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1 Introduction [2], [4]

1. Given a manifold X and a closed 2-form B on it, we can consider a new
symplectic form on T"X, @ = Q** — B (where Q°* is the canonical symplectic
form, and we identify B with its lift 7B to T*X). Such a form is always non-
degenerate by Proposition 6.6.2 in Marsden [2], and hence gives a non-canonical
symplectic structure on T*X. If B is in fact an exact form, B = dA for some
1-form A on X, then the equations of motion given by Q and some Hamiltonian
H are exactly the same as those given by Q’* and a new Hamiltonian 13 H,
where t, is the fiber translation by A (Proposition 6.6.1 in [2)).

2. There is another way of producing these same equations of motion on
T* X, which is in a certain sense more natural as well as more general. Namely,
we start with a principal G-bundle P? over T X and a connection A on PI.
The correspondence with the previous discussion comes from the fact that the
curvature of A is a pullback of a 2-form on the base manifold 7°X. If Pt is a
pullback of a principal bundle P over X, then this 2-form can be considered as
a 2-form on X, and we are in the situation 1. The advantages of this approach
are as follows:

I)It immediately generalizes to the Yang-Mills situation, i.e. when G is the
internal symmetry group (Sternberg [4]).

2)Further, given P and an internal symmetry space F, there is a symplectic
manifold (T P x F), with a natural symplectic structure, and the non-canonical
equations of motion on T X are the projections of the canonical equations of
motion on this manifold given a choice of a connection on P (Weinstein [5]).

3)Even in the electromagnetic case, i.e. when F ={point} and G = §! =
U(1), a 2-form on X which is not exact will arise as a certain curviture (Kummer
[1]). The following is true for circle bundles (possibly for any abelian G 7):

For any compact manifold X, the first Chern class homomorphism from
the set of the equivalence classes of circle bundles over X to H (X :Z)is an
isomorphism. That is , for any 2-form B on X that represents a cohomology
class with integer coefficients there is a circle bundle P over X such that the



curvature of any connection on P is cohomologous to B. Thus for some such
connection B is exactly its curvature. (The bundle is constructed as a certain
quotient of the path space of X, and is not very explicit).

2 The Setup [5]

Let X be a manifold, G a Lie group, P — X a principal G-bundle, and F a
Hamiltonian G-space. Then T X, T* P are symplectic manifolds with canonical
1-forms ©x, ©p, respectively, and F is equipped with a symplectic form Qf,
G-action ¢ : G — Diff,,,.(F), and a momentum map ® : F — G*, where G*
is the dual of the Lie algebra G of G. Note that & is G-equivariant, i.e. the

F 2 F
following diagram commutes: 1§ §1 VoeiG
Ad?
G 4 g

where Ad® is the coadjoint representation of G on G*.

3 The Geometry [3], [5]

The right action of G on P lifts in a natural way to a symplectic right action
on TP with a momentum map p : TP — G°. This map can be described as
follows: for p € P, 2z = n(p) € X, we have an exact sequence (the inclusion of
the vertical subspace):

0—G—T,PET.X—0 (1)
and its dual: .
0—g L TP x—o 0

Putting together such maps on the fibers gives p: T°P — G*.

It will be convenient to work with left rather than right actions. Thus define
a left action of G on P by (g-p) = p- g~!. The lift of this action to 7" P will
have the momentum map ~p.

Therefore we have a G-equivariant map (=p+ ®) : T°P x F — G*. We
can apply the standard reduction procedure to this map, reducing at the zero
element of G*. Specifically, we take the inverse image (—p + @)'1(0) and divide
by G to obtain the ‘reduced manifold’ (T* P x F),. Since 0 is a regular value of
p, it is also a regular value of (—p + @), 50 (—p + @)~ '(0) is a submanifold; it is
preserved by the action of G since the maps are equivariant and 0 is preserved
by the coadjoint action. Also, G acts freely on P, hence also on T° P x F. Con-
sequently, from the general theory (T° P x F), is a manifold with the natural
symplectic structure (that inherited from 7° P x F).

Let P! be the pullback of P to T° X, i.e.



Pt — P
defined by the diagram: 1 1]7'
"X — X
We will also consider the manifold PYxgF (which, since P! is a principal
G-bundle over T X, is the associated F-bundle over T X).
We show that a connection on P gives an isomorphism of (TP x F), and
PlxF. First notice that we may also consider P! as a pullback of T° X to P.
Therefore the exact sequence (2) gives exactly

0P wTP=G =0 3)

where the first two manifolds are considered as bundles over P. A connection A
on P gives by definition a splitting of (1) and therefore of (2) and (3). Therefore

it gives an isomorphism T* P é P! x G* (fiberwise isomorphism). Denote by
o : T°P — P! the projection onto the first factor. Note that the projection
onto the second factor is exactly p.

For (v, f) € T* x F, (v,f) € (—p+3)7*(0) we have p(v) = &(f), and so
(v, f) is uniquely determined by (¢(v), f) € P} x F. Quotienting out by G now
gives the isomorphism (T* P x F), & PlxgF.

Note that P! is by definition a bundle over 7* X, hence so is P¥x g F as well
as, through the above direct product representation, T* P. Thus we obtain the
diagram

T*PxF ~ (T*xF), & PlxgF
|A
X = "X

4 The Symplectic Structure [1], [4]

Suppose we are given a Hamiltonian H on X (for example, X is a Riemannian
manifold and H is the kinetic energy). We can produce the equations of mo-
tion for X governed by the connection A in two ways. We can canonically
lift H to P¥xcF, but consider on this manifold the noncanonical symplectic
structure obtained from the isomorphism with (T P x F),. Or we can consider
the canonical symplectic structure on (TP x F),, but with the noncanonical
Hamiltonian obtained by pulling H back to T°P. This is exactly the duality
noted in the Introduction for the electromagnetic case (there F ={point}, and
so both manifolds are in fact isomorphic to 7* X).

The advantage of the first approach is that the dependence on the connection
A is only through a differential of a certain 1-form depending on A (to be made
precise later). In particular for F = {e} the dependence is only on the curvature
of A, and not on A itself. The advantage of the second approach is (to quote
Weinstein) that the symplectic structure on phase space is determined by the



geometry of the system, and the Hamiltonian is determined by the ‘physics’
(represented in this example by the function on T* X and the connection on P).

We now calculate the difference between the canonical form on T°P x F
and the lift of the canonical form on 7% X. In what follows, in places where no
confusion should arise we will denote forms and their lifts by the same letter.
First we introduce some additional notation. Recall that we have the projection
#:P— X,andlet rx : T*X — X, 7p : T*P — P be the canonical projections.
Recall also that from the sequence (2) P! (as a subbundle of T* P) is put together

from the images of the maps T2 (=) T, P. Thus P! is naturally identified
with (d7)"(T"X) C T*P (and so is the horizontal subbundle of T"P) and the
projection P! — T X is (dx*)~! (resticted to P').

Finally, we specify the connection on P by the G-valued connection 1-form

T,P = G. Its dual P i 2 G*, Vp € P gives the inclusion of the vertical
subspace of T P (where by analogy with vertical forms vertical elements of P
are those that annihilate the horizontal subspace of Ty P). Therefore we have a
split exact sequence

o-.P'éT‘P%;g'—.o (4)

and so for a € T;P
o(@) = a - w}p(a)

P L. TX
Thus the projection # in |1, ] s
P I X

#(a) = (dn") 'o(a) = (d7°) (@ - wip(a)) for a € T; P

Therefore for v € T,T* P, 6x, 0p canonical 1-forms on X, P
(30x)o(v) = Ox(a)(dF(a)v)

{(#(a), drxd7(a)v)
(7(a), dx(p)drpv)
{a = w; p(a), drpv)
8pa(v)  (wj p(e), drpv)

For (a,B) € Ty P x F, (v,u) € Tas)(T*P x F) = T,T*P x T3 F, still
denoting # : T*P x F = T°X

(i‘ﬁx)(anﬁ)(v, u) = 0p, g(v) — (w;p(a),drpv)
For (a, 8) € (—p + @)7'(0), i.e. when p(a) = B(f)
6p - i‘ax)(a'ﬁ)(v, u) = (wp &(B), d7pv) = (®(8),w o drpv)

Note that (wodrp) = rpw is the connection on the principal G-bundle P! — T X
corresponding to w.



® is a G°-valued function on F, and drpw is a G-valued 1-form on P!,
Therefore we can define a real-valued one form ¥ on T*P x F (or on P! x F)
by

¥(v,u) = (®(B),w o drpv), for (v,u) E T,T"P x T3 F
Then
Op=0x+V

dfp = dbfx +d¥
Qp+Qr =Qx — (d¥ - QF)

Since both (Q2p + Qr) and Qx project down when we quotient P! x F out by
G, (d¥ — QF) can be considered as a form on P¥xgF.

5 Examples [1], [3], [4]

1)For G = U(1) (or any abelian Lie group) and F = {e} we obtain the situation
in the Introduction (the minimal coupling in electrodynamics). P*xg{e} =
Pl/G=T"X, ¥(v) = e tpw(v), Qr = 0. Thus Qp — Qx = e - d(rpw) is the
curvature of the connection on P!, considered as a 2-form on 7 X. Since Tpw
itself is a horizontal 1-form on P! considered as a bundle over X, d¥ = Qp—Qx
is in fact a lift of a 2-form of X. Note that W itself need not even be a form on
PlxgF.

2)More generally, for F a coadjoint orbit of G acting on G*, we obtain the
interaction af a Yang-Mills field with a particle arising from the irreducible
representation of G.

3)For F = G*, we obtain a more complete description of the motion of such
a particle, provided by Wong’s equations. Since this F has the coadjoint orbits
as symplectic leaves, it turns out that the reduced phase space in this case has
the reduced phase spaces of the previous paragraph as symplectic leaves.
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