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Abstract

We describe%ebraic formalism that allows structurally similar
treatments of both classical and quantum mechanics, with /i as a pa- (_‘167‘7‘
rameter that determines which regime we are in. Using this formalism, = -
we find an identity that characterizes both classical and quantum me- 'Wﬁﬂ ,
chanics. The identity in question leads naturally to the use of certain jﬁ(
algebraic objects to model the space of quantum-mechanical observ- 10 l(,f 7
ables: these objects are the self-adjoint parts of C*-algebras. Thinking g n ) .
of the space of classical observables as a Poisson algebra, we find that
we can easily formulate a natural definition of a quantization. We
then give a quick sketch of one quantization scheme that is set in this
formalism. We prove a theorem dealing with the classical (i.e. fi = 0)
limit of the quantized dynamics.

1 From Mechanics to C*-Algebras

Our first goal is to describe an algebraic structure that is large enough to
hold both quantum and classical mechanics. To motivate the use of general
structures such as Jordan-Lie and C*-algebras, we will first examine the dif-
ferences between the Poisson structures of classical and quantum mechanics.
After doing so, we will discover an identity that in some sense characterizes
quantum and classical mechanics simultaneously. This identity will moti-
vate the use of general structures, such as C*-algebras, as a backbone for
quantization theory.



1.1 Classical Poisson Structures

Let us examine a simple classical system: a single particle with phase space
given by a Poisson manifold M. The Poisson bracket {-,-} on A must be a
map

{-,-}: C®(M) x C®(M) = C®(M)
such that

1. Equipping the algebra of functions C*°(M) with the bracket {-,-} re-
sults in a Lie algebra, and

2. {-,-} is a derivation over the algebra C*(AM). That is, if we denote
multiplication in the algebra C®°(M) by x, we must have

{f*g,h} = f{g,h} +{f, h}g
for all f,g,h in C°(M).

This, however, is not the whole story. We can be more explicit when it
comes to describing the algebra C°(M). This space, which consists of all
smooth real-valued functions on M, is a real vector space under pointwise
addition and multiplication by real numbers. It becomes an algebre when
we equip it with a multiplication operation. That is, we define, for f,g €
C=(M),

(f 0 g)(z) = f(z)g(z)
for all z € M. This bilinear multiplication operation is clearly both commu-
tative and associative. It turns out that these two properties of the multi-
plication operation together imply that C*®°(M) is a Jordan algebra, and for
this reason we refer to this multiplication operation as the classical Jordan
product.

Definition 1 A Jordan algebra A is an algebra where the multiplication
operation e satisfies the following two properties. (Here A and B are arbitrary
elements of A.)

1. Commutativity: Ae B=DBe A
2. Weak associativity: Ae (Be(AeA)) =(AeB)e(Ae A)
Associativity clearly implies weak associativity. Although calling C®(M) a

Jordan algebra is correct, there is a more precise term which applies:
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Definition 2 A Poisson algebra A is an algebra where the following two
properties hold:

1. The multiplication operation is both commutative and associative, and

2. There is a Poisson bracket {-,-} on A.

The Poisson algebra C*° (M) has a physical interpretation: since this algebra
consists of all real-valued functions on the phase space M, it is the space of
all observables of our classical system.

Now let us switch gears and look at the situation on the quantum side.
This time, we will start with a standard quantum mechanical framework and
derive an expression for the Poisson bracket of two observables. Comparing
the observable brackets of classical and quantum mechanics will reveal a
simple algebraic property that characterizes both systems simultaneously.

1.2 Quantum Poisson Structures

The quantum setup is as follows’. We have a complex Hilbert space H with
a Hermitian inner product {-,-). We choose the symplectic form

Q(wh "/)2) = 2ﬁIII'l (1/)11 lbz),

for ¢y, ¥y € H.

The observables in quantum mechanics are taken to be the self-adjoint
complex linear operators on H. We denote the space of such operators on A
by 4. Given an observable H € 4, we note that H naturally induces a map
(H) € C*(H) given by

(H)(¥) = (Hy, ¥)
This we recognize as the expectation value of the observable H at 9. The

fact that (H) is real-valued follows directly from the self-adjointness of H.
We claim that the linear Hamiltonian vector field associated to H is

]
Xy = EH.

Here follows a quick proof of this claim. Since H is self-adjoint, it is sym-
metric. Therefore, i Xy is symmetric, which means that

(EXH, ¥a) = (V1,1 X uio).

'Here we follow [MR 99] rather slavishly. Treatments in other texts are similar.
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Now taking the imaginary part of both sides, we arrive at {2-skewness of Xy,
which implies that Xz is Hamiltonian. Now note that

1
EQ(XI”P, ‘/i) = hlm (XH¢’ 11/') = 'h(Zmeﬂ/)) = (H"/)a 1/’)

This shows that our construction for Xy is correct; the associated real-valued
Hamiltonian function on ¥ is precisely (H), as desired.

Now we can get to work on the Poisson structure of the space of ob-
servables. We will proceed in stages, first computing the bracket for those
elements of C®°(M) which arise as expectation values of observables, i.e.
elements of 4.

Given A, B € 4, by Q-skewness of X4 and X3,

QUXay, Xpyp) = —=Qv, XaXpy) = UXa XY, ¥),

and
QX ay, Xpy) = -QUXpXav, ¥).
Using the definition of the bracket along with these two facts,

{((A4), (BYY(#) = X, X5)(¥) = 5 (UXaX$,9) — UXnXah,8)).

With our expressions for 2, X4, and Xp, we can rewrite this as

{(4), (B)} ) = ~= Im (AB ~ BAYp, ).

1

From the self-adjointness of A and B, a short computation? reveals that

((AB — BA)Y,¥) = —((AB — BAYY,¥),
implying that ((AB — BA)y, ) is purely imaginary. Then

1 1
{(A), (BY}(¥) = == ((AB — BAYb,¥) = =(AB - BA)(®),
where we have tacitly extended the definition of expectation value to opera-
tors such as (AB — BA) that are not self-adjoint. Inspired by this bracket, we

2Here we explicitly note that there are issues with the domains of definition of the
linear operators A and B that we are glossing over.
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claim that a natural Poisson structure on the space of all quantum-mechanical
observables is given by

{A, B}, = %(AB — BA).

First, we note that because A and B are self-adjoint, then the right-hand
side of the above expression is self-adjoint®. Here's the one-line proof:

i : i * x » * — i
[E(AB - BA)] = —(B'A’ — A"B") = £(AB - BA).

We can now check that {-,-}, satisfies the properties required of a Poisson
bracket. The only nontrivial properties are the Jacobi and Leibniz identities.
The Jacobi identity follows from a direct calculation:

1

{{A, B}, C}y = {n(AB - BA),C’} = —%[(AB—BA)C—C(AB—BA)],

h

and
[ABC — BAC — CAB+ CBA|+ [BCA—-CBA— ABC + ACB]
+[CAB - ACB - BCA+ BAC)=0.

The Leibniz property can be proved simply as well:
{AB,C}; = %(ABC — CAB) = %(ABC — ACB + ACB - CAB)

7 )

= A- -

h h

Following the line of reasoning in the classical case, we now turn to a closer Ap‘w
analysis of the space of observables 4. This time, in order to develop 4l as a e/rg

Jordan algebra, we introduce the symmetric product d

(BC — CB) + —(AC -~ CA)B = A{B,C} + {A,C},B

AeB= %(AB+BA),

defined for all A, B € 4I. Notice that if U consists of operators that commute, b AW\M\ ,
this quantum Jordan product essentially reduces to the classical Jordan prod- \"M

uct considered above. To show conclusively that e makes i into a Jordan

algebra, we need to prove the following:

3 Again, we are skirting some issues relating to the domains of definition of A and B.
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Proposition 1 The product e satisfies weak associativity.

Proof: Since Ae A = AA = A%, we need to show
Ae(Be A?) = (Ae B)e A%
The left-hand side is

Ao (BeA2) = %[A o (BA2 + A’B)]

%[ABA2 + A'B + BA® + A’BA],
while the right-hand side is
(AeB)e A2 = %(AB+BA) o A?
= %[ABA2 + BA® + A*B + A’BA].

Both sides are equal, finishing the proof. W

A quick check shows that e is not associative. Thus 4, equipped with the
quantum Jordan product e and the quantum Poisson bracket {-, -}, is not a
Poisson algebra. We will see in the next section how to properly describe i
when it is armed with e and {-, -},

1.3 The Associator Identity

Armed with both Jordan and Poisson structures on i, we state the following
associator identity:

ﬁ?
(AeB)eC —Ae(Be() = Z{{A,C}h,B}n-
Proof: Using definitions, we expand both sides separately:

({A,Cu, Bl = {~1(AC - CA), Ba
= —hl? (AC — CA)B — B(AC — CA)]

- %[—ACB +CAB + BAC — BCA),
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and

1
2
- 41(,4130 + CAB + BAC + CBA)

(AoB)oC—Ao(BoC)=( (AB+BA)) C—A. (%(BC+CB))

- i(ABC + BCA + ACB + CBA)
1

4(CAB ~ ACB + BAC — BCA).

Comparing these two expansions proves the identity. W

Before discussing the significance of this identity, we must first explain
the parameter 5. In numerous physical contexts, it is convenient to choose
units in which both the speed of light ¢ and Planck’s constant /i are equal to
1. Now, for a single particle system, we can use these units to describe the
characteristic length scale ! of our problem. If we find that [ is comparable
with i = 1, then we are clearly in the quantum regime: the dynamics of our
particle will be quantum dynamics. But if instead { > 1, we find ourselves
in the classical regime: the dynamics will be classical.

Now we will switch the roles of the length scale and /. That is, choose the
same units, and fix a length scale {. Now as we vary % from [ to 0, we pass
gradually from the quantum to the classical regimes. Indeed, when i = 0,
we should completely recover classical mechanics: in the system of units we
have chosen, any length scale [ > 0 is now infinitely larger than Planck’s
constant.

Keeping this in mind, we return to the associator identity. Our quantum
Poisson bracket {-,-}, on il is defined for any i > 0. For /i = 0, we have the
classical Poisson bracket

{ =1},

defined on C®(M) x C*®(M). Furthermore, in the classical case, observ-
ables commute, so the quantum Jordan product is equivalent to the classical
Jordan product. Putting everything together, we see that the associator
identity
h2
(AeB)eC—Ae(Be(C) = Z{{A’C}h’B}h

holds for both quantum and classical observables A, B, and C. We have
already seen that it holds for quantum observables. In the classical case, we



have fi = 0, and
(AeB)e(C — Ae(Be(C)=0.

Another way of saying this is: the associativity of classical observables under
the Jordan product is an algebraic characterization of classical mechanics.
Finally, we return to the problem of describing il equipped with e and

{','}h-

Definition 3 An algebra A is a Jordan-Lie algebra if the following three
properties hold:

1. Denoting multiplication in the algebra by e, (A, @) is a Jordan algebra.
2. There is a Poisson bracket {-,-} on A.
3. The associator identity, as stated above, holds for e and {-,-}.

Thus we have already shown that (4, e, {-,-},) is a Jordan-Lie algebra.

1.4 TUnifying Algebraic Structures

What we have seen so far is that by combining the Jordan and Poisson
structures of the quantum and classical algebras of observables, we obtain
a simple algebraic characterization of both quantum and classical mechan-
ics. Both algebras in question are Jordan-Lie algebras. As we will see, the
quantum Jordan structure is compatible with a vector space norm in just the
right way so that 4 is a Jordan-Lie-Banach algebra.

Definition 4 A Jordan-Lie-Banach algebra { is a Jordan-Lie algebra
and a Banach space such that for all A, B € i, we have

||Ae B|| < |IAll 1Bl

and
IAII? < 1142 + B,
where || - || and e denote the norm and Jordan product in L, respectively.
For our quantum-mechanical setup, the norm || - || arises via
IAII? = (A4, A).



Then it is easy to show that both of the above properties are satisfied. Now
we get our first glimpse of a C*-algebra. Intuitively, such an object is both
a complex Banach space and an algebra, equipped not only with a multi-
plication operation but also an involution. The involution map encodes the
adjoint operation that we are used to in the Hilbert space context.

Definition 5 The algebra € is a C*-algebra if the following properties hold:
1. The multiplication operalion in the algebra € is associative.

2. There exists * : € — €, the involution map, such that
(a) (A*)" = A,
(b) (AB)* = B*A*, and
(c) (AA)* = AA*,
forall A,B e € and all A € C.

3. € is a complez Banach space with norm || - || such that

(e) ||AB|| < [|All | B]| and
(b) ||A*All = [|A]]%,

where A and B are arbitrary elements of €.

The following pair of theorems relate C*-algebras to the JLB-algebras that
we dealt with in our algebraic treatment of quantum mechanical observables.

Theorem 1 If i is a C*-algebra, and h is a nonzero real, we define the
operations )
and

{4, B}a= L(AB - BA)

on the self-adjoint part Ug of Y. Together with the norm inherited from i,
these operations turn g into a JLB-algebra.



Theorem 2 If g is a JLB-algebra with h? > 0, the complezification U is a
C*-algebra when equipped with

AB=AeB - %iﬁ,{A, B}y,
(A+iB)' = A—iB, and
1Al = [|A* 4|2,

The proofs are unimportant and somewhat too involved* for our purposes,
so we omit them. We simply note the consequences in terms of a general
quantum-mechanical setup. For one, we can rid ourselves of the Hilbert
space M entirely! All we need for quantum mechanics now is a C*-algebra
¢ from which we extract the self-adjoint part 4. This algebraic object turns
out to be isomorphic to a JLB-algebra, the bracket on which generates the
“equation of motion” for any quantum-mechanical observable. The reader
may object to the introduction of what may seem to be needless formalism.
But in fact, this kind of generalization—specifically, the progression from
specific geometric structures to general geometric structures—is exactly what
characterizes the modern approach to classical mechanics.

In the beginning, we start with systems of particles in ordinary Euclidean
space R*. The equations of motion can be written in Hamiltonian form; then,
a geometric point of view shifts our focus from the differential equations to
Hamiltonian vector fields. It turns out that, on R?, these vector fields can
be defined quite simply relative to the canonical symplectic form

Q:idq‘/\dp,-

i=1

This symplectic formalism turns out to be quite general itself—in fact we can
speak of Hamiltonian systems on arbitrary symplectic manifolds, manifolds
with nondegenerate closed two-forms that may look very, very different from
the canonical form that we have written above. A closer look reveals that
we can generalize the symplectic manifold to a Poisson manifold and still
retain enough structure to define Hamiltonian vector fields and the subse-
quent equations of motion. At the end of the day, our concept of a classical

4In particular, for the first theorem, it is not easy to prove the sccond JLB norm-
inequality; for the second theorem, proving that the purported norm is legitimate is a
bit complicated when the complexification il is noncommutative. For both proofs, see
[Landsman 98].
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mechanical system has transformed, mathematically, into a Poisson mani-
fold (P, {-,-}) and a Hamiltonian function H : P — R. There are too many
advantages of this approach to list here, but any short list would have to
include:

e The formalism handles fields and particles equally well.
e Extremely general conservation laws are easy to derive.

e The full power of the mathematical theories of symplectic and Poisson
geometry can be brought to bear on mechanical problems.

e We can express symmetry properties of the system very easily, and use
those symmetries to derive a reduced system whose phase space is of
smaller dimension than the original one.

Analogous advantages are realized when we switch from a quantum-
mechanical setup founded on Hilbert spaces to one founded on C*-algebras.
On the quantum side, instead of upgrading geometric structures, we are up-
dating algebraic ones. Specifically,

e The C*-algebra approach allows us to deal effectively with quantum
systems involving infinite numbers of particles [BR 87], and it allows

us to make progress with a general theory of quantum fields as in
[Haag 91].

o There is a vast amount of literature on C*- and other Banach algebras
that can be used to our advantage.

e The C*-algebraic approach to quantization theory shows conclusively
that the Poisson algebras on the classical side find their natural coun-
terpart on the quantum side in C*-algebras.

e The C*-algebra formalism leads to a symmetry-reduction-like process
called induction by [Landsman 98).

To keep things brief, we will not provide examples of all of these aspects of
the theory. We now focus solely on an example of C*-algebraic quantization
theory.
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2 Quantization

2.1 Definitions and Motivations

Recall that, roughly speaking, a quantization is supposed to be a way to
obtain a quantum system from a classical one. The following definition makes
this precise:

Definition 6 A strict quantization of a Poisson algebra ﬁ?R consists

of
1. A collection of points Iy C R with eccumulation point 0 ¢ I,

2. A collection of C*-algebras {U"}nes, with self-adjoint parts denoted by
Uk, and

8. A collection of maps {Qy, : U} — UL}
such that the following properties hold (here I = I U {0}):

1. The function h— ||Qr(f)|| is continuous on I for all f € f(?k, and, in
particular,

tm QA1) = 171

2. Forall f,g € ﬂ?k,
lim [|Qn(f) ® Qulg) — Qn(f9)|| = 0;

3. For all f,g € £8,
lim I{Qx(f), Qu(9)}s — Qu({f, gDI| = 0;

4. For each h € I, the set
CAGITESTY
is dense in Ul.

(The Poisson algebra ﬂ% is required to be a dense subset of the self-adjoint
part 4% of a commutative C*-algebra 41°.)
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Although this definition is lengthy, it is quite natural. The first half of
the definition has at its core a collection of maps @ which take classical
observables as inputs and yield quantum observables as outputs. The second
half of the definition makes sure that these maps obey four properties. In
words, we can restate the first three of these four properties as follows: in
the i — 0 limit,

1. the quantized classical observable should converge to the original clas-
sical observable,

2. the quantum Jordan product should converge to the classical Jordan
product, and

3. the quantum Poisson bracket should converge to the classical Poisson
bracket.

(Here all convergence is norm convergence, as in the definition itself.) The
fourth property simply requires that any quantum observable can be rep-
resented as the limit (in some sense) of a sequence of quantized classical
observables.

Not obvious at all is the fact that this concept of strict quantization is ac-
tually an algebraically intrinsic concept. That is, under very mild conditions,
a strict quantization of a Poisson algebra automatically yields an algebraic
object called a continuous field of C*-algebras. This object is intrinsic to the
theory of C*-algebras: in words, it is an algebraically natural assignment of
a Cr*-algebra 4, to each “point” z of a fixed C*-algebra €. The space of
sections of such a field may be identified with € itself. For details, we refer
to §I1.1.2 of [Landsman 98].

2.2 Berezin Quantization

We now describe one specific example of a strict quantization, the Berezin
quantization. Our classical system consists of the cotangent bundle T*R"
equipped with the canonical symplectic form and hence the canonical Poisson
bracket as well. We choose the space of observables

iz = C>(T"R"),

given by elements of C°(T*R™) with compact support. It is a Poisson alge-
bra under the inherited bracket, and it is furthermore a dense subspace of
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the space of smooth bounded functions on the cotangent bundle, using the
supremum norm.
Now we take [y = R\ {0}, i.e. I =R, and define, for any /i € Iy,

Qn I — Ug
given by

d"pdnq
B - \I;(plq) .
QR = [ GEE o)
Here [\Il(h” "’)] denotes the projection onto the one-dimensional subspace of
L?*(R*) whose image in PL%(R") is

PD(z) = (wh) ™" exp(—ipg/(2h)) exp(ipz/h) exp(—(z — q)*/(2h).

Then 1* is the C*-algebra of compact operators on the Hilbert space L*(R").
The motivation for the Berezin quantization is quite complicated, but it rests
primarily on analytical ideas involving well-behaved & — 0 convergence of
functionals involving transition probabilities. The following theorem guar-
antees that the collection of C*-algebras and maps defined above actually
works:

Theorem 3 The Berezin quantization (Ip = R\ {0} with QF and U" as
aboove) is a strict quantization. Furthermore, it salisfies the nondegeneracy
condition for each h:

Qu(f) =0 <= f=0.

The proof involves Taylor expanding the identities that need to be proved
and estimating the derivatives of the classical compactly-supported observ-
ables that figure in these expansions. We will not involve ourselves with the
technical details of this proof. For our purposes, what matters most is that
once we know that the Berezin quantization is bona fide, it becomes very
easy to prove statements concerning the so-called classical limit.

2.3 The Classical Limit

Now we will see that the definitions have all been set up correctly: in the
E — 0 limit, we recover (in a certain sense) the classical dynamics of a
quantized system. Furthermore, it is easy to prove this fact. In order to set
up the appropriate theorem, we start with a Hamiltonian function

he 3.
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In words, h is a compactly supported smooth real-valued function on the
phase space T*R". This implies that the Hamiltonian vector field X, must
be bounded and therefore complete, by a standard theorem in dynamical
systems. Hence using the flow ¢ of h, we obtain a one-parameter family of
linear maps o defined on £13:

o (f)(z) = f o ¢'(z).

On the quantum side, we can analogously define a one-parameter automor-
phism group of on U" via

af(A) = exp(itQy (k) /R) Aexp(—itQ (h)/R)
Now we have

Theorem 4 For all fized t,
lim [|Q2 (03(f)) — o2 (@E(N)II = 0

Proof: Using the fundamental theorem of calculus, we write

QE(e3(/)) - oA(QE(f) / ds ol (QB(a3(f)))

Now since N

og(f) € Uz,
the Poisson bracket with the Hamiltonian gives us the time-evolution of the
observable:

La2(f) = {h,ad()).
Furthermore, we have through a bit of calculation
Lol (@nlo) = ~ HQEMQE(9) - QE()QF (B).
Putting these facts together, we write
QP (al(£)) - k(@R () =
[ dsat, (@00, 0200) ~ (QF (1, QB (@M
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Now using the norm-preservation of the o group, we have
QF (@ () — (@R (NIl <
t
| sk, o201 - (@R (), QE @2}

Now, as i — 0, by the third property (Poisson bracket norm-convergence)
of strict quantizations, the norm under the integral vanishes. W

The interpretation behind this theorem is as follows: in norm, we have
equivariance of the quantization map under dynamical evolution. On the
classical side, once we fix the Hamiltonian h and hence the flow ¢, we can
describe the observable a?(f) as a measurement of f after the phase space
has evolved for time ¢.

On the quantum side, we have the operator o which effectively conju-
gates an observable A by the time-evolution operator. The overall effect is
to create a time t-advanced observable af'(A), just as in the classical case.

What the theorem says, therefore, is that the quantization of the ¢-time-
elapsed classical observable converges in norm to the ¢-time-elapsed quantized
classical observable. More roughly, the quantum dynamics converge in norm,
for all ¢, to the classical dynamics, in the i — 0 limit.

We started this section with a classical system, and after quantizing it
and taking the classical limit, we are presented with the original classical
dynamics. All of the machinery that has been introduced has made clear
and precise the often vaguely formulated “correspondence principle” between
classical and quantum mechanics, at least in the case of a simple Euclidean
phase space.

We have presented only one scheme of quantization. Other schemes exist,
some with better equivariance properties. Furthermore, quantization com-
mutes with reduction in a certain sense. Suppose we start with a classical
system with symmetries. It turns out that reducing the quantized classical
system and quantizing the reduced classical system yield the same results.
These concepts, like the others mentioned at the end of §1, are topics for
future reports.
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