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Abstract

Quantum computers promise to solve certain problems such as fac-
toring large integers and quantum physics simulation far faster than
any conceivable classical computers. The physical implementation of
quantum computation requires a series of accurately controllable quan-
tum gates. These gates can be of dynamical origin or of geometric
origin. The geometric gates depend on the global feature of the path
executed and are resilient to certain kinds of errors. In this paper, we
will review the theory underlying the holonomic quantum computa-
tion and describe one of its physical implementations through explicit
construction of the universal gates.

1 Introduction

The computational complexity theory has its foundations in a strengthening
of Church-Turing thesis, which says that any reasonable model of computa-
tion can be efficiently simulated by a probabilistic Turing Machine. Here,
“reasonable” means physically realizable. However, the Turing Machine is
based on classical physics. It fails to capture all physically realizable comput-
ing devices for a simple reason that the Universe is governed by quantum the-
ory. This poses two fundamental questions. The first one is whether we can
have a new kind of computing devices based on quantum theory. Deutsch
answered this question affirmatively by constructing a universal quantum
computer that can simulate any given quantum machines [1, 2]. The second
question is whether computing devices based on quantum theory can per-
form computations faster than traditional Turing Machine. This question
was affirmatively answered by Shor’s quantum factoring algorithm(3], which
can factor an integer N in polynomial time in log(N) as there is no known
efficient classical algorithm for solving this problem.

*The project report for CDS205



In quantum computation, the data are encoded by quantum states, and
computation consists of unitary transformations on these quantum states.
Quantum computer can accept as input states the coherent superposition of
many different inputs. Computation simultaneously affects each component
of the superposition, constituting a massive parallel data processing. The
power of quantum computation lies in this “quantum parallel”, by which
quantum computers can effeciently solve some problems believed to be in-
tractable with any classical computers. In the quantum circuit model for
quantum computation[4], the data are encoded with qubits which are basi-
cally two-dimensional quantum systems (we denotes its basis with |0) and
|1)), and the unitary transformations are specified or approximated by net-
works of quantum logic gates. These quantum gates are unitary transfor-
mations on finite number of qubits. Just as in the classical Boolean circuits
where all logic gates can be constructed from a small set of gates, there exist
a set of universal quantum gates from which we can build all quantum gates
to an arbitrary accuracy. For example, single qubit gates and CNOT gate
are such a universal set. Thus, the implementation of quantum computation
is reduced to the implementation of these simple, universal quantum gates.

There exist different kinds of proposals for the physical implementation
of the quantum computation. These implementations can be of dynamical
origin or of geometric origin. The all-geometric approach, under the name
of holonomic quantum computation [5, 6], implements the universal gates
solely based on geometric phases. The geometric phases or holonomies are
acquired when the system evolves under the adiabatic cycling of parameters
in the governing Hamiltonian. In mathematical language, adiabatic change
realizes parallel transport of quantum states in parameter space and induces
a Gauge structure, and the phase is the flux of the related two-form. These
phases are non-integrable and depend only on the geometry of the path
trasversed in parameter space. Due to this property, the holonomic quantum
computation has some built-in fault-tolerant feature and is expected to be
resilient to certain types of errors.

The paper is organized as follows. In section 2, we describe the math-
ematical foundation of holonomy. In section 3, we give a detailed account
of the theory of holonomic quantum computation. We then descirbe, in
section 4, the physical implementation of holonomic gates based on laser
manipulation of the trapped ions. Finally, in section 5, we briefly discuss
the adiabatic condition.

2 Mathematical foundation of holonomy

Since their discovery the geometric phases or holonomies in quantum theory
have had great impact in physics as well as mathematics[8). This is due on



the one hand to their universality in physcical systems, and on the other
hand to their beauty in the sense that they admit elegant formulation in
terms of concepts from differential geometry and topology. Here, we will
give a brief introduction to the mathematical concepts behind holonomy.
For a physical description, please see reference [8].

Our setting is a n-dimensional Hilbert space # over C, with family of
Hamiltonians H) parametrized by a parameter manifold M. Choose a point
A9 € M and set Hy = H),, and assume it has a n-dimensional degenerate
eigenspace with normalized eigenvalue 0

Hovi=0; i=11"',n’ (1)
where {v;} are chosen to be orthonormal and span a state space Sy. We
further assume a family of unitary operators parametrized by M

R: M —=U(n), R(X)=1I,, (2)

and H), is given by the isospectral family

Hy = R(\HoR™ (). (3)

Note that equation (3) corresponds to adiabatic condition, and each H)
has a n-dimensional degenerate eigenspace. Now define a Stiefel manifold

St={u= (u1,-,un)|u; € H,i=1,--+,n,and utu = I,}, (4)
we see the map R induces another map

P: M- St (5)

Define Stm = P(M), which is also a Stiefel manifold, together with
unitary operator U(n) on H, we have a principal U(n) bundle(7]

{U(n), Stm, M}. (6)

The connection (one-form) or gauge potential 4 of this bundle is given
by

A= A,d¥* = (o|R™ (\)dR(A)v), (7)

where v = (vy,-++,vy), and its curvature (two-form) is given by

F=Fud¥ Ad\ =dA+ ANA. (8)
Let v be loop in M at A

v :[0,1) = M,¥(0) = ¥(1) = Ao, (9)
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associated with this loop, a holonomy is defined by

I(y) = Pezp{ j{ A} €U), (10)

where P denotes path ordering. For n = 1 the holonomy is the Berry phase,
and for n > 1 the holonomy is sometimes refered to as non-abelian geometric
phase[8].

We further define a loop space at Aqg

L= {y:[0,1] & M|y(0) =v(1) = Ao}, (11)

where exists a composition law

(v2 - m)(8) = 6(1/2 = t)m (2¢) + 6 — 1/2)72(2¢ - 1) (12)

with unity element 4(t) = Ao and inverse y~!(t) = 4(1 — £). Since inte-
gral is linear in the intergal domains, the definition (10) combined with the
composition law induces a group Hol{(A) = I'(£) called holonomy group.
This group is a subgroup of U(n), its action on Sy is: 2 = ['(y)z, where
z € 8. When Hol(A) = U(n), the connection A is called irreducible. We
will see the properties of this group is important to the holonomic quantum
computation.

3 Basic ideas of holonomic quantum computation

As mentioned in the introduction, for quantum computation, the data are
encoded by quantum states and the computation consists of unitary transfor-
mations on these states. A quantum algorithm for solving a computational
problem is to design networks of quantum gates to realize these unitary
transformations and to specify a measurement prescription to extract rele-
vant information from which we infer the computational result. To be spe-
cific, in the proposed holonomic quantum computation the data are encoded
by the states in degenerate eigenspace Sp, and the unitary transformations
are given by holonomies I'(y) with different choices of the loop 7.

Along this road to quantum computation, there're two important ques-
tions that need to be addressed. The first one is related to the capacity
with which the holonomic quantum computer can do computations: how
many unitary transformations, i.e., computations, can we obtain by differ-
ent choices of the loop? From last section, we know that the holonomy
group Hol(A) is a subgroup of U(n), which means that the computations
a holonomic quantum computer can perform may be of very limit kinds.
We would like the connection A to be irreducible, thus Hol(A4) = U(n)
and the universal computation over Sp can be realized. Fortunately, in the



space of connections on M, the irreducible ones are an open dense set, thus
irreducibility is the generic situation. Here, we will show the connections
associated with non-abelian geometric phase are irreducible. Note that the
condition of irreducibility can be stated in terms of the curvature defined in
(8): if the F,,’s span the whole Lie algebra u(n), then A is irreducible. For
simplicity, we consider the generic example of a system with n + 1 levels, of
which n levels are degenerate with normalized eigenvalue 0[{12]. Extend the
Hamiltonian Hy defined in section 2 to act on (n+ 1)-dimensional space, and
accordingly make change to unitary operator R()). To be specific, Hy can
be denoted by a (n + 1)-dimensional matrx with entries (Hp);; = 0 unless
i=j=n+1, and R()) can be written as

R(A) = exp(AnTane1 — hc) -+ exp(MgTant1 — h.c.) exp(M T pn41 — hec),
(13)
where (T; )k = 0; j0kn, and the parameter manifold M is the coset space
SU(n+1)/U(n) = CP". Using formula (7)-(8) and applying the projection
onto the first n degenerate eigenstates, we obtain the curvature at A =0

(}.pu(o))jk = ij+k((_1)jTuu - (”l)kTpv)- (14)

It’s easy to check that the components of F do span the Lie algebra u(n),
thus the associated connection is irreducible and Hol(A) = U(n).

The second question is related to the realization of unitary transforma-
tions in practice. We shouldn’t expect that we will choose arbitrary loop
corresponding to arbitrary given unitary transformation. Could we obtain
the whole holonomy group with arbitrary accuracy with the compositions
of just several loops? This is equivalent to finding a set of universal quan-
tum gates. Recall that, for a Lie algebra, there might exist several elements
{gi} from which we can obtain all other elements through scalor product
and Lie-brocket operations. If this is the case, choose a group element U;
generated by each g;, we obtain a set of group elements {U;} from which we
can get almost all the other group elments by group multiplication. Specific
to our non-abelian geometric phases, it turns out that two generic loops
generate a universal set of gates over Sy[5], i.e., the group generated by
composing the holonomies from these two loops and their inverses is dense
in Hol(A) = U(n).

Note that, if we concern with a specific physical implemention of holo-
nomic computation, there exists a simple way to prove the universality.
Recall that, for example, a nontrivial two-qubit gate with single qubit gates
are universal. If we can directly construct these gates, we've proved that
holonomic computer can realize universal computation. We will see how to
construct these gates in the next section.



4 Physical implementation of holonomic quantum
computation

In the physical implementation of holonomic quantum computation, A € M
represents the control parameters such as external fields and the interaction
coefficients between subsystems. The computation effects through adiabati-
cally changing the control parameters to induce the desired evolution of the
computational space Sy. Recently, several schemes for holonomic computa-
tion were proposed by using nuclear magnetic resonance[9}, trapped ions[10]
or superconducting nanocircuits{11]. Here, we focus on the scheme based on
laser manipulation of trapped ions[10].

As mentioned before, the implementation of quantum computation is
reduced to the physical implemetation of several universal gates. Each gate
is specified by a gate Hamiltonian, the implementation of the computation
is to engineer these Hamiltonians. The system we have in mind is a set of
ions confined in a linear Pauli trap. Each ion has three relevant internal
states |0), |1) and |a}), of which |0) and |1) are used to encode data (one
qubit) and |a) is used as an ancillary level for gate operations. These three
states are coupled seperately with an excited state |€) by resonant classical
lasers. The Hamiltionian in the rotating frame for each ion is

Hj = h{|e)(Q{0| + (1] + Qala|) + h.c.}, (15)

where Qg, ©; and Q, are control parameters representing the Rabi frequen-
cies. This Hamiltonian will serve to construct single qubit gates. We need to
exploit the Coulomb interactions between ions to construct two-qubit gates.
Using two-color laser manipulation and under the Lamb-Dicke approxima-
tion, we can obtain the interaction Hamiltonian[13]

Hy; = s{~ %™ |e); (1le)x (1] + [Qal*e?®= e} j{alle)ial }, (16}

where x is some constant, and ¢; and ¢, are phases of ; and £,, respec-
tively.

For our purpose, we choose the universal set of gate operations to be
U{ eW’l“)}(” UJ = e'l’2(|0).7(1’ 11);{0]) and UJk = e"P:iIu)Jk(u' The univer-
sality of this set of gates can be proved by checkmg the Lie algebra generated
by [1);(1}, 10);{1| = {1); (0[ and |11);,(11|. To get the gate U], we set g =0
and choose Q) = ~Qe*sin(0/2) and Q, = Qcos(8/2) in Hamiltonian (15).
The corresponding eigenstate with zero eigenvalue is

) = cos(8/2)[1); + €%sin(6/2)|a);- (17)

We see that 8 and ¢ are effective control parameters and € is irrelevant.
When the parameters make an adiabatic cyclic evolution with the starting



and ending points at § = 0, we obtain the gate operation Uf with Berry
phase[8]

o1 = f (Yld) = -;- / / sindd6ds. (18)

Note that the acquired Berry phase is one-half of the enclosed solid angle
J d2 swept by the vector pointing to the (8, ¢) direction.

To get the gate U3, we choose Qp = Qsinfcos¢, Q; = Qsinfsing and
Qs = Qcosf in the Hamiltonian (15). The corresponding degenerate eigen-
states with zero eigenvalue are

[41) = cosBcosd|0); + cosBsing|l); — sinb|a);, (19)
l$2) = —sing|0); + cosg|l);. (20)

When the parameters § and ¢ make the similar adiabatic cyclic evolution
with staring and ending point at § = 0, we obtain the gate UJ with the
phase

02 = $(hildo) = [ [ sinbdpds. (21)

Note that U] and Uj obtained are noncommutable, i.e. are non-abelian
holonomies.

To get the gate U, we choose |Q12/|Qa|? = tan(0/2) and ¢1 — . = /2
in Hamiltonian (16). The corresponding adiabatic state is

3} = cos(8/2)|11)x + €'®sin(6/2)|aa) . (22)

When the parameters make an adiabatic cyclic evolution with the starting
and ending points to be & = 0, we obtain the gate operation U’ with the
phase

03 = §Wsldps) = 5 [ [ sinddsas. (23)

We see that the gate operations are determined only by the global prop-
erty (the swept solid angle) but does not depend on the details of the adi-
abatic path in the parameter space. This is an advantage of holonomic
quantum computation, and makes it resilient to certain kinds of errors such
as the local random errors along the adiabatic path caused by some un-
wanted interaction.



5 Discussion

The above construction proves the feasibility of holonomic quantum compu-
tation. Of course, besides the adiabatic condition, there exist other condi-
tions and constraints in its implementation. We will not discuss these issues
since they are not mathematical questions.

We've seen that the adiabatic condition is the prerequistite of the holo-
nomic quantum computation. However, the quantum system is very fragile
and the operation time for quantum computer needs to be shorter than the
decoherence time. Thus, in practice, the adiabatic condition is not easy to
meet. We need to study the non-adiabatic corrections[14], and quantify the
errors induced to the computation and find ways to counteract them.
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