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Abstract
This report contains a review and explication of the paper “Chaos in a Spacecraft
Passive Attitude Maneuver Due to Time-Periodic Perturbations”, by G. L. Gray, I.
Dobson, and D. C. Kammer [Gray, Dobson and Kammer 92).
The report also contains contains an analysis of the energy sink proposed by J. E.
Marsden, and a comparison of the Marsden energy sink with the [Kammer and Gray 92]
energy sink.
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1 Introduction

The first part of this report consists of a review and explication of the paper “Chaos in
a Spacecraft Passive Attitude Maneuver Due to Time-Periodic Perturbations”, by G. L.
Gray, I. Dobson, and D. C. Kammer [Gray, Dobson and Kammer 92].

The second part of this report contains an analysis of the energy sink proposed by J. E.
Marsden, and a comparison of the Marsden energy sink with the [Kammer and Gray 92)
energy sink.

2 Outline of the Report

2.1 Overview of [Gray, Dobson and Kammer 92]

Section 3 contains a brief description of the analysis and results given in [Gray, Dobson and Kammer 92).

2.2 A Closer Look at [Gray, Dobson and Kammer 92]

Sections 4 through 15 provide a more detailed description of the analysis and results of
[Gray, Dobson and Kammer 92). These sections present the key elements of the mathe-
matical analysis presented in (Gray, Dobson and Kammer 92].

2.3 Presenting and Comparing the Marsden Energy Sink

Section 16 presents the Marsden energy sink. Section 17 compares the Marsden energy sink
with the [Kammer and Gray 92] energy sink.

3 Overview of [Gray, Dobson and Kammer 92]

3.1 Dynamics of a Rotating Quasi-Rigid Body with Oscillating Sub-
Bodies

In [Gray, Dobson and Kammer 92), the authors use Melnikov’s method to study the chaotic
dynamics of a passive attitude transition maneuver of a model satellite.

The model satellite consists of a quasi-rigid carrier body containing two small masses
which oscillate along the minimum principal axis of inertia of the carrier body.

The satellite is torque-free and is going from minor axis spin to major axis spin, under
the influence of small kinetic energy damping, and under the influence of the oscillation of
the two small sub-bodies.

3.2 Quasi-Rigidity

When a quasi-rigid body is not spinning about a principal axis, it is assumed that internal
body motions occur which cause kinetic energy to be dissipated. This effect is called
damping, as the kinetic energy is damped during these motions.
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When a quasi-rigid body is spinning about one of its principal axes, it becomes rigid.
No internal motions occur and no kinetic energy is dissipated.

Note that since the quasi-rigid body is torque free, the magnitude of the angular mo-
mentum vector is preserved for all rotational motions.

3.3 Computationally Simulating Quasi-Rigidity with Energy Sinks

It is assumed that internal motions, when they occur, are governed by the elastic con-
stituency relations of the body. These relations, however, are not modeled for computa-
tional purposes. Instead, a seemingly arbitrary computational factor which

o dissipates kinetic energy for non-principal axis rotations
e and preserves the magnitude of the angular momentum vector

is added to the rigid body equations of motion of the body. These computational factors
are called energy sinks.

There may be quite a large family of such computational factors which dissipate kinetic
energy for non-principal axis rotations, and preserve the magnitude of the angular momen-
tum vector. In fact, J. E. Marsden has presented one other such computation factor which
satisfies these conditions. This computational factor will be presented in Section 16.

3.4 Chaos

[Gray, Dobson and Kammer 92] show that chaotic motion can be caused by the oscillation
of modeled small sub-bodies inside the satellite during a minor axis spin to major axis
spin passive attitude maneuver. This chaotic motion is due to the formation of Smale
horseshoes. Melnikov’s method is used to analytically detect chaos.

It is suggested that the model satellite is a reasonable engineering model, which demon-
strates that it is possible for chaotic motion to occur in a similar passive attitude maneuver
for actual spacecraft.

3.5 Using Melnikov’s Method to Detect Chaos

In order to use Melnikov’s method, an improper integral has to be calculated. A great deal
of the analytical effort performed by [Gray, Dobson and Kammer 92], involves transforming
the equations of motion of the model satellite into a form so that the required improper
integral can be calculated.

3.6 Conclusions - Analytic Criterion for Chaos

[Gray, Dobson and Kammer 92] show that the Melnikov function computed for the model
satellite has simple zeros, indicating the existence of chaos of sufficiently small . The zeros
are written as a function of standard spacecraft system parameters.
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[Gray, Dobson and Kammer 92] conclude by presenting several discussion on the effect
of model satellite parameters on the formation of chaos. They conclude with brief satement
of satellite design criteria which will avoid chaos in a passive minor axis to major axis spin
attitude maneuver.

4 Model Satellite

4.1 Quasi-Rigid Carrier Body with Two Small Oscillating Sub-Bodies

The model satellite consists of a quasi-rigid carrier body which contains two small oscillating
masses.

4.2 Model Satellite Configuration

The configuration of the model satellite given in [Gray, Dobson and Kammer 92] is given
in Figure 1.

INTEQMEDATE  AX(S

(e

MINOR- AKX\
T, ,A

Figure 1: Model Satellite




4.3 Carrier Body

The mass center of the carrier body is denoted by c. A body-fixed orthogonal coordinate
system is aligned with the principal axes of the carrier body and centered at ¢, and is
denoted by z,y, z.

The principal moments of inertia for the carrier body are designated I, I, Is. The
carrier body principal moments of inertia are assumed distinct, and it is assumed that
h<l< Is.

The z-axis is the minor axis of rotation for the carrier body and for the complete
satellite. The y-axis is the intermediate axis of rotation for the carrier body and for the
complete satellite. The 2-axis is the major axis of rotation for the carrier body and the
complete satellite.

4.4 Sub-Body Locations - 5(t)

The two sub-bodies oscillate symmetrically with respect to ¢ along the z-axis. Hence, the
satellite’s mass center ¢ does not move relative to the carrier body.

The position of the sub-bodies relative to the main body is a known periodic function
of time, and is denoted by 5(t).

The 7 = 0 position is located a distance ! from the mass center e. 7(t) is restricted so
that the motion of the two masses does not pass through the satellite’s mass center ¢. For
this analysis 7(t) is given by

7(t) = o cos(Q2t)

4.5 Carrier Body Principal Moments of Inertia

The inertia tensor for the carrier body alone, without sub-bodies is

L 0 0
0 I 0
0 0 &3

4.6 Reference Configuration Principal Moments of Inertia

The small sub-bodies, essentially point masses, have no affect on the principal moment of
inertia about the z-axis. They do, however, by the parallel axis theorem, add terms to the
principal moments of inertia bout the y and z-axes.

The inertia tensor for carrier body and sub-bodies, and for n(t) = 0 is

I; 0 0
0 I+2mi? 0
0 0 I3+ 2mi?

This will be taken as the reference configuration of the satellite.

4
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It is common within the aerospace engineering literature to denote the principal mo-
ments of inertia of a satellite about an z,y, z-coordinate system located at a satellite’s mass
center, by A4, B, and C, respectively.

Using aerospace engineering nomenclature, define the following quatities for the refer-
ence configuration inertia tensor

A = I

B = L+2mi?

C = I+ 2m12
4.7 Satellite Principal Moments of Inertia

The inertia tensor for the carrier body and sub-bodies, and arbitrary n is given by

I 0 0
0 I+ 2m(l + n(t))? 0
0 0 I3 + 2m(l 4 5(2))?

Setting
A = 2m(20n(2) + n(t)*)

The inertia tensor for the carrier body and sub-bodies, with movement of the sub-bodies
given by 7(t) is given by

A 0 0

0 B+A 0

0 0 c+A

Since () = nocos(Q) is known as a function of time, the satellite inertia tensor is

known as a function of time, and it can be used in calculations for the equations of motion
of the satellite.

4.8 Sub-Body Inertia Tensor Effects

Note that the inertia tensor perturbations produced by the oscillating sub-bodies do not
produce cross-product moment of inertia terms.

4.9 Restrictions on Mass and Motion of Sub-bodies

It is assumed that the inertia tensor perturbations caused by the oscillating sub-bodies is
small. This assumption is necessary in order to apply Melnikov’s method.

When the equations of motion of the model satellite are non-dimensionalized, the effect
of the oscillating sub-bodies will be described with respect to a perturbation parameter e.

The motion of the sub-bodies will then be assumed to have an O(¢) perturbing effect on
the spacecraft.
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5 Undamped Equations of Motion

The system of differential equations describing the motion of the undamped (non-energy
dissipating) model satellite, in terms of principal dody angular momentum components is
given below.

This report retains the aerospace engineering convention for denoting the principal

moments of inertia as used in [Gray, Dobson and Kammer 92], but convert the body angular

momentum components to notation, II;, II;, and I3 used in [Marsden and Ratiu 93).

. [ B-C

L = .(B+A)(C+A)]“’“3
. [(C+A)-4

= [Traa

. [A-(B+A)

s = .'A(B+A)]“‘“’

6 Quantifying Energy Damping Effects
6.1 Energy Sinks

Damping terms which dissipate kinetic energy for non-principal axis rotations, and which
preserve the magnitude of the angular momentum vector, are added to the undamped
equations of motion. These damping terms are collectively called an energy sink.

6.2 [Kammer and Gray 92] Energy Sink

The (Kammer and Gray 92] energy sink is used in [Gray, Dobson and Kammer 92). The
[Kammer and Gray 92] energy sink has the form

/31 —II;II%
uz | =8| N}, — ;113
U3 H%Ha

In [Kammer and Gray 92, this energy sink is known to dissipate kinetic energy for
non-principal axis rotations, and preserve the magnitude of the angular momentum vector.

The proof will not be repeated in this report, but can be found in [Kammer and Gray 92,
pp 55-56, Eqns (1), (2), and (7)]. The authors do not present the inspiration for their energy
sink in [Kammer and Gray 92].

6.3 Adding the Energy Sink Terms to the Equations of Motion

The [Kammer and Gray 92] energy sink is added to equations of motion to quantitatively
simulate the kinetic energy dissipation which occurs in rotational motion for quasi-rigid

6
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bodies. With the [Kammer and Gray 92] energy sink terms, the equations of motion for
the model satellite become

. [ B-C

= .11
R
. [(C+A)- A]
II2 - i (C+A)A Hanl + ug
- 'A—(B+Aq
I = TAB+4) Iz + u3

6.4 Restrictions on Kinetic Energy Dissipation

It is assumed that the kinetic energy dissipation provided by the energy sink is small. This
assumption is necessary in order to apply Melnikov’s method.

When the equations of motion of the model satellite are non-dimensionalized, the energy
dissipation terms will be described with respect to a perturbation parameter €. The energy
sink will then be assumed to have an O(¢) effect on the equations of motion of the spacecraft.

7 Perturbed Equations of Motion

Writing out the terms for the [Kammer and Gray 92] energy sink explicitly in terms of the
components of the body angular momentum, the equations of motion of the model satellite
become

- _ [ B - C 2
= |Bvaxce A)] MlaTls — AILIT;

. (C+4)- A

I, = L(F—F%)T] 31T, + B(TI211, — T1,113)
II; = “AETa) I, II; + BIISII;

Note that these added terms are cubic in the components of the body angular momentum.

8 Unperturbed Equations of Motion

The unperturbed equations of motion are the equations of motion for the non-energy dis-
sipating reference configuration satellite. They are given below.

. B-C
I, = [BC]IIgﬂa
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-4
= [CCA ]nan,

. A-B
n3 = [_AB ]Hﬂlg

9 Nondimensionalizing the Equations of Motion

The equations of motion of the model satellite, a quasi-rigid carrier body with two small

oscillating sub bodies, are nondimensionalized so that all resulting quantities except ¢ are
0(1).

9.1 Nondimensional Principal Moments of Inertia

The principal moment of inertia about the intermediate axis, B, is used to nondimension-
alize the three principal moments of inertia.

It is assumed that
0<A<B<«C

Dividing by B this inequality becomes

0< % <1< %

Defining
ned oG
B B

we have

0<ri<l<r
The inequality
C<A+B

also holds.
Dividing by B and using the definitions of r; and r2 this inequality becomes

r<l+r

Combining the two inequalities results in the statement

0<1'2<1<T1<1+1‘2<2

P s et




9.2 Definition of ¢

Since the principal moment of inertia about the intermediate axis, B, is used to nondimen-
sionalize the three principal moments of inertia, it is also used to define ¢, the perturbation
parameter.

The perturbation parameter ¢ is given by

ml?

€= —

B
So for € to be small, it is required that mi? << B.
9.3 Other Nondimensional Quantities
Letting [|II|| = H € R represent the total angular momentum, and using B and mi? several
other nondimensional quantities are defined.
9.4 Nondimensional Time 7

Nondimensional time 7, is defined as

;e Hi
- B
Differentiation with respect to nondimensional time is given by
d
’ [ —
0'=10

9.5 Nondimensional Body Angular Momentum Components

The nondimensional body angular momentum components and their time derivatives are
given by

. I

H. - 'H—
- B .
H: = ?H,

Note that the magnitude of the nondimensionalize body angular momentum vector is 1.
)| = /T2 + 112+ 112 =1

9.6 Nondimensional A and 8

The effect of the oscillating sub-bodies, given by A, and the effect of energy dissipation,
whose magnitude is quantified by 8, are nondimensionalized as follows

A

eB

P HB?

ﬂ - ﬁ ml2

A=




9.7 Nondimensional Form of 5(t)

The nondimensional time-dependent form of 7 is formulated by defining the following quan-
tities

=_ T
"—l
- OB
Q-—H

With these definitions 5(t) = no cos(Q2t) is nondimensionalized and becomes

i(t) = % cos(§2r)

10 Nondimensional Perturbed Equations of Motion

Using the quantities defined in the previous sections, the non-dimensionalized equations of
motion for the model satellite are

- 1-17r - - -
i = [ — 1 | 11,115 — €A1, 112

(gw\ ! (14 €A)r; +€A) 2lls = AL
. [ A)-r] = = s omos = =
m = ﬁ—*‘.—nnq-e M2, — i, 12

2 "t A all; + ¢B(1311, 2113)
- [ -(1+e[l) E P
m = [2——T"2fiq M2
H 3 | (14 €A)r, Iz + €8I 11

10.1 Order O(¢) Effects

It is clear from the structure of the nondimensionalized equations of motion, that the effects
of oscillating sub-bodies and of the energy sink have been recast so that they have an O(e)
effect.

10.2 The Perturbed Phase Space

The attitude dynamics of the model satellite occur on the surface of the angular momentum
sphere. These dynamics are depicted in Figure 2,

11 Nondimensional Unperturbed Equations of Motion

When ¢ = 0 we recover the nondimensionalized equations of motion for the non-energy
dissipating reference configuration model satellite.
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Figure 2: Perturbed Dynamics
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11.1 The Unperturbed Phase Space

The attitude dynamics of the reference configuration satellite occur on the surface of the
angular momentum sphere. These dynamics are depicted in Figure 3

11.2  The Angular Momentum Sphere

The angular momentum sphere possesses six equilibria corresponding to positive and neg-
ative spin about each of the three principal axes of the unperturbed non-energy dissipating
satellite. Two of the equilibria, corresponding to spin about the intermediate principal axis,
are saddles.
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Figure 3: Unperturbed Dynamics

11.3 Heteroclinic Orbits

There are four heteroclinic orbits linking the angular momentum sphere’s two saddles. In
a passive attitude transition from minor axis to major axis spin, the trajectory of the
perturbed system must cross a heteroclinjc orbit of the unperturbed system.

The equations for the heteroclinjc orbits of the unperturbed system are

iy < 4 [r;(l - rl)]%sech {[(1‘2 = 1)(1- rx)rr}

r—rl rorl

(ra=1)(1 - rl)]%,}

3 = + tanh {[
rorl

My =+ [M]%sech {[(1‘2 =1)(1- rl)]‘;'r}

rp—rl rarl

Melnikov’s method is used to study the chaotic motion in the perturbed system that
may occur near the heteroclinic orbits of the unperturbed system.

(m 12




12 Melnikov’s Method
12.1 A Tool to Detect Chaos

Melnikov’s method can be used to detect chaos in a system of differential equations such
as those governing the model satellite.

Melnikov’s method is a perturbation technique for proving the existence of transverse
homoclinic orbits to hyperbolic periodic orbits in a class of time-periodic vector fields. The

existence of transverse homoclinic orbits implies the existence of horseshoes and chaos via
the Smale-Birkhoff Homoclinic Theorem.

12.2 Appropriate Systems

In the notation given in [Gray, Dobson and Kammer 92] Melnikov’s method considers sys-
tems of the form

x = f(x) + eg(x,t) xe€R?

where g is of period T in ¢, f(x) is a Hamiltonian vector field defined on R? and eg(x,t) is
a small perturbation which in not necessarily Hamiltonian.

12.3 Restrictions on the Unperturbed System

Melnikov’s method uses globally computable solutions of the unperturbed (¢ = 0) integrable
system
x = f(x)

to study the perturbed solution. .
The unperturbed system is assumed to possess a homoclinic orbit to a hyperbolic saddle
point. Denote this orbit by qo(t).

12.4 Detecting Transverse Homoclinic Orbits

Melnikov’s method determines whether or not transverse homoclinic points exist by search-
ing for intersections of stable and unstable manifolds W?* and W* of the hyperbolic saddle
point. It does this by parameterizing the distance between W* and W* to O(e).

The distance function is called the Melnikoy Junction. 1t is is denoted by M (t0) and is
defined as follows

M(to)= [~ tao(t) A glao(t) t + o) s

where A is given by
axb=ab; —azb
and to € [0, T]
If the Melnikov function does have simple zeros, then the W2 and W* manifolds intersect
transversally and the system is chaotic for sufficiently small e.

13




The zeros of the Melnikov function indicate the values of the system parameters for
which the system exhibits chaos.

12.5 Application to the Nondimensional Perturbed Equations of Motion

Melnikov’s method applies equally well to systems with heteroclinic cycles. Since hete-
roclinic orbits exist in the phase space of the nondimensional unperturbed equations of
motion, Melnikov’s method can be applied to test for chaos in the nondimensional per-
turbed system.

13 Nondimensional Perturbed Equations of Motion to O(e)

Binomial expansions are used to write the nondimensional perturbed equations of motion
to terms through O(¢). The resulting equations are

- (1 — S —r?\ -~ - - =
= |5 sn s ma
- l

mn = i rg] 3010, + € [%ﬁlﬁa + ﬂ.ﬁ2(ﬁ¥ - ﬁg)]
L ™72 L1
'1‘2 - 1

I3

] ﬁ]ﬁg +€ [ﬂ..ﬁgﬁ;; - Anlﬁg]
2

14 Calculating the Melnikov Function

14.1 Spherical Coordinates

All of the information needed to calculate the Melnikov function is nearly available. The
equations for the heteroclinic orbits qo(t) of the unperturbed system are given in Sec-
tion 11.3 in three dimensions. The perturbed system of differential equations

x = f(x) + eg(x, )

is given in Section 13 in three dimensions. However, Melnikov method requires the hetero-
clinic orbit equations and perturbed system of equations to be two dimensions.

The angular momentum sphere is a two dimensional surface embedded in three dimen-
sions. Making a change of variables from rectangular coordinates to spherical coordinates
gives qo(t) and x = f(x) + eg(x, ) in in two dimensional form.

Up to this point, the algebraic manipulations of the equations of motion have been
instructive. Transforming qo(¢) and x = f(x) + €g(x, t) into spherical coordinates requires
manual and computer manipulation. These calculations do not add to the exposition of
(Gray, Dobson and Kammer 92] are not instructive and are not be presented.
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14.2 Residue Theorem

Once the qo() and x = f(x)+€g(x, ) have been transformed, the wedge product under the
Melnikov integral is computed. The Melnikov integral is then evaluated using the residue
theorem of complex variable theory.

14.3 Simple Zeros

Simple zeros are found to exist for the calculated Melnikov function for the model satellite
system. A complicated expression for the zeros as a function of system parameters is
derived. Several plots are made to aid in the interpretation of the criterion for chaos.

14.4 Important System Parameters

The zeros of the Melnikov function are found to depend on five following system parameters.
They are the

e Moment of Inertia Parameters r; and r,
e Forcing Frequency §

. e Forcing Amplitude 7
e and Damping 3

By fixing two of the parameters, a three-dimensional plot of the surface separating
chaotic from nonchaotic motion can be drawn as a function of the remaining three variables.
Conclusions can be drawn about the effects of the values of the parameters of satellite system
on the formation of chaos.
It is important to note that these results correspond specifically to the particular satellite
model given in [Gray, Dobson and Kammer 92]. They are not necessarily general conclu-
sions that can be stated for satellite dynamics.
Nonetheless, the construction of the concluding arguments presented in [Gray, Dobson and Kammer 92]
is instructive. An representative example of the type of analysis of chaos in the [Gray, Dobson and Kammer 92]
satellite system is given in the next section.

15 A Sample Effect of System Parameters On The Forma-
tion of Chaos

For r; = %, B = 1, the surface separating chaotic from nonchaotic motion is given in
Figure 4. Values above the surface correspond to chaotic motion. Those below correspond
to nonchaotic motion.

It is required that 4} < 1 so that the two masses do not pass through the satellite mass

(ﬂ"'\ center c.
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Figure 4: Separation Surface

The forcing frequency £}, the forcing amplitude 7, and the shape of the satellite r, can
be varied, and their effects on the formation of chaos observed in Figure 4.

It is found that for small and large values of the forcing frequency (), it is impossible
to obtain chaos for any values of the forcing amplitude 7 < 1. But for an intermediate
values of §) near .5, chaos is easier to attain and it is virtually assured for large values of
the maximum moment of inertia r,.

It is also found that for values of r; approaching unity, which corresponds to a nearly

symmetric prolate rigid body, no chaotic motion occurs for the constant values of r; and
chosen and for 7} < 1, and for any value of .

16 Marsden Energy Sink

The equations of motion for a rigid body can be written as

N=NxQ
Defining
A = I - I3
LI

16
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i Ay === 2
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P _h-I
f 4=TT
these equations become .
IL A, - 11113
l'!z =| Ay-I;II3
I3 Az -1,
16.1 Computational Terms
The energy sink proposed by Marsden is oIl x (II x ) where @ > 0. The rigid body
equations of motion with terms added become
N=IxQ + all x (Il x Q)
or .
I!l Al . Hzns u'l
I | =] A2-ThHIT3 | + | uf
I'I3 A3 ° Hlng u'3
e where
?(W\ uf Az -T2 - A, - T, 112
: u'z =a| —A3- HfIIg + A, HgH%
i uf, Az . H%Ha - Al . H%Ha
The Marsden energy sink is cubic in the components of the body angular momentum

i
l vector.

The Marsden energy sink preserves the magnitude of the angular momentum vector,
and dissipates kinetic energy H for non-principal axis rotations as shown in the following
; two sections. The equation motion of the angular momentum vector in inertial space is
presented in the third following section.

] 16.2 Preservation of the Magnitude of the Angular Momemtum Vector
o|[I1||? is conserved

To show [|IT||? is conserved, show that $|TI||? = 0.
Im? =11
iunu2 =M-MN4+0-1
dt B

d, 0 .
I =211
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S [allx(MIxQ))- M=0

d .
d_t"H"2 =2I1-T =2(0+0)

d 2
I =0
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‘. 16.3 Dissipation of Kinetic Energy for Nonprincipal Axis Rotations
1 .H \
To show H \, , show that $ H < 0.

H = 3(-9)
d d1
& = @
= II-Q

a[ll x(II x Q)]-Q
a[(@xII)- (1T x 2))
—al||ll x Q||

||II x 2] = 0 for principal axis rotations. In this case j”;H = 0, which is desired.
For non-principal axis rotations ||II x ]| > 0 and kinetic energy is dissipated, again as
is desired.

18
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16.4 Direction of the Angular Momentum Vector in Inertial Space

The direction of the angular momentum vector in inertial space 7, is not preserved by the
Marsden energy sink as # # 0.

* = RI
# = RI+RI
= —R(IIx Q)+ R[(Mx Q)+ II x (I x N)]
= —R(Il x Q)+ R(Il x Q)+ RII x (I x Q)]
# = RIx (Il xN)
T = #x(MIxN)

The angular momentum vector only remains fixed in inertial space for rotations about
principal axes. Otherwise, it appears to move in inertial space. It is interesting to mote
that the angular momentum vector remains fixed in inertial space only for motions which
do not dissipate kinetic energy.

16.5 Trajectories on the Momentum Sphere with Marsden Energy Sink

The trajectories of the tip of the angular momentum vector on the angular momentum
sphere for

N=NxQ + all x(II x Q)

are qualitatively hand drawn in Figure 5.

17 Comparison of the Marsden and [Kammer and Gray 92]
Energy Sinks

17.1 [Kammer and Gray 92] Energy Sink
The [Kammer and Gray 92] energy sink added to the equations of motion of a rigid body

result in )
I, Ay - 12003 u
O | =] A2 ILII3 | + | up
Tis Az - LI, u3
where
Uy —II;II%
Uz = ﬂ II%II; - IIgH%
U3 H§H3
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17.2 Comparison of Computational Terms

Both the Marsden and [Kammer and Gray 92] energy sinks are cubic in the components of
the angular momentum vector.

The [Kammer and Gray 92] energy sink is not a special case of the Marsden energy
sink.

The Marsden energy sink cannot simulate the [Kammer and Gray 92] energy sink.

Proof: In order for the I = M x  + oIl x (IT x ) energy sink to simulate the
Kammer and Gray energy sink, we must have a = 8, Az = 0 which implies J5 = I, and
A; = Az = —1 which cannot be satisfied if I3 = I;.

17.3 Comparison of Momemtum Preservation

Like the energy sink given by Marsden, the [Kammer and Gray 92] energy sink preserves
the magnitude of the angular momentum vector. (See [Kammer and Gray 92, pp 55-56,

Eqns (1),(2) and (7))])

17.4 Comparison of Kinetic Energy Dissipation

The rate of dissipation of kinetic energy for the [Kammer and Gray 92) energy sink is given
by
d
=8 [4s - 12012 + 4, - M3
Kammer ansl Gray assume I < Iy < I3, therefore A; and A3 will be negative in the
expression for H. Hence, H < 0 and kinetic energy is dissipated.

The expression for kinetic energy dissipation for the Marsden energy sink is given by

d
—H = —al| x 0

or
d

SH=-a [43- 1202 + 43 - 3112 + A2 S16316]
The Marsden energy sink dissipates kinetic energy regardless of the ordering of I, I, and
I3. In fact, in the axisymmetric case where two of the principal mass moments of inertia
are equal, the Marsden energy sink will dissipate kinetic energy.

Kinetic energy will not be dissipated for all cases of axisymmetric bodies using the
[Kammer and Gray 92] energy sink. If I, = I3, where I,J3 > 5L,and I1(t=0)=15(t =
0), then $ H(t = 0) = 0 and H is preserved.

The Marsden energy sink will dissipate kinetic energy under more general principal
moment of inertia restrictions than the [Kammer and Gray 92] energy sink. It can possibly
be used in the dynamical analysis of axisymmetric spacecraft.
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17.5 Comparison of Motion of Angular Momentum Vector in Inertial
Space

Neither the Marsden nor the [Kammer and Gray 92] energy sink preserve the direction of
the angular momentum vector in inertial space for non-principal axis rotations.
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Figure 5: Angular Momentum Sphere Trajectories
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