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ABSTRACT. This report focuses on invariant affine connections on
Lie groups and on their applications to nonlinear control theory.
After a brief review of Riemannian geometry, we introduce invari-
ant connections and use them to rederive the Euler-Poincaré equa-
tions. We then apply the same reduction technique to the Jacobi
equations for the linearization of the Lagrange’s equations. Fi-
nally we consider the controllability problem for simple mechani-
cal systems on Lie groups. The theory developed in [LM95] leads
naturally to a simple algebraic test.

1. INTRODUCTION

This report underlines the strong interaction between the areas of geo-
metric mechanics and nonlinear control. We employ tools from Riemann-
ian geometry and Lie group theory to study the controllability properties
of invariant mechanical systems within the framework recently developed
in {LM95]. In particular, we adopt the notion invariant affine connection
to study configuration controllability and to obtain an algebraic test for the
class of group invariant systems: notable examples are the rigid body with
external torques and the forced planar rigid body. Standard results present
in the literature are recovered through algebraic computations.

We apply the theory to these instructive examples with the hope of pro-
viding a viable tool in developing intuition as well as motivating further
theoretical analysis. Also, by studying physical examples, we keep our at-
tention focused on problems of concrete relevance.

The report is organized into four sections: the first three sections contain
first a review of well-known or well-documented general results and then
they analyse in some detail the Lie group case. In Section 2 we introduce
the notion of affine connections and invariant affine connections on a Lie
group. In Section 3 we present Lagrange’s equations and show an alterna-
tive way to derive the Euler-Poincaré equations. We then go on and apply
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Lagrange’s reduction to the linearization of Lagrange’s equations to obtain
the so-called reduced Jacobi equation. In Section 4 we review the con-
trollability definitions and tests described in [LM95] and then, once again,
specialize the results to group invariant systems. Finally, Section 5 contains
two relevant examples: the forced planar rigid body and the rigid body with
external torques. Describing in a table what we have just said:

manifold M Lie group G
Sec. 2 | Riemannian connection invariant Riemannian connection
Sec. 3 | Lagrange’s equations and Ja- | Euler-Poincaré equations and re-
cobi equation duced Jacobi equation
Sec. 4 | symmetric product as map | symmetric product as map from
from X(M) x X(M) to X(M) |pxgtog

Sec. 5 | planar rigid body and rigid body examples.
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2. INVARIANT RIEMANNIAN CONNECTIONS ON LIE GROUPS

For a standard introduction to Riemannian geometry we refer to [Car92]
and [AMB87, Section 2.7). Regarding the notion of left-invariant connections
on a Lie group, we follow the treatment in [Hel78, Section I1.3] and [Arn89,
Appendix B].

Definition 1. A Riemannian metric on manifold M is a tensor g € T3(M)
such that for all p € M, g, is a symmetric positive-definite bilinear form on
TPM.

We write g in local coordinates as g;; and we sometimes denote g, with the
symbol {-,-),. Additionally, we denote with the symbols * : TM — T*M
and ! : T*M — TM the musical isomorphisms associated with g.

Definition 2. An affine connection on M is a map that assigns to each
pair of smooth vector fields X, Y a smooth vector field VxY such that

i) VyxY = fVxY and
i) VxfY = fUxY +LxfY

for all f € C(M). In a local chart with coordinates (z°) we define the
Christoffel symbols by

9
oz’

oz
Given any three vector fields X,Y, Z on M, we say that the affine con-
nection V on M is torsion-free if

[X,Y]=VxY -VyX,
and is compatible with the metric g if
LxQY,Z) = (VxY,Z) + (Y.VxZ).

Theorem 1 (Levi-Civita). Given a Riemannian manifold M, there ezists
a unique torsion-free affine connection V on M compatible with the metric.
We call this V the Riemannian ( Levi-Civita) connection; it satisfies

2«X: VZY» = L‘Z«Xs Y» + «Zv [X’ Y]» + £‘Y«/Yi Z» + «Yi [‘Xs Z]»
- LX«Yi Z» - «Xv [Y, Z]))' (2'2)

Equation (2.2) allows us to compute the Christoffel symbols. A tedious
computation shows that

Tk = lghk a.‘]hj 0gin _ 39:'_1‘
Vo2 ozt 0z 9k [°
Finally, let the curvature tensor R € T4(M) be
R(X.Y,Z) = VxVyZ - VyVxZ - VixnZ

Ve st=Tl (2.1)




4 BULLO

and, given a two-dimentional subspace I'y, C T, M of the tangent space T,M
and an orthonormal basis {X,,Y,} of I'p, let the sectional curvature of T,
be

K(Tp) = «vaR(XmYp'Yp)»’
where well-posedness can be shown. a

We now specialize these results to Lie groups. A Riemannian metric on a
Lie group G is called left-invariant if it is preserved by all left translations
Lgy. Therefore, the metric is uniquely determined by its value at the identity,
which is an inner product on the Lie algebra g.

Definition 3. An affine connection V is said to be left-invariant if
(V)??)y = TeLy(V)??)e
for each pair of left-invariant vector fields X ) Y on G.

Theorem 2. The Riemannian connection of a left-invariant Riemannian
metric is also left-invariant. We denote by V : g x g — g its restriction to
the identity and we call it the reduced connection.

For all X,Y € g, we have

- 1 1
UxY = 5[X,Y]; - 5 (adk Y* +adj, X", (2.3)

where [-,]g is the Lie bracket on g, adx Y = [X,Y]; and ad is the dual
operator of adx on g°.

Proof. By Theorem 1, there exists a unique torsion-free affine connection
V compatible with the left-invariant metric. Equation (2.2) allows us to

compute an explicit expression for it. Denote with X,Y, Z left-invariant
vector fields on G and with X,Y,Z € g their value at the identity T.G.

Denote with (-, -})g the inner product on g and with (-, -)) its left translation
to TG. We have

24Z, VYY) = (X,[Z, V1) + (Y. [Z. X)) - (Z.[Y, X))

since, for example, (X, Y)) = (X, Y))g is constant and £ % «X,Y)) vanishes.
We can now pull back the equation to the identity to obtain

22, TyLg-i (V¥ )elg = (X, [Z,Y])g + (Y, (2. X])g - (2, [V, X ]»(sé "

We can evaluate the left hand side of this equation at a generic g and at the
identity e; since the inner product {-,-))q is non-degenerate, we have

TyLy- (VX?)Q = (fo')e.

Therefore the connection V is left-invariant. Equation (2.3) also follows
from equation (2.4) using the non-degeneracy of (-, -)),. a
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Remark 1 (Symmetric product). On the Lie algebra g, note the decompo-
sition of the covariant derivative into skew-symmetric and symmetric terms
2VxY =[X,Y]g+{X : Y)g:

where we call
(X:Y),2VxY +VyX = —(ady Y’ +adj X*)"

the symmetric product of X and Y. We shall see later the meaning of this
definition in a control theoretic setting.

Remark 2 (Reduced curvature tensor). Also the curvature tensor R has
an invariance property inherited from the affine connection V. It holds:

R(X}, X2, X3) = T.L, R(z!,2%,2%),

where X} € T,G and 2’ = TyL,-: X} € g.
We can therefore identify the curvature tensor R with its restriction to
T.G = g and define the reduced curvature R € Ti(g) by

R(X,Y,2)=VxVyZ - VWVxZ - Vixy, 2.
where X,Y,Z € g.

2.1. Additional remarks. Equation (2.3) is also present in Arnold ! and
will be rather useful for the controllability computations in the next sections.

For now, we can use it to investigate some side issues:
Sectional curvature: Given a pair of independent vectors X,Y € g, de-
fine K (span{X, Y}) to be the sectional curvature of the I'; = span{ X, }7}9

(independence of g can be checked). For the case of orthonormal X
and Y, we have

4R (span{X,Y}) = (X : V)P=3 |I[X. Y)I?-{(adx X*)", (ad} Y*)")
+2 ([X, Y], (ady X* — adk Y?)%,

where ||X||? = (X, X)) and where the subscript g is implicit every-
where.

Sectional curvature on SO(3): Identify s0(3) with R® through the
natural Lie algebra isomorphism w — &. Let I = diag{J}, Jo, J3]
be the matrix representation of g with respect to the canonical basis

{e1,e2,€3} of R3 (the letter I comes from inertia). Then. computing
the previous expression,

= _ (Jr = o)t + J3(2J1 + 2J, — 3Ja)

K (span{ey, ez}) = Tdetl .
As discussed in [Arn89, Appendix B}, the sign of K (hence of K) should
affect the stability of geodesics on SO(3) through the Jacobi equation:

'[Arn89, page 329), where the notation is B(c,a) = (ad} ')t



BULLO

in particular negative sectional curvature corresponds to instability of
the geodesic flow and vice-versa.

Note that we are not discussing the stability of the Euler-Poincaré
equations on the reduced space so(3) (where an energy argument can be
employed), but rather stability on the full configuration space SO(3).

Bi-invariant connections: Let G be a Lie group and g its Lie algebra.
The {-,-)) metric on g, is said to be bi-invariant if

(Adg X, Ad, Y) = (X,Y), VX, Yeg and VgeG@G.
or equivalently
(X.[Y, 2y = ([X.YZ), VXY, Zeg

For the case of bi-invariant metric, (X : Y} = —(ad} Y’ —ad} X t’)n
vanishes, so that

ViY = %[X, Y] and R(X,Y.Z)= -%[x, v, Z]).

Also, it can be proven that the geodesics of t! *: « i-invariant metric are
the 1-parameter subgroups of G, that is cu: . of the form exp(Yt)
for some fixed Y € g. See [Car92, Exercises of Chapter 3 and 4] and
[Hel78, Exercises of Chapter II).
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3. MECHANICAL SYSTEMS: LAGRANGE AND EULER-POINCARE
EQUATIONS

This section describes how to write Lagrange’s equations and mechani-
cal control systems using the notion of affine connections introduced in the
previous section, see {[AM87]. As usual we deal with the Lie group case
in the second part of the section, where the Euler-Poincaré equations are
derived within the “invariant Riemannian connection” framework. see the
elegant [SW86. Section 27, “Variations on a theme by Euler”] and the orig-
inal work [Arn66)] (in French).

Definition 4. A simple mechanical control system is defined by a Riemann-
ian metric {-,-)) on the configuration manifold Q (defining the kinetic en-

ergy), a function V on Q (defining the potential energy), and m one-forms,
F1,...,F™, on Q (defining the inputs).

Let us denote with ¢(t) € Q the configuration of the system and with
§(t) € T,Q its velocity. Using the formalism introduced in the previous
section, Lagrange’s equations for a simple mechanical control system can be
written as

Viwd(t) = dV () + ¢*(t)Ya(g(®)), (3.1)

where V is the Riemannian connection associated with (-, -)) and Y, = (F°)!
are the input vector fields. (See the discussion in [AMB87, Section 2.7] to
correctly interpret the quantity V)4(¢).)

a

Definition 5. A simple mechanical control system on a Lie group is defined
by a left-invariant Riemannian metric {(-,-)) on the configuration group G
(defining the kinetic energy), and m left-invariant one-forms, F!...., F™,
on G (defining the inputs).

Note that no non-trivial potential energy can be defined in a left-invariant
fashion. Since the forms F* are left-invariant, they are determined by their

values at the identity f® = (F°), € g*. In particular we call y, = (f*)* € g
the snput vectors.

Theorem 3 (Euler-Poincaré equations). Consider a simple mechanical con-
trol system on a Lie group. For a curve ¢(t) € G, define a curve Eing by
t = §(t) = Ty(e)Lg(ey-1(4(2)). Then the following are equivalent:

i) g(t) satisfies Lagrange’s equations (3.1) on G;
ii) the Euler-Poincaré equations hold:
E.: (adEE’)" + u*Ya,

Note that if ¢ € G is the system configuration, £ = g~'¢ € gis the
velocity in “body-frame”.
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Proof. We present a proof based on local coordinates and invariant connec-
tions. Let {X1,..., Xa} be a basis for g, then denote by {X,.. .‘_,'X,,} the
corresponding left-invariant basis for T,G, that is TeLg(Xk) = (Xk)g with

the standard identification T.G = g. If we decompose § = €2 X}, then we
recover

§=TcLy(§), ie. g=g§&,

where £ = £ X}, € g.

Now, consider the left-invariant Riemannian connection V associated with
the invariant metric on G: Lagrange’s equations (3.1) are written in terms
of this V. Using the defining properties of an affine connection:

Vi = V;(6*Xi)
= (L4€) Xy + €5V, X,
ko -
= %Xk + Ehfkvxh Xk
since £4€¥ is the directional derivative of £* along g, that is the time deriv-

ative.

Lagrangian reduction is performed by simply pulling back the previous
equation to the identity

TyLo-1(V3d)g = €5 X + €65V x, X,
= é + vf&a

where, as in Theorem 2, we denote with V the value of the invariant affine
connection V at the identity. The forced Euler-Poincaré equations are now
recovered by recalling the expression of V in equation (2.3) and the definition
of y,. O

3.1. The reduced Jacobi equation. In Riemannian geometry, a impor-
tant relation between the two basic concepts of geodesics and curvature is
given by the Jacobi equation. The latter determines the behavior of infini-
tesimal variations of a geodesic curve. Following the definitions in [Car92):

Definition 6. Given a manifold M and a geodesic v : [a,b] = M. A vector
field J along v is said to be a Jabobi field if it satisfies the Jacobi equation

Vid () + R (), 4(2), 4(t)) = 0 (3:2)
for all ¢ € [a, b].

We now want to apply to the Jacobi equation the same technique we used

to rederive Euler-Poincaré equations, i.e. reduction by left-translation to the
identity.

Theorem 4 (Reduced Jacobi equation). Let V be a left-invariant Riemann-
ian connection on G with V the associated bilinear function on g. Let R be
the curvature tensor on G and denote by R the associated tensor on g. For
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a geodesic g denote by t — &(t) = Ty Lgy-1(g(t)) the associated solution
of the Euler-Poincaré equations.

For a vector field t — J(t) along g, define a curve in g by t = n(t) =
To(eyLg=1(1)(J(t)). The following are equivalent:

i) J is a Jacobi field for g;
it} n(t) € g satisfies the linear second-order equation
i+ 2Veyh + (€(t) : [€(), gy — (Vewy&(t) nlg=10: (3.3)
we call this the reduced Jacobi equation;

iii) let o(t) £ 7(t) + [£(t), n(t))g- Then (n,0) € g x g satisfies the linear
equation

n=-[E®)nlg + o
o=—((t):0),. (3.4)

Proof. Write J(t) = T.Lgyn(t) and plug into equation (3.2). The left-
invariance of V leads to

Vi) (8) = TeLg(ey (0(2) + Vegyn(2)),
and iterating

. = . d— —
Vi (8) = TeLyq (n(t) + Vewilt) + 5 Vewnlt) + Vg(n')(t))-
It is also possible to left-translate the curvature tensor R
R(J (2}, 3(t), 4(8)) = TeLg(y R(n(t). £(t), E(t)),

where R is defined in Remark 2.

We can now substitute the two quantities into the Jacobi equation and
perform Lagrangian reduction to obtain:

it) + 2Vi(t) + Tgyn(t) + Vggn(t) + R(n(t),€().€(t)) = o.

This is a second order, linear ordinary differential equation in n. Considering
only the term linear in 7, we have:

Vin+Vin+ R(n,6,6) = Vin+Ven+V, Ve - VeV,6 - Vntle
= [fa 77]9 + 62’7 - vaﬂf - v['l-ﬂ(o

= [Ev 77]9 + VE[E! 7’]9 - v{"'ﬂe

= —[véf’ Mg+ (€ : &, 7]]9)[.

where we have used twice the fact that V is torsion-free and once the defi-
nition of symmetric product on g.

Equation (3.4) follows after defining o = 7 + [¢, 1g- O
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Remark 3 (Variational proof of the reduced Jacobi equation). We write La-
grange’s equations for the simple mechanical control system on a Lie group
in matrix notation as

9=9¢§
§=-TE = —(6:0),.

Let (g(t),£(2)) € G x g be a solution to these equations.
Consider now a variation of the geodesic g(t): g — dg = g(t,s),s €
(—e¢,€), such that g(t) = g(¢,0). Let

d
nts) =gt | _gltie) €

The variation of g induces a variation ¢ of its angular velocity; call this
variation o € g:

olt) = 66(0) = +-| _€(t.o),

where £(t, s) = g(¢, s)"% g(t,s). Then the variations 7 and o are related
by the well-known relation

d
P7i —[&mlg+ 0.

This is the first of the two equations in system (3.4). The second equation
is the linearization of the Euler-Poincaré equations:

Lo=tb=b(-3E:0) =~ (€: 80, =—(€:0).
O

Remark 4. From equation (3.4), the linearization of the Lagrangian equa-
tions (on the full space TG) along a geodesic (g(t),&(t)) = g(t)~'4(t), has

the following form
dinj_|-ade [ 7
dtlel | O —symg] o]’

where ad¢(¢) = [€,¢]g and sym¢(C) = (€ : (), for all { € g. It is interesting
to underline that the stability of geodesics appears now to be related to the
eigenvalues of operators ad¢ and sym, on the Lie algebra g. While the first
operator is determined by the geometry of the group G, the second involves
also the metric structure on g.
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4. CONTROLLABILITY OF MECHANICAL SYSTEMS: IN GENERAL AND THE
LIE GROUP CASE

We start by reviewing the recent results obtained in [Lew95b] and we
restrict ourselves to simple mechanical systems with no potential energy.
The Lie group case is dealt with along the lines of the preprint [Lew95a].

We first state the general results obtained in [Lew95b]. Let go € Q and

let U be a neighborhood of go. Denote with 0,, € T,,@Q the zero tangent
vector at ¢gg. \We define

Rg(lmn T)={g€ Q| there exists a solution (c, u) of (3.1)
such that ¢'(0) = 04, c(t) € U for ¢ € [0, T, and ¢(T) € T,Q}
and denote

R(g,<T)= |J RE(g0:t)-
0<t<T

Notice that in the definition of Rg(qo, < T) we restrict our interest to the

zero section of T'Q, that is the set of zero tangent vectors. We now introduce
our notions of controllability.

Definition 7. We shall say that (3.1) is locally configuration accessible at
go € Q if there exists T > 0 such that ’Rg(qo, < t) contains a non-empty
open set of @ for all neighborhoods U of gg and all 0 < t < T. If this holds
for any go € Q then the system is called locally configuration accessible.

We say that (3.1) is small-time locally configuration controllable (STLCC)
at go if it is locally configuration accessible at gy and if there exists T > 0
such that g is in the interior of 'R,g(qo, < t) for every neighborhood U of
go and 0 < ¢t < T. If this holds for any go € Q then the system is called
small-time locally configuration controllable.

We shall say that (3.1) is equilibrium controllable if, for gy, g2 equilibrium
points of L, there exists a solution (c,u) of (3.1) where ¢ : [0, T] — Q is such
that ¢(0) = gy, ¢(T') = ¢, and both ¢/(0) and ¢/(T) are zero.

a
We now need to recall the definition of the symmetric product. If X and
Y are vector fields on Q, we define

(X:Y)=VxY+VyX

to be the symmetric product of X and Y. If V is a family of vector fields on
Q, we shall denote by Lie(V) the involutive closure of V, i.e. the set of vector
fields on Q defined by taking iterated Lie brackets of vector fields in V. In
like fashion we define Sym(V) to be the collection of vector fields obtained by
taking iterated symmetric products of vector fields from V and we call this
collection the symmetric closure. In the following, let Y = {Y1,...,Ym},
where the Y; are the input vector fields of the simple mechanical control
system in equation (3.1). We say that a symmetric product from Sym(Y)
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is bad if it contains an even number of each of the vector fields in Y. A
symmetric product which is not bad is called good.
The main result in [LM95] can be stated as follows:

Theorem 5 (Lewis-Murray). The system (3.1) is
i) locally configuration accessible at go € Q if rank(Lie(Sym(Y))(g0)) =
dim(Q),

ii) STLCC at q € Q if it is locally configuration accessible at ¢ and if
every bad symmetric product can be written as a linear combination of
good symmetric products of lower order at q, and

iii) equilibrium controllable if it is STLCC at each q € Q.

a
We now focus our attention on group invariant mechanical systems. Recall
the forced Euler-Poincaré equations as

9=9¢

€= (ad; &) + v’ya (4.1)
and the definition of the symmetric product on g from Remark 1 as

(-:)giBXg—g
(z,y) = (z :y)g = ~(ad yb-{-ad;xb)". (4.2)
LetY = {y1,...,ym} be the set of the input vectors. We can state a slightly
stronger version of the previous theorem:
Theorem 6. The system (4.1) is
i) locally configuration accessible if rank(Lie(Sym(Y))) = dim(G) and

1) equilibrium controllable if it is locally configuration accessible and if
every bad symmetric product can be written as a linear combination of
good symmetric products of lower order.

Proof. Pull all the computations back to the identity g. The independence
on the base point g € G makes the local properties hold globally. a

Remark 5 (Invariance implies algebraic computation scheme). The control-
lability properties stated in the theorem are independent of the base point
g € (. as the invariance of the original system suggested. As a consequence,
the conditions for configuration controllability of the original nonlinear sys-

tem are now expressed in a purely algebraic way (no differentiation is re-
quired).

Remark 6 (Coordinate expressions for the symmetric product). Motivated
by the meaning that the symmetric product (4.2) now assumes. we look for
matrix and local coordinate expressions for it.
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Let the metric tensor g = I (moment of inertia) and recall the definition of
the input vectors y, = (f%)* = I~! f%. Then we can write matrix expressions
for the Euler-Poincaré equations

I€=adf (1§) +u* Iy
= adf (1€) + uo f°,
(where we redefine u, = u®) and for the symmetric product
(z: )y = —(ads 3’ +ad} 2")"
= —I"!(ad? Iy + ad? Iz). (4.3)
Additionally, let {ey,...e,} be a basis of the the Lie algebra g. We can
define the structure coefficients ch and the symmetric coefficients 7{‘1- by
cf‘j = [ei, e;]* and 'y,LJ = (e;: Cj)k .
where we compute
15 = —1"*(Hachy + Ljcly)-

Remark 7 (On the symmetric product). On the linear space g, we have a
Lie algebra structure [-, -]; and a metric structure I. The symmetric product
is indeed a combination (maybe the simplest 2) of the two and, as it is sug-
gested by for example equation (4.3), measures whether the two structures
“commute” one with each other.

Indeed, recall from the discussion in Subsection 2.1 that if the metric is
bi-invariant the symmetric product vanishes. That is, if the adjoint action
of the group G is an orthogonal representation on the inner product space
(g, I}, then the symmetric product vanishes.

Remark 8 (The symmetric product on g°). Given the strong interplay be-
tween g and g* in the definition of the symmetric product, let us define the
dual operation on g":

(-i)ge i@ x@ =g
b
(a, ) = {a: B}, = <a” : ﬂ“)u . (4.4)
Then one can easily compute

(a:B)g =~ad}, f—ady a

Let us now consider the coadjoint action of G on g*. Recall that the
infinitesimal generator of this action corresponding to an element £ € g is
given by &g = — adg, see [AMB87, Section 4.1]. Then we can write

(@1 Bge = (0¥) . (B) + ()¢ ().

%If one were to guess it, this is actually the simplest possible definition.
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FIGURE 1. Forced planar rigid body: the configuration vari-
able g € SE(2) determines the position of the body frame X%,
with respect to the spatial frame X,. Notice the positions of
application of the various forces.

5. EXAMPLES

We illustrate the results through two examples: the forced planar rigid
body and the rigid body with external torques.

Example 1 (Forced planar rigid body). The mechanical system is depicted
in Figure 1. Let g € SE(2) be the configuration of the system. Let (z,y,6)
be the standard coordinate chart for SE(2) and let

9 0
&G = cosﬂa —sin Oa—y
0 ]
€z =sin 0a +cosod—
d
83 = % (5-1)

be a left-invariant basis  for T,SE(2) and let {€',€% €} be its dual basis.
Denote with (-,-) the pairing on the bundle TSE(2) and its value at the
identity se(2). Then we write (¢',%;) = (¢, ¢;) = &}, where {e;} and {¢}

are the corresponding bases of se(2) and se(2)". Consxder the left-invariant
metric tensor

[=mdzx®dz +mdy®dy+ Jdb @ db
=mE'®e +2@?) +JE Q&
The control inputs consist of forces applied at a distance h # 0 along the

z body-axis and a torque about the center of mass, see Figure 1. We write

This choice corresponds to the natural left-invariant basis 2 = g~! dgof g*. See [SW86,
Chapter 7].




INVARIANT AFFINE CONNECTIONS 15

the control one-forms (in T; SE(2)) as
Ft=g, F*=g-h?, F=8

from which we compute the input vectors (in se(2)) as

1
= —e = —€g9 — —€3 Y3 = —é3.
n - 1 Y2 m 2 '

J J
For sake of completeness we report the forced Euler-Poincaré equations
in matrix notation as

miy| =2 | vz |+ 0] u'+ | 1 |u®+ [0] P
Jo 0 0 ~h 1

where £ = vze; + vye; + wejs is the body-fixed body velocity.

We can now rederive every Lie bracket and symmetric product computed
in [LM95]. We consider all the possible combinations of inputs:

Two forces y,,y,: The system is equilibrium controllable, since

h
(yl : y2)st(2) = —mez’
(hence local configuration accessibility follows) and the only relevant
“bad”™ product (y2 : Y2)(z) = (2h/S)01.
Force y, and torque y4: The system is equilibrium controllable, since

. _ 1
(yl . y3)s¢(2) - J_T;e2
and all the “bad” symmetric products vanish.
Force y, and torque ys: The system is locally configuration accessi-
ble, since

1
(y2: ya)n.(z) = —7;61
but the “bad” product (y, :yg)“(z) is independent from span{yz, y3}
(i.e. the sufficient condition fails).
One input cases: If only the force y; or the torque y; is available, all

the symmetric products and Lie brackets vanish, so that the system is
not locally configuration accessible.

If the only input we have is the force y;, then
spa.n{yg, (y2 : y2)a¢(2) 1 [y2 ) (y2 : y2)se(2)]°c(2)} = 52(2), 1mplymg local
configuration accessibility (however the presence of a “bad” product
makes the sufficient test for controllability fail).
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The controllability results for the forced planar rigib body are summarized
in the following table: the symbol “B” means failure of the rank test.

Control inputs Local configuration | Equilibrium controllability
accessibility
Force y, and force y» | yes yes
Force y; and torque y3 | yes yes
Force y2 and torque y; | yes ? (sufficient test fails)
Force yy | B (of course)
Force y2 yes ? (sufficient test fails)
Torque y3 | B (of course)
0

Example 2 (Rigid body with external torques). Let g € SO(3) be the con-

figuration of the system (that is the attitude of the rigid body). Let {e), 3, €3}
be the canonical basis of s0(3), such that [e;, e;]¥ = ef’j is the alternating

tensor. Also, let {€;,€;,€3} be the corresponding left-invariant basis for

TyS0(3). Consider the metric tensor

I=Ji&QF,
where summation over i is implied. The control inputs consist of exter-
nal torques about the center of mass. We write the control one-forms (in
T,;50(3)) as F' = € (hence the inputs are exerted along the principal inertia
axes), and we compute the input vectors (in s0(3)) as y; = e;/J;.

For sake of completeness we report the forced Euler-Poincaré equations
in matrix notation as

I€ = I€ X £ + u®eq,

where we denote with I both the metric tensor and its matrix representation.
Note that £ is the body-fixed angular velocity, sometimes denoted with w.

We can now derive tests for local configuration accessibility and equilib-
rium controllability. Note that our results show a close similarity to the
standard treatment in [NvdS90].

Two actuators: Assuming the two actuators are aligned along the first
two principal axes,

Ja =y ¢

Jidads

and local configuration accessibility follows for J; # J, (asymmetric

rigid body). Also, since (y; : y,-)“(:” =0 fori=1,2. all “bad” product

vanish and the system is equilibrium controllable. (Note that condition

(3.53) in [NvdS90) for strong accessibility of the “velocity subsystem™

surprisingly agrees with our condition for configuration accessibility.)
For the symmetric rigid body, that is when J, = J, the system is

locally configuration controllable through [y1, y2)ee(3) = €.

(yr: y2)su(3) =
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One actuator: Assuming that the available actuator is aligned with any
of the principal axes, we have

(Y12 Y1dgo@y =0 and  [y1,41]s0(3) =0,

so that the system is not locally configuration accessibile. For y; not
aligned along any of the principal axes, local configuration accessibility
is “generally” achieved, but the sufficient conditions for STLCC fails.

0
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FIGURE 2. Forced planar rigid body with gravity. The full
group symmetry is broken, but still a lot of structure is
present.

6. COMMENTS

In this report controllability problems for mechanical systems on Lie
groups have been analyzed using invariant affine connections. For these
systems, the general theory developed in [Lew95b] leads to a simple alge-
braic test and to a detailed treatmen: ¢ important examples, like the rigid
body with external torques and the forced planar rigid body.

While performing this analysis, we have also understood how to perform
Lagrangian reduction within a Riemannian geometry context. In partic-
ular, we showed how to derive the Euler-Poincaré equations (the reduced
Lagrange’s equations) and the reduced Jacobi equation. More generally, we
have shown the importance of the Lie group case as a testbed for new ideas
and techniques in the area of “nonlinear control of mechanical systems.”

Future directions of research will focus on the following themes:

1. Theoretical controllability issues on Lie groups deserve some dedicated
attention. In the examples. it appears that the test for equilibrium
controllability also guarantees strong accessibility of the “velocity sub-
system”. This might lead to instructive generalizations of the work
in [Bon84] and [Bai81).

2. In the literature, the use of affine connections for control of mechanical
systems is not as wide as one could expect. In particular, stability prob-
lems are usually addressed within the Hamiltonian framework. see for
example the Energy-Momentum-Casimir met :od. From a Lagrangian
viewpoint, it is instructive to look at affine connections and (for exam-
ple) sectional curvature as tools to design feedback controls laws and
assess stability.

3. Also, we plan on looking at the constructive controllability problem.
In particular, our goal is a design methodology for the stabilization of
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(equilibrium controllable) invariant systems with time-varying inputs,
see for example [Leo95).

. Eventually we would like our approach to encompass systems with

symmetry breaking effects. In particular, we refer to the toy-example
depicted in Figure 2. The forced planar rigid body with gravity con-
stitutes a rather simple example, but with all of the most interesting
features (and it is already of interest!). The theory of semidirect prod-
ucts might be instrumental in the understanding of the problem.
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