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ABSTRACT. Mechanical systems with symmetries are an extremely in-
teresting class of nonlinear control systems, which include rigid bodies
with external forces as well as locomotion systems. This report presents
a unifving theoretical framework for the analysis of the controllabil-
ity property of these systems. The analysis is based on the geometric
properties of the configuration space of these systems: a principal fiber
bundle with an invariant metric. On this Riemannian manifold the
Levi Civita connection is characterized in terms of two “integrability”
tensors: the mechanical connection of the bundle and the second funda-
mental form of the fibers.

The reduced Euler-Lagrange equations are recovered in both intrinsic
and local coordinates versions. Regarding the controllability problem,
various cases are analyzed: Lie group systems, locomotion systems and
chains of rigid bodies with full fiber actuation. Numerous examples
illustrate the theory.

1. INTRODUCTION

'Being fun is ultimately related to our interest to “motion control problems”.

1

Control of mechanical systems with symmetries is motivated by lots of fun ex-
amples !, see pictures at page 18. A common feature shared by these examples is
the Lagrangian being sum of kinetic and potential encrgy. Consequently our anal-
ysis will assume this additional structure and thus relies on Riem:annian geometry
tools. They indeed turn out to be well suited, as both the equations of motions
and the controllability properties can be computed within the same framework in
an mtrinsic Way.

When symmetries are added, the confignration manifold splits, at least locally,
into the product of two spaces: the shape space and the structure group. Both
spaces are naturally endowed with a Riemanniin structure. This paper investigates
this in geometric, mechanics and control theoretical terms,
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Geometric Mechanics picture: 7 being a Riemannian submersion implies
the following exact sequence of maps

G- q grouwtion Q ..1) Q/G

A natural Riemannian metric is induced in both the base B and the fiber G- ¢:
the fiber is a submanifold on @ (with metric specified by the locked inertia
tensor 1) and, regarding the base, horizontally lifting vector fields on the
base and taking their inner product on T'Q, is a well-defined procedure. Two
important tensors also have geometric meaning: the mechanical connection
(and its curvature), and the second fundamental form of the immersion G-q —
Q. The key idea in this work is that the covariant derivative on the total space
is characterized by these two tensors, together with the Riemannian structures
on base and fiber.

Aside: The mechanical connection is related to holonomy ideas, while the sec-
ond fundamemntal form relates to mechanical systems with constraints (Marsden
& Ratiu 1994), and to the notion of totally geodesic submanifolds (Kobayashi
& Nomizu 1963a). Also, see Marsden, Montgomery & Ratiu (1990) and O’Neill
(1966), for an elegant description of these concepts.

Problem statement: The goal of this paper is to split the controllability com-
putations on the total bundle @ into computations on the single spaces. This
is a reduction problem. Consistent with this view, we would also like to per-
form Lagrangian reduction all the way to the geodesic equations on the two
reduced spaces. The purpose is to decompose the Euler-Lagrange’s equation
into geodesic equations on two reduced spaces. This is a way to study con-
trollability, given the relativa ease in computing the accessibility distributions
of the geodesic equations.

Literature description: Previous work by various authors focuses on the two
important subclass of pure Lie group systems and locomotion systems. We
refer to Bullo & Lewis (1996a) for the first case and talk about the second
here. Kelly & Murray (1995) focuse on the case of horizontal forces (that
is forces that preserve the total spatial angular momentum): the mechanical
connection and its curvature determine the controllability of the vertical part
of the system in a purely kinematic way. Here we face the fully dynamic case
allowing for both horizontal and vertical way: the reduced Euler-Lagrange
equation of Marsden & Scheurle (1993) are recovered as well as Kelly’s results.
Additionally we are able to deal with a class of systems where it’s the group
directions affect the motion of the internal variables.

Apologies on notation: We face a difficul choice of symbols in describing the

Riemannian structure of all the spaces involved. The final setup s described
as follows:

manifold | metric | covariant derivative
Q €,-» v

B=Q/G | (Ds ~

G-q 1(q) R

Additionally, the connection on the fiber 5. induces two bilinear maps
on the Lie algebra g, which we denote with ¥ and ,V (intuitively covariant
derivatives of left invariant and right invariant vector fields can be reduced to
operations on the Lie algebra, see Appendix A for a precise description).
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Outline: The report is organized as follows: in Section 2 we briefly review
principal fiber bundles and basics of Riemannian geometry. Then we compute
expressions for V on @ as a function of V, .V, mechanical connection and
second fundamental form of the fibers. In Section 5, we show how to use this
formalism to rederive the reduced Euler-Lagrange equations. In Section 6 we
study controllability properties of mechanical systems with symmetries and

we then present some examples in the following section.

In Appendix A we characterize Riemannian connections on Lie groups and
fibers of principal fiber bundles. In Appendix B we show that the equations
we derived in the previous sections agree with the ones in Marsden & Scheurle

(1993).
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2. SOME GEOMETRY

We refer to Kobayashi & Nomizu (1963a) and Abraham & Marsden (1987, Sec-
tion 2.7) for an introduction to Riemannian geometry and to the theory of connec-
tions on principal fiber bundles.

2.1. Elements of Riemannian geometry. Let M be a Riemannian manifold,
denote with {{-,-)) its metric tensor and with the symbols * : TM — T*M and
¥:T*M — TM the musical isomorphisms. An affine connection on M is a map
that assigns to each pair of smooth vector fields X, Y a smooth vector field VxY
such that

i) VexY = fVyY and
ii) VxfY =fVxY +(Lxf) Y for all f € C®(M).

Given any three vector fields X,Y, Z on M, we say that the affine connection V
on M is torston-free if

(X, Y]=VxY -VyX (2.1)
and is compatible with the metric (-, ) if
Lx{Y,Z2) ={(VxY,Z) + (Y, Vx2Z). (2.2)

There exists a unique torsion-free affine connection V on M compatible with the
metric. We call this V the Riemannian (or Levi-Civita) connection: it satisfies the
Koszul formula:

X, VaY) = Lz(X,Y) + (2,[X, Y]} + Ly (X, Z) + (Y, [X, Z])
- Lx{Y,2) - (XY, 2]). (2.3)

Any Riemannian connection V can be decomposed into the sum of a symmetric
and skew part

VxY=%(X:Y)+-;-[X,Y], (2.4)

where (X : Y) £ VxY + Vy X is the symmetric product introduced in (Lewis &
Murray 1996).

2.2. Principal fiber bundles and connections. Let B be a manifold and G a
Lie group G. A principal fiber bundle with base B and structure group G consists
of a manifold Q and a free and proper action of G on @, such that B = Q/G and
the canonical projection 7 : Q — B is a smooth surjection. The group action is
denoted by

2:GxQ2Q:(9,9)— Py(q) =g-91.

and the fiber over ¢ € Q is denoted by G - ¢ = n~!(g). We define the vertical
subspace of the principal fiber bundle Q at the point ¢ € Q to be ver, = T(G - q).
A vector which lies in ver, is tangent to the orbit of ¢ under the action of G. A
connection on the bundle @ is specified by a connection one-form A : TQ — g
satisfying

i) A(q) =€ and

ii) A(Tq®y(vq)) = Ady A(vg),
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where g denotes the infinitesimal generator corresponding to the Lie algebra ele-
ment £, Ad, denotes the adjoint action of G on g, and v, € 7,Q. We can locally
trivialize the bundle as @ = B x G and we write correspondingly ¢ = (r,g). If
ve = ¢ = (+,9) € T4Q, the local connection form Ay, : TB — g satisfies

A(".y) . ("" g) = Adg(g—lg' + Agoe(r) - 7).

A connection A on the bundle Q assigns to each point ¢ € Q a horizontal subspace
hor, of T,Q:

horgy = {v, € T,Q : A(vy) = 0}.

It follows from the properties of A that T,Q = hor, @ ver, and hors,q, = T®,(hor,)
for g € G. Indeed, given a subspace hor,, there is in general a well defined con-
nection such that hor, = ker A,. If v, € T,Q, its decomposition with respect to a
given connection is written

vy = horv, + very,.

Consider now the projection map = : @ = B: for each ¢ € Q, the associated
tangent map Tyw : TyQ — Ty B is a linear isomorphism from the horizontal
subspace hor, onto the tangent space to the base Ty;(4) B. Hence its inverse is well-
defined and is called the horizontal lift. Given a vector field X on B, we denote
by X* the unique horizontal vector field on Q which projects via Tw onto X. By
construction, a horizontally lifted vector field is n-related to its projection and thus,
for all X,Y € T'x(,)Q, it follows

hor, [X*,Y# =[X,Y],", (2.5)

where [-, -], denotes the Lie bracket on the base space.
Given a connection form A : TQ — g, the corresponding curvature form B =
DA:TQ xTQ - g is given by its covariant exterior derivative

B(vy,v2) = dA(hor vy, hor vs), v1,v2 € T,Q.
From this definition one has
A([hor vy, borva]) = —B(w;, v2). (2.6)
In practice, the curvature of a connection is computed via the structure equation
B(vy,v2) = dA(v1,v2) — [Alv1), A(v2)]g, v, v2 € ToQ.

The local curvature form Bioc : TB x TB - g satisfies the analogous equation

Bioc(r)(u1,u2) = dAsoc(tir, u2) — [Atoc(u1), Atoc(uz)]g, u,u2 €T.B, (2.7)
where Byr.5)(Xy, Yq) = Adg Bioco(r)(Tym - Xq, Ty - Yy).
2.3. The mechanical connection. The geometric construction above applies di-
rectly to the study of mechanical systems with symmetry. Let = : Q — B be
the configuration space, endowed with a G invariant metric {,-)). Define the me-

chanical connection A by declaring horizontal subspace to be the perpendicular

complement of the vertical subspace with respect to the metric. Denote with B its
curvature.

Define the locked inertia tensor I(q): g — g* as
(n (Q)ér 7’) = «ﬁQ (‘I)rﬂQ(fl)», &mneg.
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Its local form is denoted by
I(r) =1(r,e).
In a local trivialization Q = B x (G, we have both a left and a right action of G

on itself. The vertical subspace can now described in terms of both (left) invariant
vector fields and infinitesimal generators (right invariant!}. We denote

gr é fQ = (0, TeR!I(E)) and Et = (0, TﬂLQ(E)),

where L, and R, are the canonical translations. The component of an horizontal
vector can be written as

Xh=(X, —gAtoc(r) - X),
where X € T\ B.

2.4. Isometries on Riemannian manifolds. The content of this subsection is
taken from (Kobayashi & Nomizu 1963a, Chapter VI).

An infinitesimal isometries on (M, {-,-))) is a vector field K that satisfies the
Killing equation

(X, VyK) +{Y,VxK}) =0 (2.8)

for all X,Y € X(M). In other words, the (1,1) tensor field VK on M is skew
symmetric with respect to {-,-).

Consider now the princiapl fiber bundle 7 : M — B and let V be the Riemannian
connection of an metric invariant under the group action. Then V is said to be
invariant, since

(VXY)%(«) =TyPy(VxY), (2.9)

for each pair of invariant vector fields X,Y € X(M). For all £ € g, the infinites-
imal generator {q is a infinitesimal isometry and therefore is satisfies the Killing
equation (2.8). Particularly interesting is the case of M = G (hence M is a Lie
group itself), since it is possible to characterize the connection V in an algebraic
way. This is described in detail in Appendix A.
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3. DiISTRIBUTIONS ON RIEMANNIAN MANIFOLDS

In this section we describe some properties of distributions on manifolds and in
particular on Riemannian manifolds. A precise statement of the some of the follow-
ing ideas is contained in Lewis (1996) and Kobayashi & Nomizu (1963b, Chapter
VII (on submanifolds)).

3.1. Integrability and geodesic invariance. Let D be a distribution on the
manifold @, let X be a section in D and call ¢!(g) its flow. Frobenious theorem
states the equivalence between involutivity and integrability, which we described
as:

infinitesimal condition l integral condition l description of flow ¢% (q)

involutivity | integrability | 3 submfld A of Q, s.t. ¢%(q) € Aq Vt,

where Ag is the leaf of the foliation induced by D, such that gy € Ag.

Assume now the manifold @ has a Riemannian structure and denote now with
q(t) the geodesic flow on @ starting from qo with initial velocity ¢ € D. The picture
above becomes slightly more complicated, due to the second order nature of the
geodesic equation. In particular, we have the two natural definitions:

Definition 1 (Integral conditions). We say that D is geodesically invariant if, for
every geodesic q : [a,b] — @ such that g(a) € Dy(q), ¢(t) € Dy for each ¢ € (a, b].
If D is integrable and geodesically invariant, we say that it is totally geodesic.

Definition 2 (Infinitesimal condition). We say that a distribution D is symmetric
if(X:Y) €D, forevery X,Y € D. O

The result proven by Lewis (1996) is that, just like involutivity is equivalent
to integrability, symmetry of D is equivalent to geodesic invariance. The global
picture that hold in this generalized case (second order equations) is described in
the following table:

infinitesimal condition integral condition | description of geodesic

symmetry geodesic invariance | 3 subbundle I' of TQ, s.t. ¢(t) € T Vi,

involutivity & symmetry | totally geodesic 3 submfld Ag of Q, s.t. ¢(t) € Ag VL.

3.2. Involutivity and symmetry tensors. Given distribution D on @, define
the involutivity tensor B, : Dy x Dy — T,Q /D, as

By(X,,Yy) = [Xg, Yq] mod D,.

B measures the “lack of integrability” of D and is sometimes called the curvature of
the distribution. Notice that B is well defined, since independent on the extension
of Xo,Y, € DCTQ.

For distributions on Riemannian manifolds, we have a second notion of deriva-
tion, given by the covariant derivative and in particular by the symmetric product.
We can therefore define the symmetry tensor S, : Dy x Dy = T,Q/D, as

Sq(Xq, Yq) = (Xq . Yq) mod qu

S measures the “lack of geodesic invariance” of D and, if D is involutive, is called
the second fundamental form of the integral manifold of D through the point g.
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4. THE RIEMANNIAN GEOMETRY OF A PRINCIPAL FIBER BUNDLE

In this section we characterize the Riemannian connection on the total space
7 : Q@ = Q/G in terms of the curvature of the mechanical connection on the bundle
and in terms of the second fundamental form S of the immersion G - ¢ = Q (plus
of course the Riemannian connections on the fiber and on the base). This is a
reduction problem, as we want to reduce the dimensionality of the computation.

The next two subsections present an intrinsic presentation and local coordinate
expressions,

4.1. Intrinsic treatment. The tangent bundle T,Q is spanned by a set of basic
vector fields, say X* and a set of infinitesimal generators £o. We start by describing
the Riemannian connection V on the horizontal subpace.

Lemma 1 (Integrability of the horizontal subbundle). Let X,Y € Ty, B
VY = (¥ xY)h - %B(X", Yo (4.1)

where V is the Riemannian connection on (B,{-,-)s) and the skew symmetric
tensor B : hory x hor, — g is the curvature of the mechanical connection.

Proof. Let us start by looking at the horizontal component. Since X" and Y are
invariant, so is their covariant derivative. Hence, since hor V x4 Y" is both invariant
and horizontal, it is the lift of a vector field on B. Recall now the two equations
that determine the Riemannian connection V on Q
(X2, Y] = O VP = vy XP,
Lxn(Y?, ZM) = (Vi Y?, Z%) + (Y2, 7 2,

for all X,Y,Z € X(B). By applying the projection 7', these two equations natu-
rally drop to the quotient manifold B with the induced metric. This proves

Tr-VxaYh = VY.

v

Consider now the vertical component: the map (X", Y*) — ver VysY" is a ten-
sor, since Y* ¢ ver,. To compute it, we utilize the notion of geodesically invariant
distribution, introduced in the previous subsection. The horizontal subspace hor, is
geodesically invariant, since each geodesic starting with horizontal velocity remains
with horizontal velocity for all time. Hence this subspace is geodesically invari-
ant, that is {(X*: Y'*) is horizontal. (An alternative proof is given by a detailed
application of the Koszul formula.) Hence:

1, 1.n o
ver V 2 Y* = ver (5 (xP:vh + 3 (X* v )
= ver % [XhyH = —%B(X", Y")Q
by equation (2.6). |

Now let us turn our attention to the case of vertical vectors. We compute the
covariant derivative of ng with respect to £g. An instructive first question is:

o is the vertical subspace geodesically invariant?
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{Note that this would also imply that the generic fiber G - q is totally geodesic,
since it is a submanifold already.) The answer to this question is generally negative.
Indeed one computes

(V,Veqbal) = —(q, Vvéa) Killing eq. (2.8)
= _‘;‘LV«EstQ» eq. (2.2)
= —35v(1@E,€) = 3 ((DI(a)- V)6,8), "

which is generally nonzero 2. An insightful interpretation of equation (*) can be
given by introducing the notion of isometric immersion and of second fundamental
form. We shall do so in the following, refering to (O’Neill 1966) for more details.

Fix ¢ € Q and consider the immersion G-q = n~!(¢) = Q. The fiber G-¢ comes
with the natural metric ({£q,n9) = (I(g)€,7), where ver, = T(G - q) is identified
with g - ¢. In other words, the immersion G- q = 7~ }(q) < Q is isometric and is
therefore characterized by a symmetric tensor ver, x ver, — hor, called the second
fundamental form. This tensor describes the normal component of the covariant
derivative of two normal vectors, where within our notation, a normal vector is
vertical and a tangential vector is horizontal. For a complete discussion we refer
to (Kobayashi & Nomizu 1963b, Chapter VII), here we state the main result:

Lemma 2 (Integrability of the vertical subbundle). Let £, € g

Veela = oV M@ + S(éala).nala)), (4.2)

where 5.V is the Riemannian connection on (G - q,1{(q)) and the symmetric tensor
S : verg x very — hor, is the second fundamental form of the immersion G-q¢<— Q
and satlisfies

(X", S(€ala) 1@ = 5 {(DL(a) X*)&,n)
for all X* € hor,.

Remark 1. In holonomic mechanics, the second fundamental form has the in-
terpretation of the reaction force necessary to keep the geodesic equation on the
constraint submanifold. Here S gives the horizontal directions generated by the
covariant derivative of vertical vector fields.

Remark 2. In the vast literature on the stability of relative equilibria for mechan-
ical systems with symmetries, a similar tensor is defined as

ident: gxTQ—g"
(€, 0q) > ident¢(q) - 6g £ —(Dl(q) - 8q)¢.

Remark 3. In the two previous lemma, the mechanical curvature B : hor, x hor, —
ver, and the second fundamental form § : ver, x ver, — hor, play a similar role.
Note that they are both tensor and they characterize the integrability of the co-
variant derivative V on the two subspaces hor, and ver,.

Recall now the decomposition of V into its symmetric and skew components.
Since B is skew, it is the Lie bracket of two horizontal vectors that generates vertical

2When this latter term is zero, the motion exp(t€)- g is a relative equilibium. Sce (Simo, Lewis
& Marsden 1991) or Kobayashi & Nomizu (1863a, Proposition 5.7) for a treatment within the
realm of Riemannian geometry.
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directions, while the symmetric product is a closed operator on hor,. Viceversa,
since § is symmetric, the symmetric product of two vertical vector fields has an
horizontal component and the Lie bracket is closed in ver,.

Proof. Let us start by computing the horizontal component of V¢,ng. Note that

[tq.nq) = —[€ ,17]g Q is vertical, hence we only need to compute the symmetric part:

(X% Veang + Vi) = —(€q, Vxsngh) — (ng, Vxa€a) Killing eq. (2.8)
= L xs{{€q,m0) = —Lx» (I(g)€, 7).

v

For the vertical component, we use the same reasoning as in the previous lemma’s
proof to show that

verVeaip = o¥V¢,7Q-
In particular, following the same previous steps we have
€6a: Vegnah = ~ ((Dl(g) - Co)&;m)
= (Ca» ({6 : gs) -

More details are contained in the Appendix A. |

We complete the description of V by considering the cross cases Vxi§g and
Veo Xt Since X is invariant under the group action

[€q, X% =0, Veeg.

Hence Vxség = Vg X 5. Hence we only need to compute one of them. By following
the same argument we have in both cases

((770, VEQ )(h» = _«V€Q nQ, Xh»
= _«S(EQ,TIQ)r Xh»»

and
(Y, VxnéQ) = (VoY &g)
= ~(=BOC Y™, €.

(The —1/2 factor is due to the asymmetric definitions of B and S in the two previous
lemmas.) We can therefore summarize the two previous equalities in the following
formula, sometime called Weingarten’s formula:

(V. Vxika) = = (S(eo, verV), X) + Z(B(X"bhorV),6q).  (43)
Note the tensorial dependence.
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4.2. Local coordinate expressions. Recall the definition of Bjoc : T.B xT>B —
g in equation (2.7) and define Si,c : g x g— 71,.B as

Sioc(€,n) & T S(éq(a),nq(q))

forall X € T B and £,5 € g. From the lemmas in the previous subsection we easily
obtain:

Lemma 3 (Integrability of horizontal and vertical subbundles). Let X,Y € Tr)B
and&,n € g. Then

V.\'hyh = (BV,\'Y)h - %Bloc(X,Y)‘ (4'4)

Ven' = aVen' + Swcl&m), (4.5)
where Sioc can be computed as

(X, Suacl€, 1o = = (T(Vem)s Aoe  X) = 5 {(DI(r) - X))

Proof. Regarding the horizontal subbubdle, equation (4.4) is equivalent to the one
proven in the previous subsection. Instead the computation on the vertical sub-
bundle requires a little bit of algebra. Indeed, since vertical invariant vector fields
don’t enjoy anymore the useful Killing property, the proof here is based on a de-
tailed application of the Koszul formula (2.3). [

As in the previous section, we now look at cross covariant derivatives. Using
Koszul formula, for all V, € T,Q

(Vo Vee XM = LxalVa, € + (€°, [V, XP]) + (Ve [€4, X))
= Lxn{ver Vg, %) + (€°, [ver Vg + bor Vy, X)) + {ver V, [, X1])).
Setting V; = n° we compute the vertical component. Recall that
[n‘, X"(r)] = —(ady Ae(r) - X)¢, (4.6)

so that
«7") VE‘Xh)) = <(DI(T) ' X)fhﬁ) - (151 adr)(Aloc . X)) - (171, adE(Aloc N X))
=((DI{r) - X)m,€) + (T ada,.x = ad3,.x 1)€,1) .
Setting Vg = Y we compute the horizontal component:
(Y™, Ve X™) = (€4, [Yh, XMy = —‘21'«5‘,3(}"',)(")»
= =5 1€, Buo¥, X)) .

Finally, we don’t need to repeat all this algebra to compute Vy»&! since it
sufficies to change a — sign in the previous equations to obtain the right answer.
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5. THE REDUCED EULER-LAGRANGE EQUATIONS

We here present a global and a local version of the reduced Euler-Lagrange
equations. To split the geodesic equation on @ into two set of equations, we need a
parametrization of the vertical subspace V,Q. For the case of a non-trivial bundle,
the notion of locked spatial velocity w £ A(g) allows us to write global equations.
When the bundle is trivial (or locally for the nontrivial case), the locked body velocity
{2 appears to be a more convenient choice.

The standard reference for this material is (Marsden & Scheurle 1993) and indeed
in Appendix B we show the equivalence between the standard equations and the
ones presented in the following,.

5.1. Simple mechanical systems with symmetry. A simple mechanical sys-
tems, whose kinetic energy is given by ({-, -}, can be described in terms of V by the
following intrinsic equation:
Vg =0, (5.1)
or in local coordinates
¢V, + @ Vy, Y = 0, (5.2)
where {Y,} is a basis for T,Q.
Assume now that @ — B is a principal fiber bundle with structure group G and
that the metric {-,-)) is invariant under the group action. We start our analysis of
the equation of motion (5.1) by recovering the classic conservation law: the notion

of infinitesimal isometry and Killing equation (2.8) are perfectly suited for this
purpose.

Lemma 4 (Conservation of momentum). Let J : TQ — g* be the momentum map
defined by (J(¢),€q) £ (d,€Q)- Then J(4(t)) is a constant of motion.

Proof. Since the connection V is compatible with the metric

26,60) = (Vad E0) + (d, Viato)

= {4, Vi€l =0,
where the last equality holds since &g is the infinitesimal isometry associated with
the group action and threfore the Killing equation (2.8) holds. |

9.2. Lagrangian reduction on a non-trivial bundle. To split the equation of
motion (5.1) into two sets of equations, we decompose the velocity ¢ in its horizontal
and vertical components as follows

G =roYr + uo, (5.3)
where {X,} are a basis for Ty(4) B, the {e,;} span the Lie algebra g and, as defined
previously, ef = (ea)Q. Note that a more natural parametrization of ¢ might

consider the conserved quantity J as variable. Here we go along a more complicated
path with the goal of performing Lagrangian reduction.

Proposition 1 (Reduced Euler-Lagrange cquations). Consider a simple mechan-
ical system with symmetry. For a curve q(t) € Q, define the shape r = 7(q) €

Q/G = B and the locked spatial velocity w = A(§) € g. Then the following are
equivalent:

i) q(t) satisfies the Euler-Lagrange equations (5.2) on Q;
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ii) the reduced Euler-Lagrange equations hold:

: . 1
(6r, V) = (Ua)w, B, 6) + 5 { (DI(0) - ), w) (5.4)
@+ Viw = -I(q) " (DI{(g) - #*)w. (5.5)
Proof. Corresponding to the decomposition (5.3), we write the equation of motion
as
FEXe+ate, + TPV X)+ wwtVe e}
= -7 W (Ve X2+ Vinel), (5.6)

where for the cross terms on the right hand side it holds V- X, hyv xheqg =2V, Xh,
as explained in Subsection 4.1.

We now project the previous equation to the base and, to simplify the notation,
multiply both sides with the tangent vector ér € T,y B to obtain:

Q0r, 7 Xo + 197V x Xgl) = -2 #°w(0r", Ve  XBY) ~ wiwb(6r®, Ve ef).

Equation (5.4) follows from the results in Subsection 4.1.
The same steps lead to the equation (5.5) along the vertical directions. By
applying the mechanical connection one form A to equation (5.6) we obtain

@ +w W A(Veg ef) = ~w* i A(Ver Xa®) = F*i7 A(V xa Xg").

As before, we evaluate the right hand side using the equalities obtained in Subsec-
tion 4.1 ]

5.3. Lagrangian reduction on a trivial bundle. Here we rely on the notation
mtroduced in Subsection 4.2. On @ = B x G, define the locked body velocity

Q £ g7'g + Aoe(r) - 7 and decompose the velocity ¢ in its horizontal and vertical
components as

= Y" + Q“ea, (5.7

where, as before, {X,} are a basis for T;-B, {es} span the Lie algebra g and e =
(0,T.Ly(eq)).

Proposition 2 (Reduced Euler-Lagrange equations on a trivial bundle). Consider
a simple mechanical system with symmetry. For a curve q(t) = (r(t),g(t)) € Q@ =
B x G, let @ = g7'g + Awoc(r) - # € g be the locked spatial velocity. Then the
following are equivalent:

i) q(t) satisfies the Euler-Lagrange equations (5.2) on Q;
ii) the reduced Euler-Lagrange equations hold:

(07, V7)) = (1), Boe(67, 7)) + IV ), Atoe - 67) + % ((DI(r) - 6r)2,0),
(5.8)
Q+VHQ = —1(r)7} (DIr) )@+ () ady, 0, (1)),
(5.9)
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Proof. We follow the same steps as in the previous proof. Corresponding to the
decomposition (3.7), we write the equation of motion as

P Xp+ 0% + PPV X)+ QY el = 120V X2 + Vynel)
= -0 (el : X1). (5.10)

We now project the previous equation to the base and, to simplify the notation,
multiply both sides with the tangent vector ér € Tyr(,) B to obtain:

{0r, 7 Xo + 1“"1""‘,th_ Xg) =
~ reQe(srt, (el :X",‘))) - Q“Q"((ér",veza ef).
We compute the right hand side using some equalities proven in Subsection 4.2:

—FQe(0r®, (eh : X2)) = —i°0® (I(r)ea Buoc(X2,6r"))
= = (IR, Buc(i,6")

020 (6r", Ve ef) = —Q2 QP (6, Stoc(ea, €)) 5
= "«’57': Sloc(Qv Q)»B
= (I{(Vaf), Ajpc - 6r) + % {(DI(r) - 6r)9, Q)

and equation (5.8) follows.
The same steps lead to the equation (5.9) along the vertical directions: let n € g
and multiply equation (5.10) by 5 to obtain

<I(r)7’: Q> + Qanb ((77‘, vef, ei» = - «7’(’ (efz : Xcl;)» - 1;07-.6«711, V,\"’,‘ Xﬁh»'

As before, we evaluate the right hand side using the equalities obtaines in Subsec-
tion 4.2:

Q% (n’, Veref)) = Q°Q° (I1(r)n,; Ve, &) = (I(r)7,, V)

Q% {(n‘, (ef. : Xg))) = Q%¢ ((Dl(r) . Xa)eu,n) + (I(r)eq , ady Atoc(r) - Xa)
= ((DI(r) -#)Q,0) + (I(r)9, ady Ape(r) - 7)

L
', Vxy Xg") = =377 (0, Biocl X2, XB))

1
= —5«1(7‘)71, B‘OG(".‘a 7.')» =0.
The result now follows by eliding 5 from the equations. [ ]
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6. CONTROLLABILITY

We refer to Lewis & Murray (1996) and to the previous report {Bullo & Lewis
1996a) for part of the notation in this section.

A simple mechanical control system with symmetries is defined by a Riemannian
metric {(-,-)) on a configuration manifold @ (defining the kinetic energy), a func-
tion V on @ (defining the potential energy), and m one-forms, F!,..., F™, on Q
(defining the inputs). Additionally a Lie group G acts freely and properly on Q
by isometries and both the potential energy and the input one forms are invariant
under the action.

Denote with g(t) € Q the configuration of the system and with ¢(t) € T,Q its
velocity. The equation of motion are then

Viwd(t) = dvi(g(t)) +u®(2) Yala(t)), (6.1)
where V is the Riemannian connection associated with (-, ) and ¥, = (F*)! are
the input vector fields. Additionally, let Y = {Y,...,Vn}-

Theorem 6.1 (Lewis-Murray). The system (6.1) is
%) locally configuration accessible at q € Q if rank(Lie(Sym(Y))(g)) = dim(Q),

i) STLCC at q € Q if it is locally configuration accessible at q and if every bad
symmetric product can be written as a linear combination of good symmetric
products of lower order at q, and

iii) equilibrium controllable if it is STLCC at each g € Q.

Based on the general condition above, we split our analysis into three subcases,
depending on whether the mechanical system has some shape variables or not, and
on whether the control inputs preserve the momentum or not. We call horizontal
forces, the input vector fields that preserve the momentum. Note that for the pure
Lie group case, when no shape is present, forces cannot be only horizontal.

6.1. The pure Lie group case. This class includes rigid bodies with external
forces and torques. We refer to the previous report (Bullo & Lewis 1996a) for a
precise description of this case.

6.2. Bundle case with pure horizontal forces. This class includes rigid bodies
with internal momentum wheels and more generally shape variables.

Assume the mechanical system with symmetry has only horizontal forces, that
is the input vectors Y; are horizontal.

Lemma 5. The symmetric closure of a family of horizontal vector fields is hori-
zontal.

Proof. Forall £ € g
(¥i. &) =0.
Taking Lie derivative along Y¥;:
0= LY.' «Yn fQ» = «VY.' Yt,&Q» + «Yu VY.‘EQ»'

Recall that £q is a Killing vectorf field and therefore {V,&q,a)) = 0 for all vector
fields a. Hence

(Vv.Yi. 6ol = (Y : Vi) &) = 0.
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The proof is complete by noting that, thanks to the linearity of V:
(Vi:¥}) = (Vi 4+ Y, Vi 4 V) = (Vi ¥ = (Y; 1 X)),
|

Note that this simple result is a direct consequence of the geometric properties of
the horizontal subbundle described in the previous sections: hory is indeed geodesi-
cally invariant, since every geodesic starting with a horizontal velocity maintains a
horizontal velocity for all time.

Given this conservation law (symmetric product of horizontal remains horizon-
tal), the accessibility computations simplify and drop down to the base space.
Since Y is invariant and horizontal, we can drop it down to the base space. Let

s =Tn-¥Y. Then the previous lemma allows us to compute:

—_ -_ h
Lieq(Symq(¥)) = Lieq(Symp(Ya)"), (6.2)
where symclos B- means symmetric closure on the base space.

Remark 4 (Comparison with previous results). Within the framework for mechan-
ical controllability, this result is in agreement with the Ambrose-Singer theorem,
see (Kobayashi & Nomizu 1963a). This leads to the application of the techniques
described in Scott’s work (Kelly & Murray 1995).

But it is a stronger result in that it allows for the base dynamics to be not
fully actuated. In this latter case, the controllability check allows for new possible
directions generated by the symmetric product on the base space. As an example
we examine the case of three coupled planar rigid body with only one actuated
joint.

6.3. Bundle case with general forces. Assume now that the mechanical system
with symmetry has general forces which do not need preserve the momentum. Then
the formalism in Section 4 applies, maybe !?

This case is difficult since it is not “natural” with respect to the tool employed in
this report. First off, forces are not natural and cannot be decomposed into horizon-
tal and vertical components before the kinetic energy is given. Hence constructing
Y, there is no structure to the generic vector field ¥;. Instead it might be more
appropriate to express all the computations and geometric concepts associated with
them on the cotangent bundle side.

Indeed, going back to the reduced Euler-Lagrange equations, these can be written
in 2 much simpler form than the one presented in the previous subsections, if we
were to allow the use of the momentum as variable.

7. EXAMPLES

We classify the examples mentioned in the previous section and depicte some of
them in Figure 3.

Lie group case: rigid bodies with external forces and torques.

Bundle case with horizontal inputs: rigid bodies with momentum wheels
or oscillators, coupled rigid bodies with internal torques and forces (e.g. pla-
nar body with arms). Swimming animals and falling cats/. (Also: symmetric
satellite with inputs that preserve the right invariance of the kinetic energy).
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Bundle case with general inputs: Classic examples are the pendulum on a
cart and the robotic leg. More generally, coupled bodies with complete actu-
ation at one point and planar rotating chains as studied in (Baillienl 1987).
Underwater vehicle on SE(3) has inertia matrix invariant under translation,
but not rotations, hence its configuration manifold can be thought of as a
bundle; also its input do not preserve the momentum.
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L.

FIGURE 1. Lie group case: Single rigid bodies with external
torques and forces.

FIGURE 2. Bundle case with horizontal forces: Planar bodies
with arms, with torques applied on ¢ and ¢,. Hopping robot with
torque applied on ¢ — 8 and r directions.

h

FIGURE 3. General case: Coupled planar bodies with external
forces at one end. Pendulum on a cart with actuation on the
abelian group R. Double spherical pendulum with actuation at
the top on the group R2.
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8. CONCLUSIONS

With this project I feel that I have accomplished a deeper understanding in the
area of mechanical systems with symmetries. More precisely the theories of

1. Riemannian geometry of fiber bundles and

2. Lagrangian reduction
are now familiar to me. In terms of research done in the area of nonlinear control of
mechanical systems, I was able to unify previous results in the following two areas:

3. mechanical systems on Lie groups and

4. mechanical systems with symmetries and horizontal forces (i.e. internal forces

that preserve the momentum).

Work still remains to be done for the general case of

¢ mechanical systems with symmetries and generic forces.

In a more general view, this work is interesting in its implications for other
research areas, like nonholonomic systems with symmetry, and I believe that it

is instructive in its relationships to different problems but for the same class of
systems, like the energy momentum method.



20 BULLO

REFERENCES

Abraham, R. & Marsden, J. E. (1987), Foundations of Mechanics, second edn, Addison-Wesley
Publishing Company, Reading, MA.

Arnold, V. (1966), ‘Sur la geometrie differenticlle des groupes de lie de dimension infinie et ses ap-
plications a I'hydrodynamique des fluides parfaits’, Annale de !'Institut Fourier XVI(1), 319-
361.

Baillieul, J. (1987), Equilibrium mechanics of rotating systems, in ‘IEEE Conf. on Decision and
Control’, Los Angeles, CA.

Bloch, A. M. & Crouch, P. E. (1995), ‘Nonholonomic control systems on Riemannian manifolds’,
SIAM Journal of Control and Optimization 33 (1), 126-148.

Bullo, F. & Lewis, A. D. (1996a), Configuration controllability of mechanical systems on Lie
groups. Submitted to MTNS'96,

Bullo, F. & Lewis, A. I). (1996b), Configuration controllability of mechanical systems on Lie
groups. Submitted to MTNS’96.

Kelly, S. D. & Murray, R. M. (1995), ‘Geometric phases and robotic locomotion’,
Journal of Robotic Systems 12, 417-431. Extended version available online via
http://avalon.caltech.edu/cds.

Kobayashi, S. & Nomizu, K. (1963a), Foundations of Differential Geometry, Vol. 1, Interscience
Publishers, New York.

Kobayashi, S. & Nomizu, K. (1963b), Foundations of Differential Geometry, Vol. U1, Interscience
Publishers, New York.

Lewis, A. D. (1996), ‘A symmetric product for vector fields and its geometric meaning’, Submitted
to Mathematische Zeitschrift. Technical report CIT-CDS 96-003 available electronically via
http://avalon.caltech.edu/cds/,

Lewis, A. D. & Murray, R. M. (1996), ‘Controllability of simple mechanical control systems’,
SIAM Journal of Control and Optimization . To appear.

Marsden, J. E., Montgomery, R. & Ratiu, T. S. (1990), ‘Reduction, symmetry and phases in
mechanics’, Mem. Amer. Math. Soc. 436.

Marsden, J. E. & Ratiu, T. S. (1994), Introduction to Mechanics and Symmetry, Springer Verlag,
New York, NY.

Marsden, J. E. & Scheurle, J. (1993), ‘The reduced Euler-Lagrange equations’, Pields Institute
Communications 1, 139-164.

O’Neill, B. (1966), ‘“The fundamental equations of a submersion’, Michigan Math. J. 13, 459-469.

Ostrowski, J. P. (1995), The Mechanics and Control of Undulatory Robotic Locomotion, PhD
thesis, California Institute of Technology, Pasadena, CA. Also Technical Report CIT/CDS
95-027, available electronically via http://avalen.caltech.edu/cds.

Simo, J. C., Lewis, D. R. & Marsden, J. E. (1991}, ‘Stability of relative equilibria 1: the reduced
energy momentum method’, Archive for Rational Mechanics and Analysis 116, 15-59.

APPENDIX A. RIEMANNIAN CONNECTIONS ON A LIE GROUP

In this appendix we describe the Riemannian connection of a Lie group endowed
with a left invariant metric and of the fiber G - ¢, where only right invariant vector
fields are globally defined £" = £ and where the locked inertia tensor I(q) is
equivariant. Work in this area (motivated by very different interests), can be found
in Arnold (1966), Bloch & Crouch (1995), Bullo & Lewis (19965). Additionally,
some links can be found with the work in (Simo et al. 1991).

Let G be a Lie group and g be its Lie algebra. Given (-, )4 an an inner product
on g, we obtain a metric structure on TG by left-translation. Such a Riemannian
metric is by construction left-invariant, as it is preserved by all left translations Ly.

We use the decomposition (2.4)

VxY = %(x , Y)+-;-[X,Y]
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to concentrate only on the symmetric product, since the equalities

€, n°) = &, ml; (A1)
€07 =0 (A2)
€7, n") =~ [&,7];, (A.3)

always hold. Recall that by |-, ], we mean the Lie bracket on the Lie algebra and
that

£¢%TQL9’£ alld gréTCRg’E-

Equation (A.2) is proven showing that the flow of the two vector fields commute.
To perform the various computations, Koszul formula (2.3) in the form

(X, (Y : 2)) = L2{(X, Y} + Ly (X, Z) - Lx (Y, 2))
+{Z X, Y + LN (X, 2]) (A4)

reveals itself very useful. Denote with I the invariant metric of G and its restriction
to g: 1:g— g*. There exists a natural bilinear form on (g, ) given by

(€:mdgr & —1""(adg In + ad}, I€). (A.5)

We state our results in the following lemmas. Note that the first one also
proves that the Riemannian connection V on G is left invariant, as defined in
equation (2.9).

Lemma 6 (Symmetric product of invariant vector fields).
(€ :nf) = ({E:mgy) (A.6)
Proof. For all { € g, using (A.4)
(S (€" : M) = 040 - 0+ (&', I¢ n)) + (", (€%, €Y
= {&, [ mlgh + {n, [C, €N

Lemma 7 (Symmetric product of vector fields).
, ¢
(€":0°) (9) = ([Adg-1 &,mlg + (Adg-1 £ i) ;)
(€ 1) (9) = ((Adg-1 €: Adgrm) )’
Proof. Recall the following basic equalities in Marsden & Ratiu (1994):
Let Ad,-l n= [Adg—l 1],{]0
Lgr Adg-1 7 = Ady-1[n, €.
For the case of two right invariant vector fields we have, as it was proven above,
(¢ (€ ")) = ~Lee (€7 ™) = —Loge (1€,7)
= - (T[Adg-1 €], Ady- €) = (1 [Ady-1£,(]  Ady-s n)
= ((Ady-1£: Adg-i ), )"
And a similar proof works for the mixed case. |

Regarding the case of right invariant vector fields, we can define the tensor I(g) :
g — g" as I(g) = Ad; 7 Ad, and define the operator (- : -} 0.1 @s in equation (A.5).
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Lemma 8 (Symmetric product of right invariant vector fields),

(€ 0"y = ({E:m)g)" (A7)

Proof. The proof takes advantage of the Killing equation (2.8) which characterizes
infinitesimal isometries. For all { € g,

(€7, (€7 10" = (¢, Vern ) + (€7, Ve &)

=—{&",Vern™) — (", V€M) by Killing eq.
= —L¢- (€7, 0") Riemannian connection
=—{&", Lern™) — (0", L¢ €7 infinitesimal isometry

= —{€" " "I ~ (", 1CT, ETTH
== <Esn [Cs"]g) - <7I’H K)E]B> )
]

A.1l. The fiber of a principal bundle. Consider now the “affine group” G - g,

generic fiber of a principal bundile # : @ — B. We describe the Riemannian

connection ¢.V on (7 - q, by looking at Lie brackets and symmetric products.
Regarding Lie brackets, only equation (A.3) is well-defined:

[fQJIQ] = [é! n]gQ'

Regarding the symmetric product, the last lemma easily generalizes (but not the
second to last!):

(o :nQ) (9) = ((€: 1), )Q- (A.8)

Remark 5 (Derivatives of locked inertia tensor). The steps used in the previous
derivation are the same as the ones in Simo et al. (1991, Proposition 2.3). Indeed
the result there is that:

Dl(q) - nq = —ad; I(g) — I(q) ad, . (A.9)

Additionally,
Dl(r,e)- X» = DI(r) - X + (ad} I(r) + I(r) ad; ) |c=4 o (A.10)
o

We finish by summarizing the results obtained and introducing some additional
notation. On a Lie group

Vet = (Ven)", (A.11)
and on the fiber of a principal bundle

G'VVEQ"’Q = (_an)Q' (A.12)
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APPENDIX B. VERIFICATION OF THE REDUCED EQUATIONS

It is instructive to verify that the equations presented in the previos section
coincide with the standard ones in (Marsden & Scheurle 1993). We start with a
left invariant Lagrangian L : TQ — R which is only kinetic energy. Introcing a
potential energy term is only an additional burden in notation. Following the steps
described in (Ostrowski 1995, page 43), let (r,g) € Q, let n £ g~ be the angular
velocity and define I(r,7,n) = L(r,#,g,§)- In local coordinates one can show that

o =3 [ oy 5" ]

Now we implement the shift in velocity and define the locked angular velocity as
1 = 1+ Apc(r)r. As it is well known, the kinetic energy expressed in these new
coordinates loci(r, 7, Q) £ I(r, 7, Q — Ajo(r)¥) has the diagonal form

ligek(r,7,Q) = _;_ [S]T [m(r) - Aloc(ngI(r)Atoc(1~) I?r)] [5] .

Marsden & Scheurle (1993, page 17) write the reduced Euler-Lagrange equations
as

d altack 8llock

= ctasPockgy 4 ga ook (g1 onp)

dt & ~ ore o v
d allack _ allock d allock -
@ = bpne T T @haali  (EP.ong)

where we denote with A2 and B2 ag the local components of the connection one form

Apoe and its curvature. We state the equivalence between the two approaches as
follows.

Corollary 1. The egqualions presented in Proposition 2 in Section 5 coincide with
the reduced Euler-Lagrange equations (E.L. on B) and (E.P. on g).

Proof. Let M(r) = m(r) — Atoc(r)TI{r) Atoc(r) and compube

T~ o = (@ 5 (77 M+ 307 I0)
d8 8 1.p -~
=@ - ara)( Mr) + 307 50
. T 01
= (M) +307 50
We then have
allock
— IQ )
ond D
d allocl. 6Iad P d d
T 50 207 = B Q4+ 199,
Eventually, let ér € 7’B and multiply (E.L. on B) with ér:
1
(6r, 747 = —EQTaﬂﬁ_-m % 4 (Ator - 6r)° (IR)4Q + B 5(IN)ar%6r

= —-;-QT(DI(r) 67) 0 + ()T [Aue - 8, Q) + (1)) Broe 67, )

= —% (R, (DI(r) - 6r)Q) + (I(r), [Atoe - 67, Q] + Broc(6r,7)) .
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Now we look at the Euler-Poincare part: let 5 € g. Multiplying (E.P. on g) with
7® we have

(1)) = ~((DIG) - #)m) + (1()R) O = (1INl Aroe )5

=~ {(DI() - ANm) + (IO ~ Ao -7, )
and eliding 5
I(r)2 = ady(I(r)Q) — (DI(r) - #)Q — ad}y_A1(r)Q).
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