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The purpose of this paper is to compare different exposi-
tions of the dynamics of a rotating body in a non-inertial frame.
I have chosen Goldstein's Classical Mechanics and Landau and Lif-
shitz's Mechanics as the classical texts. I will restrict the
paper to the development up to the formulation of the equations
of motion given in rotating coordinates. To make this project
igprrmaine to the course, I will compare the classical texts to the
development in Marsden's lectures.

A proper analysis of any physical system requires an ade-
quate choice of coordinate systems and configuration space. In
their texts, Goldstein and Landau and Lifshitz detail how to re-
duce the number of general coordinates to the proper degrees of
freedom., For a rigid body, the degrees of freedom total six: three
to place the center of mass and three to determine the movement
of the body around the center of mass. This argument is given in
L. and L. Goldstein makes a similar, though more general argu-
ment, formally starting with 3N degrees (N representing the number
of particles), and then applying the condition that the relative
distances between particles in the body remain constant. Taking

the special case where the center of mass stays at rest, i.e., no
translations, we get a total of three degrees of freedom.

By setting an inertial frame with origin at the body's center
of mass, the rotations become equivalent to a set of orthogonal
matrices." ‘Goldstein devotes a section to orthogonal matrices and
proves that a physical rotation corresponds to 3x3 orthogonal matrix
with determinant +1 and at least one eigen value equal to +1. L.
and L. refer to their arguments on angular momentum, where they

argue geometrically | S¢]=\rl|dE|smBHence S¢ = Si-x: . , where



ﬂw‘ r is the radius vector of a given particle or point mass, and Jé{
is the infinitesimal angular rotation vector perpendicular to the
plane of rotation, i.e. in the direction of the +1 eigen vector
of the orthogonal ‘transformation. Marsden avoids this bare hands
approach and introduces the space SO(V) of orthogonal transfor-
mations on the inertial frame V. Non-homogeneous rotations then
correspond to a curve 1Q6 So(Vv).

The key to deriving the equations of motion is obtaining the
velocity in terms of the orthogonal transformation. As just men-
tioned, L. and L. present 5(‘:5@%(‘ directly from the geometry of the
problem. Goldstein takes a much longer and subtle approach . Af-
ter introducing the Eulerian angles as the standard set of gener-
alized coordinates, he introduces the Cayley-Klein parameters as

™ another option. I see this as a prelude to the association of
the cross product with matrix multiplication. He introduces the
2x2 matrix which takes its values in d?z. By requiring his matrix .
Q to be unitary and to have determinant +1, the eight real values
are reduced to three; a correspondence is naturally:ssought with the.ro-
tating system.
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by Q according to the relation P'=QPQ{ The Hermitian property and

the' trgceof P reamian unchanged by a similarity transformation, so
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there is a matrix Q in 03.



While this analysis does not directly come-into the computa-
tion of the equations of motion, pedagogically it serves a purpose.
It introduces, albeit in a relatively complicated manner, the no-
tion of different mathematical objects, in this case complex matrices
and transformations, both representing the same event. He returns
later linking real matrices with real vectors.
Goldstein then derives geometrically the change in the radius
vector under a finite rotation around the vector n, by an angle 5?
(*Qr' = rcos§ + n{ner)(1l - cos&) + (rxn)siné? . Here and later the
' represents the rotated vector.
Goldstein sets up the problem of again reducing the number
of degrees of freedom to 3. Put into matrix form (¥) has too many.
Again he wants to associaté mathematical objects to simplify com-
putations. Associating the transformation with a vector will not
do: the composition of matrices corresponds to an addition of vec-
tors, and vector addition is commutative while matrix composition

is not., (Here again, Goldstein makes use of the oft-maligned group

jargon.) However, the transformations associated with infinites-

imal rotations do commute. Goldstein argues:
r' = (I +¢)r , & 1is infinitsimal and higher orders are
discarded.

(I + ¢)(I +&) = T+E+Ex EE= T+EE,.
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Hence, I-f=(I+£)Jé(I+&;r since I+¢ is orthogonal. So & =- & and

. ) . _ _ o ~dQg dQ,
& =dr is aii anti-symmetric matrix: (dilg o —d<,
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Comparing with the cross product we get t d sz,

dr =dQxr, dft= nd €

;

Marsden begins with the velocity vector field coupled to the

roation group: X_t('Yé(v)) =£{:VL(V) or X£=’¢'t‘\[{'. Then we have the



claim: XL is anti-symmetric.
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Already we see a variety of techniques to arrive at the same
simple equation dr =4Qxr. The similarity is in the use of the in-
finitesimal. Though Goldstein's use of infinitesimal g£5is a bit
sloppy, this general idea is used in all three developments.

Deriving the equations of motion in non-inertial coordinates
now requires a modification of the velocity equation. L. and L.,
in keeping with their concise format, just compose vectors:

v =v' +E§§r£)= v' +éDx r). (L. and L. actually have a trans=>
lational velocity term that is carried through the calculations. For

our purposes we can set it to zero.)

Goldstein also composes vectors, but then justifies his result

using orthogonal transformations. Taking any r:

- - .|T 4 - ,' L]
taking differentials and readjusting the inertial coordinates

so that they line up with the rotating frame:
AT = a;de' v dan ' = An ).
- an EA ET)n O
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Arguing that the choice of the vector r is arbitrary, Goldstein
arrives at a general time derivative operator:
A ;- d
m(o) = (I‘_(v)) + WX (.)
Marsden makes a similar argument: active orthogonal transfor-

mations correspond to a change of basts, from the inertial to the
L |

A
rotating frame. So r = Ar';&=AA for a time dependent matrix A



associated with the orthogonal transformation. Hence,
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The final step is to substitute properly to get the equations

of motion. L. and L. use a strict Langrangian formulation.
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Again, L.and L. line up the inertial frame with the rotating

frame so that r and (O are the same in both frames.

Goldstein first applies his rate of change operator to the ra-

dius vector, getting v = v' +Q0x é) Applging the operator again

to v, he derives ;[ zé%,tw))’ RN
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Goldstein here assumes the rotation is homogeneous. Plugging

into F = ma



F =ma' + 2m(¢gyx v') + mWx ( Wx r)

. , ar ¢’
Marsden differentiates gf:w)((? Aa} and plugs the result

into F = ma:
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Marsden also calculates the Langrangian using his velocity equation:
L= %migl* -~ T (L9 + AC’L’["_ u
*amldkg + 4’1 U

The main difference here between Marsden's exposition and
that in the classical text is the emphasis on the change of basis.
For all practical purposes, the variables in the force equation
are all expressed in rotational coordinates. The other authors
imply this, but do not make it explicit.

Overall, Marsden's development I believe has antecedents in
both texts. Landau and Lifshitz keep their arguments concise,
in keeping with theri overall philosophy in the text. Goldstein
presents the concepts more naively, always providing more formal
justification if necessary. However, I find the use of the group
SO(V) to aid the computation in a much more graceful fashion. It
takes no extra effort to introduce non-homogeneous rotations, and
so one gets the Euler forces for free in the development. Gold-

stein seems to imply by examining only homogeneous rotations that
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the computations would be unnecessarily bogged down. I did however
find the Cayley Klein parameters an interesting side light, Ideally
I believe it would serve a good purpose in exposing the utilitar-
ian nature of mathematical objects in deg}ﬁquhysical systems. Just
ad the Lagrangian and Newtonian methods of deriving the equations

of motion are equivalent, many other methods of analysis can be

put in correspondence. The exploration of the nature of these math-
ematical retadtionships providey a keener insight into our general

methods of physical abstraction.



