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Bifurcations have received a great deal of interest in recent years along with the
study of chaos and non-linear dynamical systems. In general, a system described by a
differential equation, time map, or Hamiltonian can have parameters in the equations
which affect the dynamics the system. Obviously, in most cases, a small change in one of
the parameters will have little effect on the system, but only slightly perturb it. However,
at certain values these parameters a small change can have dramatic effects and cause a
change in the qualitative behavior of the system. The values at which these changes occur
are known as bifurcation points. 1 plan to discuss in this paper some theorems about the
existence of bifurcations at fixed points of Poincaré maps. In particular I will look at
extremal versus elementary fixed points and also look at the existence of bifurcations in
period doubling and k-period orbits.
One Dimensional Example

In a one dimensional system, described by a differential equation, bifurcations
usually refers to changes in the stability of a point. As an example, consider the one
dimensional case of Hamiltonian : H = (1/2)y2 + (1/3)x3 + ux, where y is the first time
derivative of x. The solution involves a bifurcation when p = 0. If we look at phase
diagrams of y versus x on the level sets of the energy, we see a qualitative change as p
varies. See figure one for the phase portraits, y versus x. The curves in the diagram are
level sets of the Hamiltonian. We get the critical points by setting the first partial
derivative of H with respect to x equal to zero: dH/dx =x2 + 1= 0. So we get critical
points at x =;*,F1,T The second derivative is 2x. So when u is negative, we get two critical
points, with the x =¢A(-E being a stable point, (the second derivative being positive) and
X = p being unstable (the second derivative is negative). However, for [ positive, there
are no stable points. So we go from having an unstable and stable equilibrium point to
having no equilibrium points as p passes through 0. When p=0, the two critical points

collide, with the stability being determined by the direction of the perturbation in x.
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Figure 2. Hyperbolic versus Elliptic orbits in Poincare maps.

The Poincare maps of periodic points are a series of nearby points. (a) In the elliptic case
the points rotate about the fixed point at the origin. The arrows indicate the mapping of
one iteration of the Poincare map to the next. (b) The hyperbolic case. The points
diverge from the fixed point.



Poincare maps, multipliers, and elliptic and hyperbolic fixed points

This example serves to illustrate the general nature of bifurcations but the
examples and theorems I will examine in this paper involve systems in two dimensions.
Specifically I will be looking bifurcations near periodic orbits. If f{v,t) is a function of
time and a vector, vER2 then a periodic orbit would be a point v such that f{0,v) =
f(T,v), where T is the period.

A powerful tool used to study the behavior of systems about such points is the
Poincaré map. 1 will describe the Poincaré map in the system we are currently looking at,
which, since it involves points in M2, is a four dimension Hamiltonian system (two spatial
and two momentum coordinates). The Poincaré map always looks at a cross section,
called Z, of co-dimension one, meaning one dimension less than the system under
investigation. We denote the Poincaré map by P(v), where v is a point in . The point
P(v) is the point at which the point v will cross Z on its next trip around. Relating this
back to periodic points, it is obvious that if f{0,v) = RT,v) and x I then P(v)=v and in
the Poincaré map, we refer to v as a fixed point of P. We use the Poincaré map to study
the behavior of points near fixed points. We see that in any application to a Hamiltonian
system of degree four, the Poincare section reduces the dimension by one, and looking at
level sets of the energy would reduce the dimension by one more, allowing us to describe
the Poincare map with two variables. Since we are only dealing with local results in this
discussion, it is always possible to shift our coordinates such that the fixed point in
question is at the origin. When we look the Poincaré map as a 2x2 matrix, consider the
Jacabian of this matrix at the origin :

dPy(0,0)/dx  dP,(0,0/dy
( dPy(0,0)/dx  dPy(0,0)/dy
and call it A. The eigenvalues of this matrix are known as the multipliers of the fixed

point.



Before 1 begin the discussion of bifurcations, I would like to mention several
important mathematical results which we rely on. First, it can be shown (Meyer and Hall,
V.E) that at a fixed point of a periodic orbit, one of the multipliers is always +1. For this
we revert back to the f{v,t) notation.

Proof. Consider the fixed point v and the map f{t,v) where f{T,v) = f{0,v).
We know (T, f(v,t))=f(t+T,v).

Differentiating with respect to v we and setting t = 0 we get
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so df/dt(0,v) is an eigenvector corresponding to +1.

The second result I would like to mention is that the eigenvalues of a Hamiltonian
system, the eigenvectors always come in conjugate and reciprocal sets: If A is an
eigenvalue of P, then so is A1, X, and 2l (see Meyer and Hall, I1.C). This applies to
our problem, as I will explain below. There is another proof (Meyer and Hall V_E) which
states that if we follow integral surfaces, i.e., level sets of the Hamiltonian, then the
multiplier +1 has multiplicity of at least 2. This is then applied to Poincaré maps and it is
shown that if the multipliers of a period solution are 1,1, A3, . . .Aqy, then the multipliers in
the Poincare map on integral surfaces of the fixed point are A3, .. .Apy. So the two
remaining eigenvalues in out problem are the two that manifest themselves as multipliers
of the matrix dP(0,0)/d(x,y)=0. Since these eigenvalues are subject to the same
restrictions I mentioned at the beginning of this paragraph, we see that they must either be
reciprocals on the real line or conjugate pairs on the unit circle (to satisfy the reciprocal
and conjugate conditions). The real line case could also allow both of them to be +1, and

we will consider this as a separate case.



We will also use the fact the in two dimensions, symplectic maps are area
preserving, meaning their Jacobians have determinant 1.

The last important definitions are the distinctions between elliptic and hyperbolic
orbits. Consider a differential equation such v = f{v) = Bv + g(v) where B is the linearized
system of equations at v=0 and g(v) is the correction, which goes to zero at v=0. Then
the solution is elliptic if there is an eigenvalue of B with a real part equal to zero.
Intuitively this makes sense, as the there would then be no exponential decay or gain with
time. Ifall the eigenvectors of B have a non-zero real part then the orbit is hyperbolic
since its distance from the fixed point will grow or shrink exponentially in time. However,
we are here discussing a mapping from point to point at discrete times: v --> P(v). A
solution satisfying the equation v = B(v) is v = éBT(v), where the orbit has period T. If
the eigenvalues of B have zero real part 0, the eigenvalues of éBT have modulus one.
They are rotations in the complex plane, corresponding to elliptic orbits. Or if the
eigenvalues have a real part, then eéBT would have eigenvalues with values greater or less
than one, corresponding to hyperblic orbits. So in the case of Poincaré maps, we look at
the Jacobian of the mapping and the same concept leads us to the conclusion if the
eigenvalues have modulus 1, i.e., they lie on the unit circle, we consider them elliptic
points. Intuitively, this again means that the distance from the fixed point does not
increase or decrease in time. If they are not on the unit circle, which in our case would
mean they are reciprocals on the real line, the points on the mapping to not rotate about
the fixed point but change distances from it. We call these Ayperbolic points. Figure 2
shows the basic examples.

Throughout this paper 1 will be looking at maps in normal form. This is basically a
Taylor expansion of the map, keeping only terms that are needed to see the behavior of
the system. While linearized equations are often good enough to do this, bifurcations
often occur at points where the linearized equations to not tell us the behavior of the

system and the next order term is needed. I do not have the background or space to



discuss how the normal forms are arrived at, however, in most of the following theorems,
we simply assume the a form of the Poincaré map in normal form, and make calculations
from this point. When equations are given in normal form, it is assumed that all constants

are non-zero unless otherwise noted.

Elementary versus External Fixed Points
Elementary Points

Now we are ready to study the Poincaré maps of these periodic points. As before,
let us make the origin in 2 a fixed point. Denote a vector in the plane as (x,y). The
Poincaré map is P:R2 x I --> R2 : (x,y,n) --> P(x,y, 1) = (x',y"). The Jacobian of the map
P at the fixed point, dP(x,y,n)/d(x,y)|(0,0,0), we will call A. The eigenvalues of A will be
the two multipliers. Here 1 is a parameter in the equations for P which may be varied
over the interval I. We wish to look at changes in behavior with changes in this
parameter.

Theorem : Our first claim is that if the multipliers are not +1, then the fixed point can be
continued in the following sense : If (x,y) = (0,0) is a fixed point so P(0,0,0) = (0,0) there
is a neighborhood (-pq, L) over which p can vary with P(x(u),y(1),1t) = (x,y).
Furthermore, if the origin is a elliptic, then so is (x(),y(ut)) and likewise for hyperbolic
points. So no bifurcation is present.

Proof : Define G(x,y,)t) = P(x,y,1t) - (x,y). Assuming (0,0) is a fixed point, we have
G(0,0,0) = (0,0) and dG(x,y,u)d(x,y)|(0,0,0) = A - I, which is non singular, since we
assumed the eigenvalues of A were non equal to +1. With these conditions we can apply
the implicit function theorem, which allows us to conclude that if i is varied continuously,
there exists a vector (x(p),y(1)) which continues to satisfy G(x(u),y(n),p) = 0. Thus P(x(
1),y(p).1) = (x(n),y(n)) and so these are fixed points as well. For the second part of the
theorem, we rely on the fact that the eigenvalues of a matrix vary continuously with a
parameter so they can not jump from the real line to the unit circle or vice versa as p is

varied.O



Extremal Fixed Points

However, when the multipliers are +1, the proof breaks down, because A-I is then
singular. Intuitively, this means that the eigenvalues are going to depend on the nonlinear
terms, particularly ones involving pu. So the behavior could qualitatively change at p=0.
These points are called extremal fixed points. We define them for this discussion as fixed
points with the map P(x,y,1) = (x',y') given by:
x'=x+ ay+ py + ... (higher order terms)
y=y+ud+px2+..
We see that the Jacobian at the origin, A = ( IO 0|( J
and so the eigenvalues are both +1.
Theorem: (1) If (0,0) is a fixed point at p=0, then there exists a map T: (-t1,71) --> I x
R2:7-> (1(x),7,y(t)) such that (1,y(t)) is a fixed point for p(t). Note that x is simply ©
in this mapping. Also T(t = 0) = (0,0,0).
(2) For this mapping, the fixed points are elliptic in one direction and hyperbolic in the
other.
(3) u achieves a maximum at 0. So fixed points exists for either p negative or u positive,
but not both, and there is both an elliptic and hyperbolic fixed point for each p.
(See figure 3).

Proof : In order for (x,y) to be a fixed point, we must have :

X =x+ay+py+.=x => x'-x=ay+uy+..=0
y=y+pb+px2+.  =y=>y-y=ps+px2 +..=0
We solve the last equalities for y and p as functions of x to get:
Wx) = (-B/8)x2 + ... and y(x) = (yBlaB)x?
So T(t) = (z.y(t),n(r)) with y(t) and p(t) given in the previous line, proving (1).
First we see that p is a parabola and has a maximum at T = 0, which is a maximum if B5 >
O0and a minimum if B3 < 0. Also it has two solutions on one side of T = 0 and never

attains values on the side t=0, proving (3).
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Figure 3. Extremal fixed point.

An extremal fixed point has both an elliptic and hyperbolic for.each T. _Recall that T=x in
the solution so the t axis can also be thought of as a spatial axis. This is the case B¥<0 and

af3>0.

Figure 4. Duffings equation.
We see how the solutions to [ for varying 8 behaves much like an extremal fixed point,
with the critical point corresponding to the fixed point. The three solutions are not drawn

like actual solutions to the equation, but merely demonstrate the behavior of the solutions'
multiplicity and type.



The Jacobian of the mapping P is d(x',y")/d(x,y) = . (Zﬂ’c”‘xl
Along the solutions we found this is
and so we find the eigenvalues are : 1 jmo if aft > 0, the solutions are on the
real line and we get a hyperbolic solution and if afft < 0 we get an elliptic solution (the
non-linear terms will put the solution exactly on the unit circle). Thus, when t goes
through zero, the fixed point solutions switch from being hyperbolic to elliptic, proving
(2).0
If we were to look at this solution in only the two dimensions of the Poincaré map, and
associate hyperbolic with unstable equilibrium points and elliptic with stable equilibrium
points, we see the bifurcation is much like the one dimension example we saw, with there
being a two fixed points on one side of p=0, one hyperbolic and one elliptic, and no fixed
points on the other side of p=0. And the two solutions again collide at the origin and thus
the origin is like an extremal fixed point in this equation. Of course, in two dimensions,
the orbits look much more complicated but the Poincaré map has this behavior and
captures the essential behavior of the orbit over time. So the origin in the one dimension
example we looked at is an extremal fixed point.
Resonance in Duffing's equation

A very common example applied to bifurcation theory is Duffing's equation, which
is of the form x + @p2x +yx3 = Acos(t). This is a variation on a harmonic oscillator,
with @y, acting as the natural frequency of oscillation. The non-linear y term is a non-
linear perturbation and the term on the right is an oscillating applied force at a different
frequency, o We can put this in the form of a Hamiltonian by setting y to the time
derivative of x, making x and y canonically conjugate variables and then setting the
Hamiltonian H = -(0,/2)(x2 + y2) + (y/og)x4/4 - (Alog)xcos(ogt). If y=0 this has a
solution x = [A/((oe2 - cofz)] cos(oft). Note that the frequency of the solution is that of
the forced oscillator. We are going to look at solutions corresponding to different

relations between the forced and natural frequencies. Without the forced or non-linear



term (y=A=0), Hamilton's equations become dx/dt = dH/dy = o,y and dy/dt = -dH/dx = -
opx which has the solution is simply x = xcos(wpt) + ysin(oqt) and y = -xsin(oqt) + ycos(
opt). Thus, if we compute the period map with the forced oscillation period, 2n/og, as we

computed before, we get the matrix:
X' cos (2nwp/f) sin (2nop/0f) / X

y -sin (2nwp/of)  cos (2non/mf) & y

The multipliers are exp(+-2niop/0e). Note that these are +1 if @/ is equal to an
integer. If this is not the case, then we have elementary multipliers (not equal to +1) and
by our first theorem, we see that the solution can be continued with small variations in the
parameter A or y. However when ay/of=1, i=0,+1,-1,2,-2,. . . then we can not apply the
theorem. So let us consider the case where the ratio is almost an integer. We normalize
of= 1 and then assume (oe2 =1 - ud where u is a small parameter. We can then look at
the solutions when all the non-linear terms are small by multiplying them by p also. Thus
we have dx2/dt2 + x = u(5x + yx3 + Acos t), which has the Hamiltonian :

H = (1/2)(x2 + y2) - p(5x2/2 + yx#/4 + Ax cos t)

We make the change to action-angle variables by setting x = (21)1/2 cos¢, and

y= @nl/ 25ing. This makes the Hamiltonian :

H =1 - u(8lcos2¢ + yI2cos*p + A(2I)12cospeost)

Now we rely on the theory of normal forms, which tells us that the only the terms in I and

(¢+t) are necessary to the solution. This motivates making the following the substitutions:

cos2d = (1 + cos 2¢)/2

cos4¢> = (3 + 4cos2¢ + cosdd)/8

cos¢cost = [cos(dp+t) + cos(d-1)]/2

So, keeping only terms in I and (¢+t) and we get:
H=1- pu[I5/2 + 3y12/8 + AU/2 cos(¢+t)] + ....

Then our equations become:
dl/dt = dH/d$ = -pAL/2 sin(¢p+t)
dd/dt = -dH/d] = -1 + p[3yl/4 + A2-3/21-V/2 cos(¢+t)



We integrate these from t=0 to 2x (we assume o= 21/T = 1) to get the period mapping :
I'- 1= pn(21)1/2A2sing + ...
¢' - & = -2 + pnfd + 3yI/2 + (2AI1) /2cosd] + ...

We then divide the first equation by wt(2l)1/ 2 and golve the first equation (I'—I)/un(2l)1/ 2
= 0 = sin ¢ so our solutions are $=0 + ... and ¢=n + ... We then plug this into the second
equation so cos$ becomes +-1 + ... Then the second equation (¢'-p+2n)/un=0=25+ 3y
/2 + (2A1) /2. Thus we get a fixed point for 5 = -3yl/2 +- (2AT)-1/2_ For simplicity let
us combine constants so & = -al +- bI-1/2. Now we set d8/d] = -a +- (1/2)bI-3/2 = 0 so
we get a critical point of & at I = [b/2a/2/3. And so 8. = kjab2| when we plug back into
the equation. k is a combination of numerical constants. This equation has one solution
for I when & > 3 and three solutions when 8 < 8;. Two of these solutions collide at 5.

The Jacobian elements are :

dI'/dl = 1 (sin ¢ = O at the solution)

dIYd$ = +- pn(21)1/2A

d¢/dI = ur[3y/2 - (1/2)(2A)"1/21-3/2] = ur(dd/dI) (we calculated this above)
d'dd = 1

So the characteristic polynomial is (A-1)2 _‘_F)—(IZR(ZI)'” 2A) and the multipliers are then

A =1+ (a) -u2n(20)-1/2A(d5/dI). Since d8/dI changes sign at the critical point, we

see that the stability type changes from elliptic to hyperbolic for the two points near the

critical point 8;. Thus, other than for the fact that we have an extra solution on each side,
we have an extremal point, where an elliptic and hyperbolic fixed point appear on one side
of the critical point. See figure 4.

Period Doubling and Period-k Bifurcation Points

Period 2

One of the most important kinds of bifurcations being studied currently are those
of period doubling. Consider a discrete mapping that has a periodic fixed point. That is,
each iteration brings a point back to itself P(u4,x,y) = (x,y). Occasionally, as p passes

through a particular value, the iteration brings the point back to itself only after two



iterations, so P(P(x,y,1)) = (x,y). This is known as period doubling. We can generalize
this to the concept of a k-period point, meaning that it comes back to original point after k
iterations: Pk(x,y,p) = (x,y), where Pk is the map P composed k times. Period doubling is
an extremely important concept in chaos theory, as a solution will bifurcate into a period
2 solution, then each of its branches will in turn bifurcate, and so on. These bifurcations
approach a limit past which the behavior is said to be chaotic and completely
unpredictable. Here we only deal with only with period-2 and period-k solutions to the
Poincaré map (see figure 5).

Again let A be the Jacobian of the P at the origin, a fixed point. Note that Ak(x,y)
= (x,y) + ...(non-linear terms) which has only one solution : (x,y) = (0,0) unless an
eigenvalue of A is the kth root of unity. We first consider the period doubling case.
Because -1 is the second root of +1, then if it was a double multiplier of A, then A2(x,y)
= (x,y), where (x,y) is an eigenvector corresponding to -1. We now make another
definition:

Definition: The origin is a transitional fixed point of P at p=0 if P(x,y,u) = (x',y") is given
by:
'=x+ay+pulax+by)+.., a=+]

y=-y +pulex+ dy)-l—Bx3 + ...
-1 A

We see that the multipliers are -1 at u=0 since then A =

Theorem: Let the origin be a transitional fixed point for P given above at u=0. Then the
following hold:

(1) If ac > 0, the origin is hyperbolic when pu>0 and is elliptic when u<0. The situation is
reversed for ac < 0.

(2) If Bc > O, there are period 2 points at u<0 and no periodic points for u>0. Again, the
opposite is true for Bc<0. The period 2 points tend to the origin as p approaches zero.
(3) The stability type (elliptic or hyperbolic) of the origin and the period 2 points are

opposite.
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A Poincare map of a period 2 map will alternate between two points in the plane.
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Figure 6. Period Doubling Bifurcation

The vertical axis is the x,y plane suppressed into one dimension. As p goes through 0, we
see that the type of the origin's stability changes and a period 2 point appears on one side.
Lines are drawn both directions as the period 2 point will intersect the plane in two points,
even though it is only one particular orbit. This is the case ac>0, Bc>0



(See figure 6)

Proof :

1)

dx'/dx=-1+pa+. .

dx/dy=a+pub+ ...

dy/dx = pc + 3Bx2 + ...

dyldy = -1+ pd -t
So the Jacobian at the origin is A =

ML —|+ud

Before computing the eigenvalues we note that the determinant of this matrix at the origin
is1-p(a+d+ac)+.. and this must be equal to +1 for the mapping to be symplectic
and thus area preserving, Then a + d = -ac is required. Now we compute the eigenvalues

from the characteristic equation :

(A-1+pa)(A-1+pud) - (uc)(atpub) = 0
Throwing out terms of order pu2 we get
(A-1)2 + (A-1)(nee + pd) - pee =0

We replace pa+ud = -ocp to get:

A2-2)+ 1 -Aocp + ocy - =A2-20L+1-2oeu=0
A= [2+acu§’2+acp)2-4ﬁ2

We already know the values are either on the real line or the unit circle so we only need to
look at the discriminant to determine if the eigenvalue is real or complex.

The discriminant is (ctcpt)2 + 4aicp and so we conclude that the origin is elliptic if

acp < 0 and hyperbolic if acu > 0, proving the first statement.

(2) We look at the second iterate of the map and again keep only to first order in , B:

x"= (-1 +pa)x'+ (a+pb)y' +. ..
= (-1 + pa)(-x+pax - ay + apdy + opcx +apx3) + (a + pb)(-y + pdy + pex + px3)
=x - pax + ay - apdy - oprex -afix3 - pax - paay - ay + audy + poex + apx3
- pby
=X -2y + O(p) + Bx3 + ..
y'= (-1 +ud)y' +pucx'+ Bx'3 + ...
= (-1 + pd) (-y + pdy + pox + peaty + Bx3) - pex + peaty - x3 + ..
=y - 2pucx - 2udy - 2Bx3 + ...



In order for this to be period 2 we must have x" - x =0 = -2ay + Bx3 + O(u)+ ..s0 a
solution y(u1,x) is of order O(pt + x3). This we can plug into our other equation:

y' -y =0 = 2pcx-2pdy + px3

In this equation we can drop the y term as it is of order O(u2 + pux3). We first divide by x
and get (y"- y)/x = 0 = -2pc + Bx2. This is justified since we are not interested in the
origin as a solution. So, solving for x as a function of p we have x(u) = -2cp/p as a
solution corresponding to a period 2 map. From this we conclude that if Bc > 0, there are
two solutions for u<0 and none for u>0, and vice versa for ¢ < 0, proving statement (2).

(3) Now we look at the Jacobian of the period 2 solution:

dx"dx=1+.. dx"dy=-20ot... dy"/dx = -2pc - 68x2 +...
dy"/dy=1-2ud + ...

Plugging in the solution x2 = -2¢j/B we have the Jacobian matrix as:
1 -20.
10acp 1.
The characteristic equation is then (A-1)2 + 20ccpu =0. So A = 11&!@ ] -j F&;’;—
So the solution is hyperbolic if acp < 0 and elliptic of acp > 0. This is the opposite of the
fixed point, proving (3). O
So we have shown that near a transitional fixed point, we have period 2 orbits appearing
on one side of u=0 and they have the opposite stability type as the fixed point. The fixed
point itself is remains fixed on either side, though it changes stability type at u=0 (see
figures 6 and 7).
Period 3

We now turn our attention to period k points. For this, we use action-angle
coordinates by the transformation I = (1/2)(x2 + y2) and ¢ = arctan (y/x). We noted that
-1, being a second root of +1, caused a period doubling to occur. Therefore, we define k
bifurcation points which have multipliers that are k-roots of +1.

Definition: The origin is a k-bifurcation point at p=0 if the map P(L,¢,n) = (I',¢') where
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Figure 7. Phase Diagrams of Period Doubling Bifurcation
The period 2 point is only of one side of u=0 and is opposite of the origin. Again, the

period 2 point intersects in two poiat #nd so the two points are really only one orbit.
This is the case when a.c>0 and B¢ W(a) u<0: The fixed point is elliptic and the period
2 point is hyperbolic. p>0: The period 2 point disappears and the origin becomes
hyperbolic. (b) u<0: The fixed point is again elliptic. p>0: The fixed point becomes
hyperbolic and an elliptic period 2 point appears.



I'=1- (1/k)2yIK 2sin(k¢) + ...
¢ =¢ + (2ntvk) + 5y + BI + y1(k-2)2c0s(k) + ...
The BI term is called the twist term. The y term is called the resonance term. Notice that,
depending on k, these two terms vary in their importance. When k=4, they are of the
same order, and in this case, the relative size of & and B becomes important in the behavior
of the bifurcations. I will examine the k=3 case, then the k>4 case, then look at the k=4 as
a combination of the previous two.

For k=3 we look at the third iteration of the map given above:
13 =1-2y132)sin(3¢) + ...
¢3 = ¢ + 2h + 3ap + 3y11/2cos(3¢) + ...
where we have dropped higher order corrections. In particular the twist term (BI) is of
higher order than the resonance term (order 11/2) so the twist term can be suppressed in
the calculation.
Theorem: Let the origin be 3-bifurcation point as defined above. Then there are
hyperbolic orbits of period 3 for both u<0 and >0 and the period points tend to the origin
as {1 goes to zero.
Proof : We divide the first equation by 2y1(3/2) and find a 3 periodic point by the solving
as- Iy2yB2)=0= sin(3¢) which has solution ¢;(I) = in/3 + ..., where i=0,1,. . . .5. We
plug this into the other equation : I3 - 1 =0 = 2xth + 3o + 3y11/2cos(3¢) and
approximate cos(3¢;) = +1 for i odd and cos (3¢;) = -1 for eveni. We then solve the
equation (@3- $; - 2xh)/3 =0 =ap (p/m) yll/ 2 5o the solutions are L=+ (otu/'y)2 +...

The Jacobian of the period three map is computed as follows at these solutions:

di3/di=1 - 3711/2sin(3d>) =1+ ..(sin(3¢) = 0 + ...along the solution).
di3/d$ = -6y13/2cos(3¢) = + 6y1;3/2 + ...

dd3/dI = (3y/2)(cos3) = + (3y/2);1/2 + ...

dd3/dd =1+ 911/ 2sin(3p) =1+ ...

So we have the characteristic polynomial (A-1)2 - (9/2)y21;2 = 0 which has the solution



A=1+ (9/2)'Y21i2 =1 -_F& 9/2)(onu)?' Thus all multipliers and so the 3-periodic points are

hyperbolic for all p and tend to the origin as p tends to zero. O

We now examine the case k>4. The kth iterate map of a k-periodic point is :
1k =1 - 2yIK/2gin(k) + ...
¢k =¢ +2hm+akp + Bkl + ...
Here we drop the resonance term, as it of order I13/2 and the twist term dominates it.
Theorem: Let the origin be a k-bifurcation point for k>4 of the above mapping for u=0.
Then when aff<0 there is exists at least pme elliptic and one hyperbolic orbit of period k
for n>0 and no orbits of period k for u<0. The opposite holds for af>0. All the periodic
orbits tend to the origin as p goes to zero (see figure 8).

Proof : We solve the first equation of the k-iterate map by dividing by -2y1k/2 and

obtaining (IK - l)/(-ZyIk/Z) =0 =sin (k¢) so ¢pj(I) =in/k ,i=0, .. .. 2k-1, is a solution.
The second equationis (¢K - ¢ - 2th)k=0= ou + BI. So I; =-ap/B. Since I must be
positive by the definition of action variables, we only have solutions when auf <0,
proving that no solutions exists for a<0 and 1 < 0, or aff>0 and p>0. If afp <0, the
Jacobian becomes:

1 -2kylk2cos(key)

kB 1

so the equation is (A-1)2 + 2kzyBIik/2cos(k¢i) = 0 and the multipliers are :

A=14 }32k2yBIik/2 where again I; = -ap/B. So we get both elliptic and hyperbolic points
as the different values of i cause both the negative or positive solution to be taken inside
the square root sign. O

Now we are ready to look at the 4-bifurcation point. Now the map is given by

14 =1=2y12sin(4) + ...
¢4 = ¢ + 2hm + dou + 4[B +Fos(P)JI + ...
where we keep both the twist and the resonance terms in the brackets. The prrofs I have

been presenting or in Meyer and Hall, however, for the following theorem, my calculations
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Figure 8. S-Bifurcation Point

Take the case when o8 < 0 (a) There are no periodic points for u<0. Here the fixed point
is presented as elliptic though the proof did not address this. (b) Ten solutions appear for
k=5. Half are elliptic and half are hyperbolic.



disagreed with those of the authors. Therefore I will present what I calculated and
mention where the disagreements occur.

Theorem: If § + y have different signs then there are hyperbolic period 4 orbits for one
side of p=0 and elliptic points on the other side of u=0. If B + y have the same sign, then
when o3 . v) < O there is an elliptic or hyperbolic period orbit of period 4 for u>0 and no
period 4 orbit for u<0. The opposite holds when a(f§ + y) > 0.

Meyer claims that if B_t y have the same sign then there are hyperbolic points on both
sides of u=0. He says that if B + y have the same sign then both hyperbolic and elliptic
solutions are on one side of p=0 and none are on the othe side. We agree about when the
solutions exist (always for the first case, and for one side of u=0 for the second), however
we disagree about the stability types.

Proof’: The proof'is much the same as the previous two. We divide the first equation by

-2~{I2 and get 4-1=0=sin (4¢) + ... sop;=in/4i=0,...7. The second equation then
becomes (¢p3 - ¢ - 2nh)/4 =0=ou + [B + ycos(4¢;)]I + . . . which becomes ap + (B + y)I
+...=0. So asolution is I; = -ap/(B +v). Note that I has a positive solution only when
ap(B +1v) <0. Soif (B_+y) have different signs then 4 of the 8 values of i give a good
solution. For the ones that do, the period 4 points exists only for p<0 or p>0, but not
both. As p passes through zero, the actual values of i that contribute to the solution
changes but there are the same number of points on either side. This is like the 3-
bifurcation case, where periodic orbits exists on both sides. If, however, (f+4) have
different signs then all 8 solutions exists for the same side of p and the other side contains
no solutions. This is like the k>4 case where there are no periodic solutions on one side of

p. The Jacobian elements are :

dI4/d1 = 1 - 4yIsin(4¢) +... = 1 + .. along the solution.
di4/d¢ = -8yI2cos(4) +... = FyL2 + ...

dod/dI = 4[B + ycos(4¢)] +... =4B t-y) + ...

dod/dd = 1+ 16yIsin(4d) +.. =1+ ...



So the equation to give the multipliers is (A-1)2 +432yL;2(B 4- y) = 0. Thus

A=1 im where we substitute the equation for I;. In the case of (B+-y)
changing sign, the sign of (B +.v) changes as p goes through zero since the other 4
solutions are the ones used. Thus the stability type changes from elliptic to hyperbolic as
n passes through zero though solutions exist on both sides. Since p is squared in the
expression this does not change sign as p passes through 0. Which side of p has elliptic or
hyperbolic points will depend on the sign of y. In the case of B + y of the same sign, all
solutions are always elliptic or always hyperbolic, depending on v, but only exist on one
side of p by the same argument as above. O

I am not sure where the origin of the disagreement. Meyer compares the first case
to the 3-bifurcation point situation. However, an important difference is that in that case
we solved and found I = (a/y)2 whereas we found in the k=4 case I = ap/y so the jt term
is square in one solution and not in the other. This causes the sign change to be different.
Meyer does not explicitly calculate the Jacobian or multipliers so I do not know where the
difference occured.

The theorems we proved in the this section have some interesting applications.
One is a proof by Birkkhoff applied to Duffing's equation. The theorem is that near a
general elliptic points, there exists periodic points of arbitrarily high period. He does this
by putting the Hamiltonian like the one in our other example with Duffing's equation. The
forced term, though not necessarily the non-linear term are small. He then is able to put
the Hamiltonian in normal form and show that a twist term (of the form BI) dominates the
¢ Poincaré periodic mapping. From there, he is able to show that for any k>4, there are

solutions corresponding periodic solutions of the Poincaré map.
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