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In high school I have to admit that I found mathematics both boring and
difficult. The inane complexities of calculus, I thought, jabbing a pencil deep
into my hated math textbook.

Times change. I no longer find mathematics boring, though it is certainty
still difficult. As a description of the universe, mathematics rewards clarity,
encompasses complexity, and preserves subtlety. A high art indeed, but its
ways are not always so simple to learn. To a rank apprentice, standing at the
bottom of such an edifice of knowledge, there are many questions and many
difficulties, such as:

e Algebra

e Linear algebra
e Analysis

e Geometry

o They are all the same, they are all different. How exactly do they relate?
What can we build in and amongst and on top of them?

o Will I ever understand ANY of these subjects even a little bit?

I have not come upon the answers to these questions, but 1 have come upon
some very interesting things nonetheless. In these few pages I would like to
describe some of the things that I have found (most of them lying about the
math library) that seem to me to be especially intriguing.

Physics, like mathematics, was created towards a better understanding of
nature. To me it seems that these two fields should be basically one and the
same, but that is apparently not how the world works. 1 think it has always
been more or less true that the language of physics is mathematics, however.
Whatever their true relationship, I think that the connections between these
two paradigms? languages? disciplines? represent some of the most beautiful
acheivements of human culture. There are three intertwined threads that I
would like to point out in particular, these being mechanics, geometry, and the
theory of Lie groups.

In the study of mechanics, as in the rest of physics, we are looking for
patterns in natural systems. These patterns sometimes come to be called laws.
Sometimes they remain only theories, but they are valuable anyway if they
reveal. By reveal I mean that they open even a small doorway into the universe
through which we can send our minds for understanding. Our minds understand
patterns: “Ah, as it is there so is it here.” And so we look for them.

There is an old saying to the effect that we find only what we are ready
to find, and we see only what we are ready to see. Physics and mathematics
are essentially descriptive; to describe something new, the language must be
expanded and enriched.



Geometry and mechanics have a history together. Hamilton initiated the
study of the phase space of a mechanical system as a key to understanding the
system itself. The geometry of phase space is called symplectic geometry, and
is perhaps the essence of the modern conception of mechanics (see Guillemin
and Sternberg{1984], and Marsden and Ratiu[1993]). The relationships between
mechanics and the theory of Lie groups follow a tortuous path through history,
with wheels being constantly reinvented in different places, times, and guises.
Consider the following quote taken from Weinstein [1983).

...many results in symplectic geometry usually attributed to various
mathematicians during the 1960’s can be found in Sophus Lie’s book
Theorie der Transformationsgruppen.

Many of these patterns that we look for can also be called symmetries.
In mathematics, the description of symmetry involves the use of structures,
the canonical example being the group.The contribution of Sophus Lie was to
advance our understanding of the nature of symmetry, and thus he helped set the
stage for the fundamental advances of this century’s physics and mathmatics.

One way Lie’s work has been described is as the study of the relationships
between groups and systems of differential equations (see Gilmore [1974] and
Hermann [1975]). Here there is a link with another mathematician, E. Noether,
who formulated a fundamental statement about symmetries present in systems
of differential equations.

Noether’s famed theorem is thus described in Olver[1993):

Noether’s theorem provides a connection between one-parameter
variational symmetry groups of the system and conservation laws
or first integrals.

Olver further goes on to say that when one has such an integral, one can reduce
the order of the system and so are on the way toward integrating the system by
quadratures.

Already this is all mixed up with Lie’s ideas. Perhaps I should go a little
more slowly.

First of all, a symmetry group of a system is a group acting on the variables of
said system such that it takes solutions of the system to other solutions. Appar-
ently Lie knew something about these matters as well, since Olver tells us that
Lie showed how finding a one-parameter symmetry group leads to a reduction
by one of the order of the system. Anyway, it seems clear that Lie was actively
studying systems of partial differential equations (see also Gilmore[1974)) which
led him to the study of continous transformation groups, from which crucible
we have the theory of Lie groups.

A Lie group at its most basic level is just a continuous group. For Lie
himself, the basic object was a Lie transformation group, which is a Lie group
and a manifold, together with a group action under some conditions. This same



concept, with maybe slightly different conditions on the group action, is also
called the representation of the group on the manifold. One more term: a Lie
algebra is a vector space with a bilinear operation.

So now we can wonder what Lie did with these objects, and what we can do
with these objects today.

Before I move off in a somewhat unrelated direction, let us return briefly to
the matter of Noether’s theorem and what Lie and his theory may have to do
with systems of differential equations.

There is no doubt that Lie was motivated by and interested in the theory of
differential equations. He considered himself in the tradition of Abel and Galois,
in that he did for differential equations what they did for algebraic equations.
It is interesting to note from Lie’s introduction to Theorie der Transformations-
gruppen that he considered his work to be based in both geometry and analysis,
each supporting the other, especially when one considers the interrelationships
between geometry, the theory of differential equations, analysis, and mechanics
as these fields have developed.

This trend that began with Lie himself continues. Lie groups appear as
symmetry groups in a wide range of physical systems of interest. For example,
consider the following quote from Marsden[1969).

In general, from Lie group actions which leave Hamiltonians fixed,
we hope to extract conserved functions (also called integrals).

So Lie groups are an important tool for obtaining conservation laws of Hamil-
tonian systems in particular.

Here is another suggestive quote regarding modern application of Lie groups
to systems of differential equations (from Gilmore[1974]).

Lie groups have been studied so extensively iin their own right that
their connection with partial differential equations is often over-
looked and forgotten. So it is sometimes quite a shock to learn
that many of the differential equations of mathematical physics are
expressions of the Casimir invariant of some Lie group in a particular
representation and, moreover, that all the standard special functions
of mathematical physics are simply related to matrix elements in the
representations of a few of the simplest Lie groups.

Apart from considering Lie groups as symmetry groups, there is another
tack that Lie took, and that recent developments have taken, relating Lie’s
ideas directly to the consideration of Hamiltonian systems.

The first important tool that is needed Lie provided in his three fundamental
theorems concerning the relationship between Lie groups and Lie algebras. He
showed that for each Lie group there is a corresponding Lie algebra, and char-
acterized the resulting Lie algebra via structure constants (via a left-extension,
to use another term).



The next step is to note that many crucial mechanical systems have a Lie
group G as a configuration space. Following Marsden[1982], a few examples:

o the free rigid body system is associated to SO(3) =rotation group

o the perfect incompressible fluid system is associated to Dy, = volume
preserving diffeomorphisms

o the Heisenberg equation of quantum mechanics is associated to U(H),
unitary group of complex Hilbert space

o the Poisson-Vlasov equations of plasma physics are associated to £ =
group of canonical transformations.

Now consider the dual of the corresponding Lie algebra, G*. Lie defined
what is now called a Poisson structure on G* by

where F,G : G* — R are smooth, real valued functions. This bracket is
called the Lie-poisson bracket. G* and its bracket form a Poisson manifold
(this is the modern terminology, but Lie apparently developed the concept; c.f.
Marsden[1993]).

Next, follow the standard procedure (given a bracket) to arrive at the equa-
tions of motion for the system. Given H : G* — R an energy function, there
is a unique vector field Xy on G* defined by the equation

DF(p) - Xu(p) = {F,H},

or in other words %’:—‘ = {F, H}, the evolution equations determined by H.

A system thus described leaves the coadjoint orbits in G* invariant.

This procedure is just one example of the development of Lie’s ideas in mod-
ern mathematics, but for me it is very representative of the descriptive power of
the structures Lie explored. He laid much of the foundation for modern mechan-
ics, in that by using the language of Lie groups we are able to very succinctly use
tools from geometry, algebra, and analyis to understand mechanical systems.

I believe that it is just this unity of form and function that mathematics
and physics, at their best, aim towards. The theories of Sophus Lie mark rich
ground to explore.
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