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Abstract. Gromov’s non-squeezing theorem is a relatively new results in
symplectic topology that provides a non-trivial constraint on the propagation
of uncertainty in a Hamiltonian system. While the application to nonlinear
systems is difficult, one can apply the theorem to obtain bounds on the prop-
agation of uncertainty in the linearized system, by exploiting the fact that
the flow of the linearization of a Hamiltionian system is still symplectic. This
report compares the results that one obtains by this linearized analysis to the
actual behavior of the nonlinear system.

1. Introduction

Consider a probability distribution on the phase space of a Hamiltonian system.
The evolution of the distribution through the flow of the system must respect
various classical constraints. The first obvious one is that the overall probability
mass must be conserved. Moreover, the fact that a Hamiltonian vector field is
divergence free implies two other constraints:

(1) The volume of a finite set is invariant along the flow (Liouville’s theorem).
(2) The probability density is constant along the flow (p(ϕt(z)) = p(z)).

An application of Gromov’s non-squeezing theorem gives an additional non-trivial
constraint, which is based on the fact that the flow of a Hamiltonian system is
a symplectic map. Intuitively, a volume in phase space cannot be stretched with
respect to one particular symplectic plane more than its “symplectic width” allows.
In other words, it is impossible to squeeze a symplectic camel into the eye of a needle,
if the needle is small enough. This is a very powerful result, which is intimately
tied to the Hamiltonian nature of the system, and is a completely different result
than Liouville’s theorem, which only interests the overall volume and does not pose
any restriction on the shape.

Recently, it has been shown that using this theory, practical constraints can be
obtained for the linearized propagation of uncertainty in Hamiltonian systems [1, 2].
This paper summarizes these results, and compares them with a numerical nonlinear
analysis. We proceed as follows. Section 2 states Gromov’s non-squeezing theorem
and the concept of symplectic width. Section 3 applies the theory to the analysis of
the linearized flows. Section 4 presents some simulations. Conclusions are provided
in Section 5.
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2. Conservation laws from Gromov’s non-squeezing theorem

Let B2n(r) denote the closed Euclidean ball in R2n centered at 0 with radius r.
Let Z2n(r) denote the symplectic cylinder

Z2n(r) = B2(r)× R2n−2.

Note that Z2n is intended to be a “symplectic” cylinder, in the sense that B2(r) is
supposed to correspond to a pair of conjugate variables; e.g., q1 and p1. A basic
version of Gromov’s result can be stated as follows.

Theorem 1. Let ϕ : R2n → R2n be a symplectic transformation that maps the
ball B2n(R) into a subset of the cylinder Z2n(r). Then r ≥ R.

More in general, one defines the linear symplectic width wL(Ω) of a set Ω as
follows:

Definition 2.
wL(Ω) = sup

S∈Sp(n)

{πR2|S(B2n(R)) ⊂ Ω}

Here Sp(n) is the set of all linear symplectic maps. One can show that if n = 1,
ωL(Ω) is simply the area of Ω.

This allows to generalize Theorem 1 above by saying that Ω cannot be mapped
symplectically to a cylinder whose width is less than wL(Ω). This gives directly a
constraint on the joint uncertainty on a pair of conjugate variables.

If one includes the possibility of using also a nonlinear map, one defines “Gro-
mov’s width” wG(Ω) as follows:

Definition 3.
wG(Ω) = sup

f∈Symp(n)

{πR2|f(B2n(R)) ⊂ Ω}

Here Symp(n) is the set of all symplectic maps. One can prove that wL and wG

agree on phase-space ellipsoids.
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3. Application to uncertainty propagation in Hamiltonian systems

Hsiao and Scheeres [1] applied these ideas to the analysis of the linearized prop-
agation of uncertainty in a Hamiltonian system. A similar technique was employed
in [2] where the author tries to make explicit the ties of these bounds to the Heisen-
berg uncertainty principle.

The paper [1] contains four main ideas:
(1) The linearization of an Hamiltonian flow is still an Hamiltonian flow.
(2) The evolution of the covariance of a distribution is easily computed if the

flow is linear.
(3) In the case of a Gaussian distribution, the sublevel sets of the density are

ellipsoids.
(4) The symplectic width of some ellipsoids is easily computed.

Thus, they are able to use the non-squeezing theorem to prove bounds on the blocks
of the evolved covariance. Let us see these steps in detail.

Linearizing the Hamiltonian system. Recall that a map ϕ : R2n → R2n is
symplectic/canonical/a symplectomorphism, if it preserves the bilinear form Ω.
This condition can be written as

Ω(Dϕ(z) · z1,Dϕ(z) · z2) = Ω(z1, z2)

Or, equivalently, that the matrix representation of Dϕ is a symplectic matrix A
(AJAT = J).

Now consider a reference trajectory z(t), and the linearized system around this
trajectory. Letting ξ(t) = z(t) − z(t), the linearized evolution of ξ can be written
as

ξ̇(t) = A(t)ξ(t)
with Aij(t) = ∂ϕi

∂zj
|z=z(t). This is, in general, a linear time-variant system. The

solution can be written as follows:

ξ(t) = Φ(t, 0)ξ(0)

Φ̇(t, 0) = AΦ(t, 0)(3.1)
Φ(0, 0) = I

The crucial property is that ξ 7→ Φ(t, 0)ξ is still a symplectic map. This can by
verified by verifying that Φ(0, 0) = I is clearly symplectic, and that f(Φ) = ΦJΦT =
J is an integral invariant of the operator flow given by (3.1).

Evolution of the covariance in linear systems. Suppose that ξ(t) is a ran-
dom variable (not necessarily Gaussian) with zero mean, and define P (t) to be its
covariance:

P (t) = E{ξ(t)ξ(t)T }
It is immediate to see that the relation of P (t) and P (0) is

(3.2) P (t) = Φ(t, 0)P (0)Φ(t, 0)T

Note that an equivalent relation does not hold for nonlinear systems. Depending
on the system, the linearized approximation of the covariance propagation can be
either optimistic or pessimistic. For flows that “destroy” information, such as those
that arise in problems of tracking, the linearized evolution is typically an optimistic
estimate of the real covariance. A filter that uses this approximation would become
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quickly inconsistent (it underestimates its uncertainty). This is one of the basic
problems of the Extended Kalman Filter, and whether it is a problem for the
particular application must be ascertained by an ad hoc analysis.

Nevertheless, the assumption of [1] is that the covariance of the distribution
evolving through the nonlinear flow can be approximated by equation (3.2) where
Φ is the transition matrix of the linearized flow.

Gaussian distributions and ellipses. The non-squeezing theorems applies to
(finite) volumes evolving in phase space. But if we consider a probability distri-
bution, say a Gaussian, it will occupy, by definition, the whole phase space. The
usual trick that one must use is to confound the probability distribution (possibly
Gaussian), its covariance matrix, and the ellipsoid corresponding to a given con-
fidence level. The trick works because the flow is assumed to be linear, and the
conversion to/from the ellipse commutes with the flow. Intuitively, one can state
that

ellipse(ϕt(distribution)) = ϕt(ellipse(distribution)).

Linear symplectic width of ellipsoids. The linear symplectic width can be
computed for some classes of ellipsoids. Given a positive-definite matrix P , define
the ellipsoid EP as

EP = {x|xTP−1x ≤ 1}.

Even if the ellipsoid is arguably one of the simplest shapes, the linear symplectic
width can be computed only in special cases. It is convenient to choose coor-
dinates such that the conjugate variables correspond to adjacent slots of x, i.e.
x = (q1, p1, q2, p2, . . . , qn, pn). With this choice, the covariance matrix can be fac-
torized as

P =

 P11 · · · P1n

. . .
Pnn

 ,
where the single block Pij is the covariance between (qi, pi) and (qj , pj):

Pij ,

[
cov(qi, qj) cov(qi, pj)
cov(pi, qj) cov(pi, pj)

]
Proposition. Suppose that P is a diagonal matrix. Then the symplectic width is

ωL(EP ) = min
i
{πσqi

σpi
}

The proof of this is obvious by Definition 2, noting that πσqiσpi is the area of
the ellipsoid projected onto the qi, pi plane. More generally, suppose that P can
be diagonalized as P = SDST , where D is diagonal and S is symplectic. By the
definition of symplectic width, wL(EP ) = wL(ED), and wL(ED) can be computed
according to the previous result.

In all other cases, the symplectic width can be computed by finding a symplec-
tic transformation that transforms an ellipse in R2n to a standard ellipse in Cn.
This transformation, however, can be found only numerically as the solution of a
nonlinear problem. Details can be found in [1].
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Putting it all together. The main theorem of [1] is stated as follows:

Proposition 4. Consider a dynamical system which is linear and Hamiltonian,
with state transition matrix Φ(t, 0). Let P (t) be the covariance matrix of a zero-
mean probability distribution. Then the following bound holds:

det(Pii(t)) ≥
(
wL(EP (0))

π

)2

.

Proof. The covariance evolves as in (3.2). Due to the equivalence of ellipsoids and
covariances, and the fact that Φ(t, 0) is symplectic, we can say that wL(EP (t)) =
wL(EP (0)). Moreover, the area Ai of the projection of EP (t) on each symplectic
plane must be at least larger than wL(EP (t)): Ai = π

√
det(Pii(t)) ≥ wL(EP (t)) =

wL(EP (0)). �
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4. Numerical results

In this section, we present some numerical results, by reproducing the simulations
in [1] and comparing the linearized analysis with a nonlinear analysis using Monte
Carlo simulations.

Model. The simplest system to which we can apply the non-squeezing theorem
usefully must have dimension 4, otherwise there would be only one symplectic plane,
and the non-squeezing theorem would degenerate, in some cases, to conservation
of volume. Consider the case of the two-body problem, a classical Hamiltonian
system. Let r ∈ R2 be the position of the orbiter in the elliptic plane. Then the
dynamical system can be written as

r̈ = − µ

||r||3
r,

with µ being the normalized mass. One linearizes the system along a reference
trajectory r(t). Let δr(t) = r(t) − r(t). The linearized evolution of δr(t) can be
written as

δr̈ = − µ

||r||3

(
I − 3

rrT

||r||2

)
δr , V(t)δr,

Letting z(t) = [δr, δṙ] = (x, y, ẋ, ẏ), the linearized system is:

ż(t) =
[

0 I
V(t) 0

]
z(t) , A(t)z(t).

One verifies that V(t) is symmetric, and that A(t) is symplectic.

Methods. In the simulations, we consider an initial Gaussian distribution with
mean r(0) and covariance P (0). We compute the covariance in two ways:

• According to [1], we compute the linearized covariance P̃ (t) by first integrat-
ing the reference trajectory r(t), and then computing Φ(t, 0) by integrating
the flow (3.1).

• We compute the covariance P (t) numerically by sampling from the distri-
bution N (r(0), P (0)), integrating the trajectory of each sample, and com-
puting the covariance.

The tolerance of the integrator (Runge-Kutta 4-5) is chosen low enough such that
numerical errors are not an issue.

Results. By choosing the initial point r(0) = (1, 0, 0, 1), and normalized mass
µ = 1, one obtains a circular trajectory. The initial covariance matrix is chosen as
P (0) = diag(0.012, 0.012, 0.012, 0.012), which is the value used in [1]. The results
for this case are shown in Fig. 5.1 for a time interval of 2π, and in Fig. 5.3 for a
much larger interval. Fig. 5.2 and Fig. 5.4 show the results for an elliptic reference
trajectory, starting at at r(0) = (1, 0, 0, 0.5).

For each Figure, subfigure (a) shows the initial sample distribution, and sub-
figure (b) the final distribution. Subfigure (c) shows the curves det(P̃x,ẋ(t)) and
det(Px,ẋ(t)), corresponding to the linearized and Monte-Carlo-computed covari-
ances. Analogously, subfigure (d) shows the same for y, ẏ.

We note the following:
• The simulations appear to be correct because the results of [1] are very

similar (nevertheless, they are only qualitatively equivalent, as the precise
value of r(0) was not specified in the paper and had to be guessed).
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• The simulations confirm the result of Proposition 4: det(P̃x,ẋ(t)) does not
decrease below the initial value. We note, however, that the bound appears
to be very loose — note (c) and (d) use a logarithmic scale — because it
grows by orders of magnitudes after only one revolution.

However, comparing the results of the linearized and nonlinear analysis, we must
conclude that the linearized analysis is not adequate to explain the nonlinear be-
havior. For the value of P (0) used in [1], the nonlinear flow is different enough to
give completely different results (e.g., Fig. 5.1c).

One could say that the linearized analysis would be valid if the initial covariance
would be small enough. This is true for small time spans, and in fact we see from the
plots in Fig. 5.5 that, by scaling the covariance of 2 orders of magnitudes, P (0) =
diag(0.0012, 0.0012, 0.0012, 0.0012), the evolutions of det(P̃x,ẋ(t)) and det(Px,ẋ(t))
appear to be more similar. Even though, theoretically, I should have obtained
approximately the same results for even smaller initial covariances, this did not
happen, and I blame it on numerical errors.

However, the linearized analysis would be misleading for long enough time spans
no matter how small the initial covariance. This can be seen in Fig. 5.3 and 5.4. In
the nonlinear system, if the initial uncertainty is non-zero in all directions x, ẋ, y, ẏ,
then the sample trajectories will have a continuum of energies and orbiting periods.
We assume that the initial uncertainty is small enough such that no sample can
escape the gravitational pull. In particular, because the periods will be incommen-
surable, the uncertainty will be spread out over an annulus in x and y. For the
velocities, these will stay in a certain (bounded) set, compatible with the uncertainty
in the energy. Therefore, after enough time has passed, the initial distribution will
be spread out along the reference orbit. The actual shape of the distribution will be
complicated — recall that the flow is a diffeomorphism, therefore the connectivity
of the uncertainty volume will be preserved.

In conclusion, no matter how small the uncertainty, the actual covariance under
the nonlinear flow will tend to a certain limit. This can be clearly seen in the
plots (b) of Fig. 5.3 and 5.4. On the other hand, as can be seen in the plots (c)
and (d) of those figures, det(P̃x,ẋ(t)) and det(P̃y,ẏ(t)) will grow without bound.
Remember, though, that det P̃ (t) remains constant, as the volume of the ellipsoid
is conserved. What happens is that the ellipsoid is stretched excessively in a certain
direction, by increasing the correlation between non-conjugate variables. Therefore,
the linearized analysis leads to qualitatively incorrect conclusions.
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5. Conclusions

The propagation of uncertainty in Hamiltonian systems must respect several
classical constraints. Gromov’s non-squeezing theorem provides an absolutely non-
trivial constraint on the propagation of uncertainty. However, the problem of ap-
plying the theorem to nonlinear systems is that the symplectic width cannot be
readily computed for most shapes — even the computation of the linear symplectic
width for a generic ellipsoid requires the solution of a nonlinear problem.

The low-hanging fruit used by [1] is that the linearized flow of a Hamiltonian
system is still symplectic. Therefore, the theory can be applied to the local analysis
of uncertainty propagation. However, the resulting analysis has very local validity
and cannot be easily extended to the nonlinear case. The reason is that, while
Hamiltonian systems could be considered “nice”, in the sense that they preserve
phase volumes, and the probability along the flow, the evolution of the shape of
a volume can be quite complicated. For example, in the two body problem, two
samples arbitrarily close may have incommensurable periods, and therefore end
up at opposite places in the space after enough time. Thus it seems likely that
several advances to the current state of the art would be necessary before obtaining
practical results for the nonlinear case.
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Figure 5.1: Case of a circular trajectory, short time span.
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Figure 5.2: Case of an elliptic trajectory, short time span.
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(d) Evolution of uncertainty on the y, ẏ symplectic plane.

Figure 5.3: Case of a circular trajectory, long time span.
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(c) Evolution of uncertainty on the x, ẋ symplectic plane.
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(d) Evolution of uncertainty on the y, ẏ symplectic plane.

Figure 5.4: Case of elliptic trajectory, long time span.
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Figure 5.5: Case of a circular trajectory, with very small initial uncertainty.


