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Introduction

In this report I describe the formulation of the Isoholonomic problem as seen
from different points of view. It turns out that the so called cat’s problem
can be formulated as an Optimal Control problem and the resulting equa-
tions which drive the dynamics of the solution are the Wong’s equations of
a particle in a Yang-Mills field. Moreover these solutions can also be de-
rived by reviewing the same problem as the one of finding sub-Riemannian
geodesics. Once the problem has been already formulated as an Optimal
Control one, considering sub-Riemannian metric, it transforms almost natu-
rally in the problem of finding geodesics. In what follows I will first rewiew

some concepts and definitions which will be used later.

Basic Concepts

Geodesics

Be @ a pseudo-Riemmanian manifold with metric g, =<, >, at point g in Q.
BeL: TQ - R
L(v) =1/2 < v,v >,= 1/2g;;v'v

The Lagrangian vector field will be S : TQ — T?Q:

5(g,v) = (4, v), (v,7(g,v)))

where the “acceleration term” v is given by the Euler Lagrange equations:
7'(g,v) = ~Ti(g)v"v*

where

; 1 4w, 0g9u Ogu  Ogjk
rjk(‘]) = §9h‘(3qk + dgi - 3;1 )



so that the geodesics are governed by:
d =7(a,9) = -Ti(9)d’d" -

The integral curves of S projected on Q are called the geodesics of the metric
g- Note that if Q@ = R?® with g the standard inner product, then I'j; = 0 so
that ¢ = constant and the particle describes a stright trajectory that is the
shortest path between two points. Note also that when the Lagrangian is a

quadratic expression in the velocity the resulting trajectories are geodesics.

Covariant Derivative

V: X(Q) x X(Q) — X(Q) is defined as ,\rwm

VxY(q) = —7(X(9), Y(g)) + DY ()X (q)

and if 7 is the one as defined above this is called the Levi Civita Covariant
Derivative.
Be c(t)a curve in Q and u = ¢é(t), then the covariant derivative of X along ¢
is

DX

i = VX

and by taking &(t) = X (t) if 2% = V:é =0 then c(t) is a geodesic since

Here we have therefore another definition of geodesics:

a curve c(t) is a geodesic if V¢ = 0.



A Particle in a Magnetic Field and Wong’s
equations

A charged particle in R® mooving under the influence of a magnetic field has

a dynamics given by the Lorentz law:

dv e
mE—ZvXB

where B is the magnetic field and v = (Z,7,2). These equations can be
shown to be Hamiltonian if we choose the non standard symplectic 2-form
in R Qp = m(dz Adi + dy A dy + dz A dz) + B with Hamiltonian function
H = 2((2)? + () + (2)?), so that X can be easily determined by

dH = iXHQB

This fact suggests that choosing a non canonical symplectic form we could
have a Lagrangian function that is a quadratic expression in the velocities,
then allowing geodesic solutions.Therefore consider the map t4 : (z,v) —
(z,p) with p = mv + %, then Qp transforms to the standard 2-form and the
hamiltonian becomes
Hy= -l 2A]

where A is the vector potential such that B = V x A. In this way let
the configuration space Q; = R? x S! with variables (g, ) with A = A® and
consider w = A +df called the connection one form. Define the Kaluza-Klein

Lagrangian as
copay 1 . .
Li(g,4,6,6) = S(mlldl* + (A - 4 +0)?)

with momenta

p=mq+(A-(j+é)A
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p=(A-¢+6).

Since L, is quadratic and positive definite in velocities, the Euler-Lagrange
equations are geodesic equations in @ for the metric for which L is the
kinetic energy. Moreover p is a conserved quantity so that we can define
p = e/c = const which leads to an Hamiltonian that differs from the previ-
ous one by a term (1/2)p%.

This construction generalizes to the case of a Yang-Mills field where w be-
comes the connection and its curvature measures the field strength (that
reproduces B =V x A).

Kaluza Klein is one view point on the motion of a particle travelling through
a Riemmanian manifold while under the influence of a Gauge field A(such a
particle is also called the Yang-Mills particle). There is an alternative view
point which leads to a generalization of the Kaluza-Klein construction and
ends in the so called Wong’s equations. These equations look particularly
interesting because (as we will see later) they have the same form as the
equations resulting from an Optimal Control problem.

Be @ the configuration space, let G be a Lie group that acts on Q and
S = @Q/G be the quotient space. Let 7 : @ — S be the map that assigns
to each configuration ¢ £ = w(g). S is a smooth manifold and 7 gives Q
the structure of a principal bundle. The Wong's equations are equations for
a curve e(t) in the coadjoint bundle g*(Q) which is a vector bundle over S
with fiber g* the dual of the Lie algebra of the group G. This bundle is
an associated bundle to @ and the points e € g*(Q)) are called charges. Be
z(t) = w(e(t)) € S and © € T'S; be D the connection on g*(Q) induced by
the connection A on @ (De = de + ad*(A)e). Let V be the Riemannian
Levi-Civita connection on S induced by the metric k. Let F' = dA + [A4, A]

denote the curvature of A viewed as a two form on § with values in the



adjoint bundle. Then e- F (%, -) is a one form along z (a force) and e- F(z, -)*
is a vector field along x ( and { is the operation of rising indeces with respect

to the metric k on S). Then the Wong's equations are

Vit =e- F(z, ) (1)
De
— =0 (2)

If e were 0 the first equation would say that z is a geodesic on S.

Roughly speaking the elements in the coadjoint bundle are the lagrange mul-
tipliers which enforce the nonholonomic constraints.In the case of a magnetic
field these forces of constraint are due to the presence of a magnetic field
which forces the charge to moove on a constrained path (a circle in the case
of uniform field B).

Equations (2) can be rewritten in coordinate expression as

. o .5 10g°
Pa = —/\aFa{;z“’ = 5 g,a PoPr (3)
do = —A,CO A% (4)

ol e
where A(t) € g*(Q) plases the role of e, g,3 is the local representation of the

metric in the base space S:

1.
59es1°8" = ZIFIP

while g#7 is the inverse of the matrix g,s and p, is defined by:

pa:%:Q&ﬁiﬁ

where [ is the reduced Lagrangian, Aj are the componets of A, F2; are the

components of F'.



The Isoholonomic Problem as an Optimal Con-
trol Problem

Given a deformable body, what is the most efficient way to deform itself so
as to achieve the desired reorientation? This problem is usually refered to
as the Cat’s Problem since it is the problem faced by the upside down zero
angular momentum cat in free fall.

In this setting the spaces () and S defined geometrically above become S
the shape space and @ is the configuration space in which two objects can
have the same shape but be rotated by mean of ¢ € G; in general G will
be the group of rigid motions. The map 7 assigns to each configuration the
respective shape.

Def. A vectorgv ﬂ T,Q which is tangent to the group orbit G - ¢ through
q € Q is said/‘vertical at g. Vertical vectors represent infinitesimal rigid
rotations of our deformable body. A vector v in T,Q is horizontal (HOR) if
it is orthogonal to the group orbit through ¢. In the problem of the cat it is
easily shown that v € HOR iff its angular momentum M(q,v) = 0.

Since a cat starts and ends its fall approximatively with the same shape, then
we can say that it describes a loop in the shape space.Then we can define
the

ISOHOLONOMIC PROBLEM: find the shortes loop in the shape space
with a given holonomy. In this case the holonomy is the constraint that
j € HOR.

This problem can be restated as a control problem for the reorientation of
a deformable body. Think to a cat or a gymnast in free fall with a zero
angular momentum: the problem is to reorient itself by changing its shape.
The objective here is to control the net reorientation of the body, the control

variables are the deformations dz of the shape z. Shape deformations are in
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turn implemented by torques or linear forces applied to the joints.In this way
we can view the tangent vectors & to the shape space as control variables z =
u. Therefore the problem is to find the minimum L,-norm control law u(t)
that leads the system from configuration gy for ¢ = 0 to configuration ¢, for
t = 1 while mantaining feasibility of the solution (A¢ =0, i.e.¢g € HOR).We
can rewrite the problem in formulae as:

fixed 2 points ¢;,¢2 € @, among all curves ¢(t) € @, 0 < ¢t < 1 such that
q(0) = goand ¢(1) = q, and ¢(t) € HOR, find the curve such that the energy

of the base space curve
1l
5 llee

is minimized. Let’s show how the solution of this minimization problem gives
: : - . rlgtion .

again the Wong’s equations establishing a nice a.naﬁ:.gy between this problem

and a charge in a Yang-Mills field.

proof. By general principles of variatiorhcalculus, given an optimal solution

q(t), there exist a lagrange multiplier A(t), such that the new function

5 [ sl +2 < 301, Aqto) >)as

has a critical point at this curve. Considering the integrand as a Lagrangian

and applying the reduced Euler-Lagrange equations to the reduced Lagrangian
1
lz,,Q) = §||¢||2+ <)\0>

where 2 = Agq, we find

o 5 Al 18957 4
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and since the constraint is 2 = lthe reduced Euler Lagrange equatlons wﬂ

become
iﬂ_i__,\p ; W

d Q
EZA{; A Eabx = “/\ CdbAd @
since we have
daol Bl _ o 109 5.4 _
dioze dze P T 28ze

so that we obtain the Wong’s equations (4).

In order to better see the analogy between the isoholonomic problem and
the problem of a charge in a magnetic field, let’s consider an example where
A = 0 so that it is a conserved quantity which places the role of the charge e
of a particle mooving in a classical magnetic field (note that both elements

belong to the cotangent bundle).

Brockett example

This example is a prototie for the falling cat problem and a variety of
optimal steering problems. Consider the control system in R® (Heisemberg

system):

$'='U.1
y=1uz (5)
Z=1xzuz —Yyu

where u,,us are control inputs. By controllability theorem it is known that

it is possible to choose the controls in order to steer trajectories between any
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problem that is to find the horizontal curve joining p to ¢ whose length is
d(p, q). Therefore the zero angular momentum cat problem is precisely the

problem of finding minimizimg sub-Riemann geodesics.

Conclusions

In this report I have given a qualitative overview of how the same problem
(isoholonomic problem) can be reformulated in different ways so to lead to
interesting-a-&a?eg@?sfvith other dynamical systems(a paricle in a Yang-Mills
field) which are phisically completely different. Those analogies have lead to
a reinterpretation of the lagrange multipliers of the Optimal Control problem
as cha.rges martlcles mooving in a Yang-Mills field, and to a reinterpretation
(on the oder side) of the magnetic forces as forces of constraint acting on a

“potential free” system whose only energy is the kinetic energy. Finally it
has been briefly described how the Optimal Control formulation is equivalent

to the problem of finding geodesics in sub Riemann geometzy.
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