).
What we see is that the same simple, and completely determinate,
system governs both orderly and chaotic behavior. As we increase
the value of the parameter ’‘r’ from 2 to 4, we can trace a very
definite ‘route’ from order into chaos. That is, when we start
with r=2, x(i) for any i large will be one particular point. As we
slowly increase r, there is a bifurcation, and our system
oscillates between two different values of x(i) for i large. Then,
at a certain point each of these values bifurcates, giving us four
solutions. This continues on, and we get 2°, 24, 2%, ... solutions.
Feigenbaum discovered that the ratio of the differences in r-values
of successive bifurcations is a constant. Please see figure TO.
Furthermore, the number § is a constant regardless of what
particular system is exhibiting this period doubling phenomenon.
Similarly, the relative scale of the splittings, £ /¢ .,kis
constant.

If this were true, if the distances between successive
bifurcations was a geometric series, then there is a point to which
this series converges. This point would mark the end of the period
doubling region. In the logistic map given above, this point is
r=3.5699456..., and is referred to as r-infinity. This point
divides the final-states diagram into two regions, the period

doubling region to the left and the one governed by chaos to the
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right. Please see Figure Bl (after page 9)

However, the right-hand region of the final-states diagram is
not merely chaotic, but displays regions of ordered behavior as
well. These ordered regions arise in what are called ‘periodic
windows’. The peculiar self-similarity of these regions is
explored in the discussion in the following section.

Surprisingly, the bifurcation diagram, Bl, of the mathematical
system is topologically equivalent to that of any physical system
that follows the ’period doubling route to chaos’. A circuit can
be constructed to model the behavior of a generic driven, non-
linear oscillator. In fact, with a driving voltage, an inductor, a
resistor, and a pn junction with an effective capacitance, we can
construct a circuit that is a driven, non-linear oscillator. The
effective capacitance of the pn Jjunction used in the circuit
sketched below (fig.T2) is roughly C.exp(eV/kt). When forwardly
biased, the junction conducts like a diode, i.e.

I,(V) = I.exp(ev/kt) -1

The equations that govern the behavior of the circuit are:

I =([V,(t) -RI-V]/L
V= [I-I.V)] / C(V)
With the driving voltage V. (t) = V_sinwt
AN
v L | L

Owt) [ ouw
° i
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T2: CROWT SKETCH . Non-lin. driven osci llatr
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What we have is a determinate system that is dissipative and has an
easily controllable parameter, V. These are the only
preconditions of the possibility of getting a physical system to
display chaotic behavior. We hope that by gradually increasing v,
we see period doubling all the way to chaos.
Procedure, Data, Analysis:

Before running the actual experiment, I decided to get a feel
for the data reduction involved by running a simple simulation.
Program oscl outputs a discrete time series of the function

y(i)= (al)sin(2 (f1)ti) + (a2)sin(2 (f2)ti)
+ k(al)(a2)sin(2 (fl)ti)*sin(2 (f2)ti).

This is just a model of two oscillators and their non-linear cross
term. Considering that the real data we’ll be taking will be a
discrete time series, this seems a logical first model to work
with. We’ll need to generate Fourier power spectrums, bifurcation
diagrams, and return maps towards getting an analysis of the
circuit, so we first manipulate the time series of this simulation
to generate those types of maps.

To generate the Fourier power spectrum, we use a discrete
fast-Fourier transform algorithm outlined in Brigham (please see
appendix 3). Some of the problems that arise in using this
algorithm are aliasing and leekage. Aliasing occurs because the
time series is a set of discrete points sampled from a continuous
wave-form. What happens is, if the sampling rate is slower than or
equal to half the period of the wave-form, the points sampled give
no information as to the frequency of the wave. This can be

illustrated by figure P1.



PI: Allasiag of Nqusf Fregoame, (2)

If the strobe occurs at each ’x’ on the wave-form, we can see that
when the strobe rate equals half the period of the wave, the two
cases shown are equally likely and hence it is impossible to make
any interpolation as to the frequency of the wave in question. The
computer makes the mistake of thinking there is periodic behavior
near the nyquist frequency (T/2). We see four peaks that correspond
(left to right) with the non-linear‘(557 - 330) Hz component, the
330 Hz component, 557 Hz component, and the non-linear component of
oscl’s output corresponding to (557 + 330) Hz.

Leekage is a consequence of the fact that the time series is
a finite truncation of the data series. The sharp transition from
a flat base-line to the first data point necessitates the addition
of many frequencies to simulate that waveform. Due to this effect,
the FFT of a sampled wave is dependant on the phase and frequency
of the strobe pulse with respect to the signal. One way to get rid
of this problem is to have the series fade in and fade out. That
is, attenuate the beginning and end of the series continuously.
Fortunately, this was not a measurable problem in our experiment.

We also ran the FFT program using data from a triangle wave
generated by a wavetek. We used program Pl, to convert the analog
signal to a digital time series, then rescaled the data using REDO1
which rescales the data to floating point numbers between zero and

one. The Fourier power spectrum plot can be seen in figure P3. As
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is expected, the spectrum is a series of harmonic peaks of
decreasing amplitude.

As has been discussed earlier, the "logistic map" plays a
central role in the study of the period doubling route to chaos.
We generate the time series by using the simple recurrence
relation: x(i+1) = r*x(i)*(1-x(i))

Once we’ve computed the time series, to begin to get a better
understanding of what’s going on, we plot the return map,
bifurcation diagram, and Fourier spectra.

The program used to generate the consecutive iterates throws
out the first 1000 iterations to let transients die out. I varied
the ‘r’ parameter and plotted the time series to the screen using
as many as 100 iteration points when trying to resolve the higher
order bifurcation points. The resolution was such that I could only
measure up until the period eight region. Period doubling occurred
at r=2.997, period four was achieved at r=3.4485, and period eight
at r=3.545. Generating the data via the above recurrence relation
on Microsoft Excell, I observed that it is difficult to determine
any one point as being the exact bifurcation point. What occurs at
the initiation of bifurcation is that for any given parameter
value, oscillations around a single solution begin to show up.
These oscillations attenuate, but generally very slowly. This
behavior is observed in the initiation of bifurcation in the Henon
mapping as well. Please see figure Hl.

Trying to determine a specific moment of the time series to
call the first bifurcation point is hard enough, to try to come up

with an accurate measurement for the point where the time series
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becomes aperiodic we need other methods of representation. To this
effect we look at the Fourier spectrum. This too is a judgement
call, and at best a fuzzy measurement. Please see figures
F1,F2,F3. The three figures correspond to parameters of r=3.5650,
r= 3.5700, and r=3.5780 respectively. We’ll call the third
spectrum (3.5780) the point where the logistic mapping goes
aperiodic. Mathematically, this point can be determined rigorously.
As Michell Feigenbaum discovered, the ratio of the difference
between r-values of successive bifurcations is a universal
constant, d . Thus the series of distances between bifurcation
points is geometric. Since the series is convergent, we can
determine the limit that the series comes to and this amounts to
the point after which the chaotic region begins. r infinity can be

determined explicitly given the value for g . Thus, if

£=4.669201... then r =3.566945....

We get a larger scale view of the situation by plotting
several final iterate values of x for each r value between 2.9 and
4.0 . What we generate is the bifurcation diagram, Bl. One of the
most striking features of the bifurcation diagram are the periodic
windows. Starting from the right, we observe a period 3 window,
then period 5, then 7, then 9, and so on. Interestingly, the ratio
of the differences in r-values of successive windows is the
Feigenbaum number, § ! This mirror-image self similarity brings up
some interesting questions. First of all, looking at the period
three window, we see that each of the three solutions themselves
rapidly evolve through the same bifurcation pattern and have their

own r-~infinity’s. This self similarity leads to the question of
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rapidly evolve through the same bifurcation pattern and have their
own r-infinity’s. This self similarity leads to the question of
whether we can trace the splitting back past the beginning of our
bifurcation diagram. Are there other aspects at the beginning of
the iteration that we were unaware of? Is our bifurcation tree just
one branch of a larger tree? If this is so then there is really no
beginning to the bifurcation diagram, and it would never make
sense to speak of any particular r-infinity since each branch has
its own r-infinity. The measurement of r-infinity would be
relative to a particular reference frame, and it is even possible
that (if there is indeed no limit as to how far the splitting can
be projected back) for any value of r, we can find a branch in
reference to which it is an r-infinity.

At first look, there seems to be no reason why our initial
condition must be x(0)=0. Consequently, we should be able to see
a second solution around a larger x-value for a parameter value of
r < 3. Since the vertical spacing between successive splits on the
bifurcation diagram follows the same type of universality law that
gives the Feigenbaum ratio (See figure T0). If we know what &
and é}_ are, we can calculate 23 and predict an x(0) that will
give us a period two solution for r just less than 3. Using an
initial x-value of .1, from the data generated by Excell, I
determined the ratio &/¢&, = 2.502, with ¢, =.41. Fronm this we
can determine £3== 1.0258. Adding this to the original initial
condition, we get 1.1258. However, when we use this number as a new
initial condition by plugging into the recurrence relation, the

relation quickly diverges. In fact, for any x-value over 1, the
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series diverges. So we see, there is a limit to how far back we
can trace the splitting. There is a rightful beginning to our
bifurcation diagram because the "logistic map" only converges as a
mapping of the unit interval onto itself.

Ok, so with this foray into the world of simulacra behind us,
we are now ready to start dealing with the "real" world. What we
did was use a pn junction to form a resonator circuit, and ran the
Voltage trace to the x-axis and the current trace to the y-axis of
a TEK 531A oscilliscope. As we increased the amplitude of the
sinusoidal driving voltage incident on the circuit, we indeed
observed the period doubling route to chaos.

At V=0.395 + .002 we observed the first bifurcation. The
bifurcation threshold measurements had to be taken while only
ipcreasing the voltage to avoid error caused by hysteresis. These

measurements are displayed in table C1.

= 0.395 + .002 Volts
V4 = 1.244 + .004 Volts

= 1.575 + .016 Volts
V12= 1.665 + .02 Volts (intermittency is observed)
V16 not seen
V5 window = 2.770 to 2.804 Volts
V3 window = 4.666 to 5.222 Volts (doubles at 5.222)

From this data we can get an estimate of the Feigenbaum number,J.
. Using the four measurements made and the formula:
D= (V, - V,.,)/ (Vaeo + V) gives us two estimates, 2.56 and 3.677.
The second of these numbers is 1less than .21 % off from the
accepted value cited above!

After these analog measurements, we took data using an Analog

to digital converter using a strobe frequency of 12000 Hz. Again
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We plotted the return maps of the circuit for the period four
region (figure R1l), the chaotic region (figure R2), and the period
three window (figure R3). As we see the phase portrait makes four
loops before repeating in fig.R1, three loops in fig.R3, and
doesn’t seem to join itself at all in fig.R2.

We also plotted the Fourier spectra of data taken from the
period 8 region, to compare with the spectra taken from the chaotic
region. In figure FT1 we see eight distinct peaks of the period
eight region. 1In figure FT2 we see what amounts to a continuous
spectrum of frequencies that corresponds to chaotic behavior.

Next we ran a program called NEWGBD which takes 300 steps,
gathering 16 data points at each step from V incident on the
circuit equal to .03 Volts to V = 4.5 Volts. We then plotted this
data in the bifurcation diagram of figure B2. Though the
resolution (16 points per parameter value) is poor in the chaotic
regions, we can see the remarkable similarity with the bifurcation
diagram generated by the logistic map. Furthermore, the beginning
of a self-similar region can be observed quite clearly at the top
middle of the diagram.

In general, it’s remarkable how clearly this circuit
exhibits the period doubling route to chaos. The similarity
between the physical system and the theoretical "logistic map"
model is a strong statement as to the physical applicability of
chaos theory.

Next, I decided to look at the Henon mapping. In response to
Lorentz’ investigation of his famous three first-order differential

equations, Henon showed that the same properties can be observed
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mapping. In response to Lorentz’ investigation of his famous three
first-order differential equations, Henon showed that the same
properties can be observed in a simple mapping of the plane defined
by the recurrence relation: x(i+l) = y(i) + 1 - gx*(i), y(i+l1l) =
px(i). What Henon did was look at the Poincaré map of a
trajectory as a mapping of the plane to itself. By seeing that "the
essential properties of the trajectory are reflected into
corresponding properties of the set of points", Henon reduced the
problem to the study of a two-dimensional mapping.

I split my inquiry into two parts. The first I did on
Microsoft Excell, the second using my own Fortran program and
Analyze for the IBM. My objective in the first part was to
graphically represent the behavior of the mapping as I increased
the parameter value, g. On Excell, I generated the time series of
the mapping using the recurrence relation mentioned above. And then
plotted the return maps of the generated serieses using Excell’s
plotting options. I varied q from .5 to 1.8 using the same initial
conditions each time. This is represented in the series of eight
graphs attached (’henon 1-8’). We see that the return map rapidly
evolves to a strange attractor. This attractor can be shown to be
chaotic by demonstrating sensitivity to initial conditions in the
behavior of the time series.

To this effect, I did a series of runs keeping the q and p
parameters fixed, but shifting the initial condition of the system.
These runs are represented in the four graphs, ‘’‘sic 1-47. The
first graph has initial condition (x,y) = (0,0). Sensitivity in

the form of the return map to initial conditions is apparent.
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Then I shifted to the IBM. I wrote a fortran program to
generate the points of the Henon map, then modified it to generate
a series suitable for plotting as a bifurcation diagram. 1In the
program (see appendix 4), what I’ve been calling the ‘g’ parameter
is referred to as the ’c’ parameter. Generally, I would run the
program so that it varies the c parameter and stores 10 values of
¥’ for every step of ’‘c’. The resulting bifurcation diagram is
represented in figure H2. Again we see the (by now familiar) form
that we saw previously in the logistic and circuit bifurcation
diagrams. To take a closer look at the chaotic region, I modified
the program to keep the ’‘c’ parameter fixed at 1.6, and vary the
initial condition of our iteration process. The results are
displayed in figure H3. This again shows an observed sensitivity
to initial conditions, which is essential to our definition of what
constitutes ’‘chaotic behavior’. By contrast, the mapping of final
states versus initial conditions in the period two region does not
display this type of sensitivity to initial conditions, converging
to the same solutions regardless of where we start the iteration.

It is important to note however, that the determination of the
presence of s.i.c. is dependant on the resolution available to the
observer. That is, the characterization of a system as sensitive
to initial conditions using this method may be more a comment on
the limitations of the observer that an objective property of the
system. After all, the solutions in figure H3 are limited to the
two bands we see. If I couldn’t resolve any more than the presence
of those two bands, I’d be looking at the same graph as that for

the period two region (figure H4). The fact that attribution of the
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criterion of s.i.c. seems to be relative to the observer is quite
important in that its the only factor ruling out Landau’s
interpretation of this situation as a quasi-periodic system
composed of many different frequency oscillations. 1In this case,
we need either a different test or a different criterion.

To get at a different test, I went back to the initial idea of
s.i.c. as introduced by Ruelle in Chaotic Evolution and Strange
Attractors. The idea is that as time progresses, a small
difference in initial conditions can grow exponentially, in which
case, "although purely deterministic,... the time evolution is
self-independent from its past history and then non-deterministic
in any practical sense."

To see if this is indeed what occurs, I went back to the
actual raw data of the time series. I first looked to compare the
period two and chaotic regions of the logistic map. In the period
two region, I saw that even for large differences in initial
conditions, the pattern of the time series (that is the sequence in
which the particular solutions occurred) converged to the same
alternating between the two possible solutions. (See test 1) In
the ‘chaotic’ region, even at small differences in initial
conditions, the patterns diverged. That is, even if the two cases
had the same myriad of possible solutions, the sequence in which
they occurred differed greatly in contrast to the period two
region. (See test 2) To make sure that this discrepancy was not
due to computation error, I ran the iteration twice for the same
initial conditions. The series proved to be identical even past

the 500th iteration. (See test 3)
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The same test was performed for the Henon recurrence relation.
The results were similarly conclusive. (See test 4,5,6)
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0.437651
0.706383
0.058076
0.923291

-0.540245
0.382314
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-0.164257
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-0.35334
0.688037
0.183222
0.870769

-0.383153
0.648672
0.280921
0.793083

-0.160258
0.874463

-0.360409
0.678744
0.206794
0.855151

-0.336989
0.710074

0.12613
0.900357

-0.471769
0.509345
0.580198
0.343132
0.730049
0.006339
0.926923

-0.547168

0.3684
0.810424

-0.219056
0.832584

-0.225846

0.82493

-0.202332
0.843818

-0.261418
0.792607

-0.104665
0.901021
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-0.091371
0.051152
-0.043765
-0.070638
-0.005808
-0.092329
0.054025
-0.038231
-0.079093
0.016426
-0.087234
0.035334
-0.068804
-0.018322
-0.087077
0.038315
-0.064867
-0.028092
-0.079308
0.016026
-0.087446
0.036041
-0.067874
-0.020679
-0.085515
0.033699
-0.071007
-0.012613
-0.090036
0.047177
-0.050935
-0.05802
-0.034313
-0.073005
-0.000634
-0.092692
0.054717
-0.03684
-0.081042
0.021906
-0.083258
0.022585
-0.082493
0.020233
-0.084382
0.026142
-0.079261
0.010467
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*ROGRAM FFFT
FAST FOURIER FBM. FOR FORTRAN 2.0 COMPILER (FILENAME FFFF.FOR)
THIS FGM CALLCS,SCALES AND QUTRUTE LOB FOWER V& FRER,DOES MOT FLOT.

NOFLOATCALLS

REVISED 0Q7/06/1984 10:04:3%; INFUT N=ND. OF FOINTS

THIS FEM.RECEIVES AND FASSES FARAMETERS AND DATA EBY DOS REDIRECTION.
FARAMETERS ON FIRST LINE;DATS OM NEXT M LINES.

DIMENSION EDATA (2, 1024) ,FDATA(IO24) ,X (10247 ,Y (1024}

READ (%, 56) N, CC. DD, EE, FF , GG, HH, BE
FORMAT (16, Fi6.5,F10.4,F10.4,F10.4,F10.4,F10.4,F10.4)

DO 15 I=1,N

REGD (k, 55) EDATA(L, 1)

FORMAT (F16.6)

EDATA (R, 1) =0

CONTINUE

COLL FFT SUBROUTINE FOR REAL (ONLY} DATA.SEE:E.O.HRIGHAM,FABE 1464,
CALL FFT(EDATA,R)

RMAX=0

DO 25 I=1,N

FDATA (1) =EDATA (1, 1) %%2 +EDATA(R, 1) %%2
IF (FDATA(IY .BT. RMAX) RMAX=FDATA (I
COMT INUE

WRITE (%, 27) N, RMAX, DD, EE, FI7, 86, HH, BR
FORMAT (16,F16.5,F10.4,F10.4,F10.4,F10.4,F10.4,F10.4)

DG 26 I=1,N

IF (FDATA(I) .LT. RMAXXL.O0E-10) FDATA(I)=RMAX%1.0E-10

Y (1) =-ALOG10 ( (FRATACI) ) /ARS (RMAX))

WRITE (%, 57)Y(I)

FORMAT (F16.6)

CONTINUE

END

RUM USING DOS REDIRECTIOM: C»_ FFTC.EXE < DATA.IM > DATA.CUT
IN DATA. IN FILE,FIRST LINE IS VALUE OF N (USE FOWER OF 2 ,
SECOND LINE IS VALUE OF EDATA(L,1) ETC.

3\
i

SUBROUT INE FFT (XDATA, M)
DIMENSTON XDATA (2, N)

DO 104 M=1,12

L2 % &M

(F (L .EQ. N)  NU=M
CONTINUE

N2=N/%2

ML =iU- 1

=0

DO 100 L={,NU

DO 101 I=1,N2
F=FLOAT (IBITR (0/2%8NU1, NUDY )
ARG=6. 283185307 1 %P /FLOAT (M)
C=CO08 (ARBG)

5=SIN(ARG)

kL=l



-
<
(S

100

P TO3Z

=00

BN 1 N2
TREAL=XDATA (1, KIN2) XC+XDATA (2, K1ND) %S
TIMAB=XDATA(Z, KIN2) ¥C-XDATA (1, K1NZ) %8
XDATA (L, IKIN2) =XDATA (1, K1) -TREAL
XDATA (2, K1NZ2)=XDATA (2, K1) ~TIMAG
XDATA(L, K1) =XDATA(1,K1)+TREAL
XDATACZ, K1) =XDATA (2, 1) +TIMAB
{=K+1

K=K+NZ2

IF (KJLT.NY GO TO 102

K=0

NU1=NU1~1

NR=N2Z /2

DO 103 K=i,M

I=IRITR (K-1,NU)+1

IF (I.LE.K) GO TO 103
TREAL=XDATA (1, K)
TIMAB=XDATA(2,K)

XCATA(L,K) =XDATA(1, 1)
XDATA(2,K)y=XDATA(2, 1)
XDATA (1, IY=TREAL

XDATA(Z, I)=TIMAG

CONTINUE

RETURN

END

FUNCTION IRITR(J,NU)

Ji=J

IRITR=0

DO 200 I=1,NU

J2=J1/2

IBITR=IEITRYZ2+ (J1-2%J2)

Ji=J2 Ty

RETURM

END
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23436789
This program calculates points of a Hznon map, suitable
for use in
plotting a time series or two dimensional return map. The
pragram
regquires as input the parameters C and Jd, the starting
values XINIT
and YIMNIT, the number of preiterations P to perform, and
the number
of iterations I to pertorm. Output is a series of
consecutive x
values suitable for piping te PRMOL. IFf vin+i) is
reguired, it can
be obtained by multiplying x(n) by J.

By dan ernst nov 13, 1993,

PFROGRAM HENON

50

REAL%B £, J, X, Y, X1, Y1, xzsum, xo, yo
INTEGER P, I, N, g, m
cpen (8,FILE="dan.dat?)

TYPE C, J, INITIAL X, INITIAL Y, P, AND I
READ(%,%) C, J, X, ¥, P, 1

XO=X
Yo=Yy
FERFORM PREITERATIONS
g=0
write (8.,%) 100%p
if (g .le. 100) then
PERFORM preITERATIONS AND SEND DATA STREAM
n:

if {n .le. 20) then
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ENDIF
10 if (m .le. p) then
X1 =1 — CXX%XX + Y
Yi = J%X
Y Y1
X X1
write(8,%) c,x + 10.0

n

m=m + 1
6070 10
ENDIF
g=q+1
c=c+.02
goto S
ENDIF

PERFORM ITERATIONS AND SEND DATA STREAM
N = O
WRITE (%,% I, 0.0, C
15 FORMAT (110, D16.12, D16.12)
20 FORMAT (D1&.12)
30 IF (M .LE. 100) THEM
WRITE (%,%) X
X1 = 1 — CEXXX + Y
Y1 = J%X
Y = vi
X = X1
N =HN+1
GOTO 30
ENDIF

v un

close (8}
END
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PART I I

Brain Section



There is a great deal of research being done currently on the
connection between ’‘chaos’ understood (perhaps mis-understood) in
the technical sense, and brain activity. The naive idea is that
where once we saw only randomness and irregularity, there might be
order and deterministic reqgularity after all. Unfortunately, this
naive conception of what chaos theory implies is all too clearly a
part of the working assumptions in much of the research I’ve come
across. There is, however, a good deal of work being done that
does seem grounded in a solid understanding of the mathematics
involved, particularly that of Walter J. Freeman. After becoming
disillusioned with much of the literature (I’11 use Babloyantz’
work as an example here) my excitement was sparked anew when I ran
across Freeman’s work. I paid particular attention to the work he’s
been doing, and the bulk of this paper will address itself to this
topic.

A. Babloyantz and D. Gallez of the Universite Libre de
Bruxelles, have done a good deal of work in the field, their
results are cited quite often, their criticism appears regularly in
feedback publications such as Behavioral and Brain Sciences. 1In
their recent "Predictability of the human EEG: a dynamical
approach"!, they looked at electroencephalogram recordings from the
human scalp. Three stages of brain activity were considered: alpha
waves (awake with eyes closed), deep sleep, and the Creutzfeld-
Jacob coma. Fitting the recorded time serieses to deterministic
equations, the Lyapunov exponents were measured, and the Kolmogorov
metric entropy was determined. From the presence of positive

Lyapunov exponents in "periodic" time serieses, they postulate that



the EEG’s behavior is chaotic. Since the metric entropy can be
used to determine the rate at which information is lost in a
system, they used the inverse of the KXolmogorov entropy to
determine the "predictability time".

Their findings can be summarized in Figure 1. The CJ coma
time series is labeled as a 1.4 Hz "hyperchaotic attractor" since
it has more than one positive Lyapunov exponent. The alpha wave
trace is similarly labeled a 10 Hz "hyperchaotic attractor". For
the time being, we’ll ignore that the notion of chaotic behavior
with a definite frequency seems seriously confused. Rather than
admit that perhaps there is no particular chaotic attractor
correlated with the mental state of "deep sleep", they label the
irregular trace recorded during "deep sleep" as having a "pseudo-
cycle of 1 Hz" and claim that "due to limited data, the attractor
is not represented adequately".

Babloyantz’ main thrust seems to be that there is a particular
and determined chaotic attractor correlated with each identifiable
mental state. Rather than deal with the implausible implications
of this view on logical grounds, I‘’d like to point out some of the
problems with this conclusion on its own ternms.

"The first step in the dynamical analysis reported is the
construction of the phase space. The variables responsible
for the EEG activity are not known. However, from a single
measured property, V(t), a set of variables can be
constructed by introducing a time delay, T, leading to the
v(t),vV(t+T),...,V(t+ (d,-1)T) variables." p383

First of all, Babloyantz’ phase portrait of the variables is
just a 2-D return map of the time series. Because the first and
third return maps in fig.1l show some regularity and not exact

(\\W\

periodicity, Babloyantz thinks they are chaotic attractors. Really,
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Fig. 1. Short stretches of three stages
of human EEG activity together with
the corresponding phase portraits. The
EEG were recorded on an analog tape
and processed off-line (signal digitized
in 12 bits, 250 Hz sampling frequency).
The phase portraits are reconstructed
by the time-delay method (1 = 104 ms,
170 ms and 24 ms respectively for CJ
coma, deep sleep and alpha rhythm)



they just represent the time series in another way, and show the
(W\ same thing- either the trace is irregqular or vaguely periodic.
Furthermore, It is not at all clear that the evaluation of
Lyapunov exponents and Kolmogorov entropies means anything in the
cases considered. Babloyantz argues that "any attractor exhibiting
one positive Lyapunov exponent is a chaotic attractor". Positive
characteristic exponents are a measure of the rate of divergence of
trajectories in phase space, and negative are a measure of the
convergence. But to talk about such exponents assumes there is a
causal connection between the first and next point in the time
series (phase space trajectory)- this is not necessarily what is
going on in EEG activity, and there is nothing in Babloyantz’ paper
to give evidence that it is. 1In fact this is the interesting and
vital question at stake in these investigations, but it seenms
Babloyantz assumes a priori that there is a chaotic attractor for
a particular human mental state. In a tangled web of circular
logic, he uses the conclusion as an assumption to derive the
conclusion. He "relates the static and dynamic properties of the
attractor" to demonstrate that there is an attractor.
One of Babloyantz’ major findings is that
"the dynamical silhouette of the attractor is unchanged.
(i) The absolute values of the positive exponents may vary
from one individual to another, but are similar for two

different recordings from the same individual at two years
interval.
(ii) The negative exponents are remarkably stable from one

individual to another as well as for different recordings of
the same individual." p387

But of course this is so! The phase space referred to is just
another representation of the time series. The very reason why a

-

particular EEG trace is identified as "alpha-waves" is because of



its familiarity. It is a pattern seen in different individuals
exhibiting the same behavior- that is why we have the
classification ‘alpha-wave’. The interesting questién is what this

commonality implies, not that it exists.

I believe that Babloyantz’ assumptions may stem from a
misunderstanding of other work done in this field. As support for
his assumptions, he makes the claim that "in all cases, the
analysis has shown the presence of chaotic attractors". He cites
specifically the works of Skarda and Freeman. And we’ll see that
their work does not make that claim, rather they are merely
exploring the possibility of modeling EEG activity by a chaotic
system. Babloyantz also writes "different algorithms allow the
evaluation of Lyapunov exponents from experimental time series",
citing Eckmann(1986)*. He fails to point out the distinction that
these algorithms determine the exponents by means of fitting the
data to equations, the exponents are of a deterministic simulation
of the time series that presupposes a causal relationship that may
not be present in the actual data.

These unsupported assumptions lead Babloyantz to several
conclusions that strike me as unfounded even in the context of his
assumptions.

"A small value of K is observed for deep sleep, which

corresponds to a large predicting time. In this state, the

brain waves are slow in exploring new possibilities or
defining new codings of information. It is therefore
legitimate to characterize this state of the brain as a poor
cognitive state. The low degree of entropy/chaos may be
related to the slow processing of information during the deep
sleep" p388

Conclusions such as this, and similar ones concerning the other two

{M’\

» states examined, seem to me premature with respect to the data



presented in Babloyantz’ paper, and misguided in relation to other
work such as Eeckman, Skarda, Rapp, and Freeman’s.

In "Asymmetric sigmoid non-linearity in the rat olfactory
system"’ Freeman similarly looks at EEG traced during four physical
states of the brain: Seizure, motivation, waking rest, and deep
anesthesia. The traces are displayed in figure 2. EEG probes were
surgically implanted in the three 1layers of the rat central
olfactory system. Using precise methodology, signals could be
localized to the olfactory bulb (OB), anterior nucleus (AON), and
prepyriform cortex (PC). Each of these masses has been
investigated extensively in previous work (Freeman 1975, Freeman
1979, Eeckman Freeman 1990, Bressler 1987)%%-22 and shown to contain
both inhibitory and excitatory neurons. The existence of these two
different classes of neurons makes possible a model of the system
as partially a negative feedback loop rather than a simple coupled
oscillator model. Division of the population of neurons into two
distinct categories is further supported by Rapp, and Zimmerman’s
classic work, "Dynamics of Spontaneous Neural Activity in the
Simian Motor Cortex: the Dimension of Chaotic Neurons"*? In their
work Rapp and Zimmerman looked at the spontaneous activity of 10
individual neurons, in the br;in of a severely disabled
(anesthetized, artificially respired, post craniotomy and
pneumothorax) monkey. Table 1, shows that there are two
populations of neurons. One that as expected has high dimension.
The other with low dimensional activity.

"It would have been difficult to Jjustify an a priori
speculation that a low dimensional dynamical system describing

the activity of any central nervous system neuron could
possibly exist. Yet evidently this is indeed the case.
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Neuron Location Dimension Peak (ms) FWHM (ms)
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B posteentral high 2 <5
postcentral very high 2 <5
D precentsal high 1 5
L postcentral high 1 5
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Neurons in this structurally complex system can on occasion
display comparatively simple dynamical behavior." p335

This early work led to further investigation, specifically
Freeman’s "Correlations between unit firing and EEG in the rat
olfactory system"®, where a 1/4 period phase shift is measured
between the responses of two populations of neurons. The
inhibitory granule cells are observed, as predicted by Freeman’s
negative feedback hypothesis, to follow the pyramidal excitatory
cells by a phase difference of pi/2. As we shall soon see, negative
feedback is one of the key points to Freeman’s model.

Experiments with both rats and rabbits show that there is a
continuous sustained background of non-periodic behavior in the
olfactory system EEG. This background was studied at great length,
and shown to be quite robust- enduring all but the most drastic of
measures such as near-lethal 1levels of anesthesia. However,
periodic behavior is observed naturally, in induced seizures, and
in transient ‘Ybursts" that accompany the introduction of
conditioned stimulus (CS). "During odor application the frequency
and duration of the bursting periods increases."® Freeman
realizes that with the advent of chaos theory, we now know that we
can devise a single deterministic model that will exhibit both
types of behavior observed (non-periodic, and periodic).

The success of his model in simulating the observed EEG is
remarkable. As mentioned before, there are three main parts of the
central olfactory system, the OB, PC, AON, each made up of both
excitatory and inhibitory neurons. Each mass of neurons is modelled
in its non-interactive state as a second order ODE. In the non-

interactive state, the model is called KO, for "“open loop"



excitatory neurons and KO, for inhibitory. Coupled KO sets are
represented as KI, or KI;, with KII being the system where both the
inhibitory and excitatory KI sets for a particular part of the
olfactory system (OB, AON, or PC) are coupled. The KII set is
sufficient for modelling the behavior of any one part separately.
The KIII set is formed by the coupling of all three KII sets and is
sufficient to simulate the chaotic patterns of the observed
olfactory EEG. Including "normal low-level background activity,
high-level relatively coherent ‘bursts’ of oscillation that
accompany reception of input into the bulb, and a degenerate
epileptic state determined by a toroidal chaotic attractor"¢

The model takes into account differential velocities and
separation between axons in the actual AON,PC, and OB. At each
stage of the coupling there is a gain parameter, k,,. Increasing
one of any number of gain parameters in the KIII model demonstrates
the Ruelle-Takens-Newhouse route to chaos. KIII (which is the sum
of all the feedback connections between the three KII sets) can be
characterized by a parameter matrix.

The model’s correspondence to observed data is exceptional.
KIII exhibits self-sustained excitation, unlike any of the KI, or
KII sets which need maintained external stimulation to sustain
activity. Delayed feedback from the KII,, to the KI.. set keeps
excitation chaotic (non-periodic). See figure 3. Also, remarkably,
the KIII model responds to external stimulation with near-periodic
"bursts" characteristic of EEG during inhalation (which is a period

of increased input stimulation). See Figure 4.
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Three changes in the KIII model are needed for seizure

modelling.

1) the input to the PC from the KII,,, and the KII,. sets must
be reduced to 20% its normal level.

2) feedback from KII,. to the KII,, sets must be reduced.
3) feedback from the AON to the OB must be increased.
Each of these requirements can be achieved by varying one gain
parameter. With these settings in place, even a small pulse will
initiate periodic behavior that continues indefinitely, thus
simulating seizure. See figure 5.

YKIII is a simplification serving to emphasize the capacity
for generating chaotic background activity."® The success of the
model in simulating the observed types of EEG is indisputable,
however there are many questions left unanswered.

According to Freeman, "The results suggest that a ‘learned’
patterned attractor is formed by synaptic modification in the OB
for each discriminable odor."® These thoughts are echoed in other
papers, "Learning consists in the selective strengthening of
excitatory connections to form ... a global state manifesting an
attractor."® Presumably, these would be latent after exhalation and
come into existence with each inhalation. That is, he is
postulating the existence of a static mosaic of basins in the
olfactory bulb. "We conceive that the receptor input to the OB is
determined by the odor stimulation which selects the basin for the
appropriate attractor."® This conception calls for a rethinking of
current ‘brain as computer’ models of information manipulation. In
this view of learning there is no program-specified rule necessary
for any identity statement. Learning is non-localized, patterns

are strengthened between individual neurons throughout the global



region considered- there 1is no Central Processing Unit.
Furthermore, there is no appeal to symbols necessary. Rather than
as a rule-driven symbol manipulator, the brain is viewed as "a
self-organized process of adaptive interaction with the
environment"°. However, this speculation on the nature of learning
is not confirmed by behavior exhibited by the model. The validity
of Freeman’s conjecture is an important question. Attaining any
answer necessitates further investigation. Indeed, later
investigations including "Spacial EEG Correlates of Nonassociative
and Associative Olfactory Learning in Rabbits."® reveal "no
evidence for odor-specific spatial EEG patterning".

Similarly, Freeman’s speculations on the functionality of
chaotic behavior force open new avenues for further investigation.
Freeman writes that "chaotic behavior is essential for":

1) Rapid and unbiased acces to all latent attractors
2) preventing atrophy from disuse
3) eliminating the necessity of an exhaustive search to
classify a novel odor
4) allowing a system to escape from its established
repertoire of responses in order to add a new
response to a novel stimulus under reinforcement.
5) preventing periodic entrainment of neuro-
electrical signals that might result in seizure.
Some of these seem more common sense than others, but in none of
them is it clear why chaotic behavior is necessarily needed to
achieve those functions. Furthermore, it seems that the
psychological dimension of the model is still extremely limited,
being competent to simulate only pre-attentive cognition.
Regardless, it seems that Freeman’s method is a definite step up

from much of current brain research methodology, genuinely

presenting us with "a brain theory that can be tested, elaborated,
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