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This work mainly reviews the construction of the reduced energy-momentum
method used to solve the non-linear stability of relative equilibria of a pseudo-
rigid body, following the paper by Simo, Lewis & Marsden {1]. Due to the time
limitation, we will only discussed the material up to the construction of the
reduced Hamiltonian. Some of the modern geometric concepts are needed to

develop the method and we will elaborate about these shortly.

Introduction

It is well-known that linear instability of equilibrium solutions of a dynam-
ical system determines the non-linear instability of the solutions. However,
this is not the case for the stable counterparts due to the effects of, for in-
stance, resonance and Arnold diffusion [2]. General stability criterion, called
the Energy-Momentum-Casimir method, had been developed based on the clas-
sical Lagrange-Dirichlet criterion. This method uses the Casimir functions (i.e.

functions on the reduced space which Poisson-commute with the reduced Hamil-



tonian) and the momentum map. However, there is no guarantee that a Casimir
function can be found. This lead to the development of the Reduced Energy-
Momentum method (which basically is the variation of the Energy-Momentum
method). Applying this method, the stability criterion can be obtained from
the amended potential which depends only on the configuration space, by con-
straining the value of the momentum map to a constant (which is, in our case

for SO(3) symmetry group, the total angular momentum).

The Reduced Energy-Momentum Method

Suppose that the configuration of a body is given in a @ space. We can then
write the phase space as the symplectic cotangent bundle, P = T*Q, equipped
with the symplectic 2-form, Q, on TP. Further, suppose that our system de-
scribing the dynamics of the body is Hamiltonian, H : P — R, and possesses a
symmetry induced by a Lie group G, that is the Hamiltonian is invariant under
the group action. This action on P is symplectic since it is just the cotangent
lift of the (diffeomorphic) action of (Lie group) G (with Lie algebra g) on Q.
Associated with this group action is a (cotangent lift induced) momentum map
J : P — g* which is defined in terms of the infinitesimal generator of the action

of Gon Q,

J(Z) &= (ps fQ(Q))i (1)

for £ € g, where a dot and (-, -) denote the duality pairing between g and g* and

a non-degenerate pairing between T,Q and T Q respectively.



The Hamiltonian function and the momentum map defined above are used

in the following theorem {1).

Theorem 1. z. € P is a relative equilibrium of a mechanical system with
Hamiltonian H and momentum map J for the symplectic action of a Lie group
G on the phase space P = T*Q iff there erists a £, € g such that (2.,&.) is a

critical point of the energy-momentum functional H,, : P x g = R, defined as

Hu (2,€) == H(2) - (J(2) — pe) - &, ()

where p. = J(2.) is the value of the momentum map at 2.. (u. is assumed to

be a regular value of J.)

z, is a relative equilibrium of the system if the trajectory of the Hamilton’s equa-
tions coincides with the one of the action of exp(t€.], i.e. the symmetry group or-
bit in the direction of £&.. Eqgn. 2 is just an optimization problem, that is z, is just
the stationary solution of H restricted to subset J=!(ue) = {z € P|J(2) = p}
(in our case later on, p. is just a constant total angular momentum), with &
acts as the Lagrange multiplier. Here we assume the Hamiltonian H to be the
sum of kinetic and potential energies, K : P -+ R and V : Q — R, resp. Also

assume that K is a positive-definite quadratic form, which is given as

K = 5081 1= (FL (). FL o)), ®

where (-, -}, is the Riemannian metric on Q@ (which takes values from TQ) and

FL:TQ — T*Q the Legendre transformation. Finally, assume that V is left-



invariant under the action of G on Q.
From here, if we follow the original energy-momentum method to obtain the

stability of the relative equilibria, we would have written the energy-momentum

functional in eqn. 2 as
Hy,(2,€) = Ke(2) + Ve(q) + pte - &, (4)

where V(g) := V(g) - §¢ - Z(q)€ and Ke(2) := §Ip — FL(E@(9)I5-1- Z(a) :
g — g° is just the locked inertia tensor, that is the inertia tensor at a fixed
body configuration (so at this configuration it is analoque to rigid body inertia
tensor). The optimization process will yield £, = I~(g.)J(zc), which is just
the relation of body angular velocity and angular momentum, obtained under
the Lie-Poisson reduction of the rigid body dynamics [2]. However, as described
in (1], the stability of the equilibria obtained from the second variation of H,, is
non-optimal and this method only provides the sufficient condition for stability.

We can avoid the difficulty above by using the reduced energy-momentum
method. Based on the form of £, obtained from the optimization process above,

we write the Lagrange multiplier as
&(z) =TI (g)J(2). (8)
This will define a mapping to a locked velocity field

z = (q,p) = (g,ps(2)), (6)

where p;(z) := FL[£(2)q(g)] € T, Q, that is ps is just the momentum induced



from the group orbit in the direction £. The Hamiltonian then takes the form
1 _ 1
H(z) = V(q) + 5J(2)- T (@) (2) + 51p — P25+ ™

Since the value of . = J(z.) is conserved under the dynamic orbit passing
through z. if z. is a relative equilibrium solution, the energy momentum func-
tional in eqn. 2 then can be written as H, (z,£) = V.. (q) + %lﬁlz_; where
p:=p—ps(z) and V,_(q) := V(q) + e - ™1 (g)pte- The stability analysis can
now be applied only to the Smale’s amended potential, V,, (g), which depends
only on Q. The shift from p to 5 can be interpreted as the shift of 2 € P onto
z € J7Y0), that is £(P) = J~1(0) where £(g,p) := (g,p — ps(z)). The energy

momentum functional can then be viewed as a reduced Hamiltonian,
- 1,_a2
h“c(z) = V;‘c + alplg-l' (8)

Therefore, this reduced energy momentum method can be regarded as a reduc-

tion method since on the level set of z € J~1(g.),

H(z) = Hp,(2,8) = hy, (3). 9)

The optimization process to determine the stability of the relative equilibria is
described further in [1]. We now turn into applying this method to pseudo-rigid

body dynamics.

Pseudo-rigid body

Pseudo-rigid body dynamics concerns with the dynamics of a deformable “rigid”

body. Here we imagine an almost rigid body with a smooth boundary which



can be deformed under stress applied to the body. In contrast to the fluid
system, the theory of pseudo-rigid bodies deals with large-scale deformation of
the body as a whole. The subject belongs in the scope of theory of elasticity.
The following brief introduction follows the exposition given in (3].

Consider a 3-dimensional body with total mass m. The motion of the body
in 3-space can be decomposed into the motion of the center of mass and the
one of the matter surrounding the center of mass. Without losing generality we
can assume that the center of mass is fixed at the origin (hence, we won’t have
a contribution to the kinetic energy from the motion of the center of mass in
R3). Assume at time ¢ = 0, the body is in a reference configuration B (with
boundary 88) and let the position of each point on the body be given by X € R?
relative to a fixed frame of reference (with the center of mass at the origin). The
vectors X are usually called directors. Now the motion of point X in time can
be represented by z(t) = F{(t) - X where F() is a matrix representation of
deformation element belonging to orientation preserving group GL*(3,R) (for
fixed frame, z(t) can be written in terms of F(t)). F(t) can also be written as
F(t) = R(t)U(t) where R(t) € SO(3) and U(?) is positive-definite, symmetric
matrix corresponding to translation motion. If U(t) = I, we obtain the rigid
body motion.

The total energy of the system consists of the kinetic and potential energy.
The potential energy can be decomposed into the one resulting from external
forces and the one from internal. The external forces itself consist of body and

surface forces. Let b(z,X,t) (where z(t) = F(¢)X) be the body force per unit



mass, where b : B x [0,T] — R3, and t(z,X,t) be the nominal traction vector
on the boundary, where t : 88 x [0, 7] = R3. The moment force or astatic load

tensor is given as

vol[B] - A(¢) := / 00b ® X dB + / t® X dB, (10)
B a8

where go : B — R is the reference density. However, in the rest of the paper
we assume that there are not any external forces, hence A(t) = 0. Assum-
ing that the body is elastic, the internal forces come from the the potential
created by the deformation. For a fixed frame of reference, we can repre-
sent the deformation as a function of F(¢) and hence the potential energy or
stored energy function is given as W : GL*(3,R) — R. If we further assume
that the body is homogeneous and frame-invariant, then homogeneity implies
W(F) = W(AF) where A € SO(3) (i.e. F(¢) does not depend on X) and frame-
invariance implies W(F) = W(FTF) since by the definition of frame-invariance
QEFTFQT = (QF)T(QF) = FTF for @ € SO(3). Now let define reference

inertia dyadic by
E:= / X ® Xoo(X) dB, (11)
B

and the spatial inertia dyadic by e(t) := F(t)EF(£)T. Let Il = FE € L(3,R) be

the momentum conjugate to F. Hence, the kinetic energy can be written as
K = % f i igo(X)dB = / FX - FXgo(X)dB (12)
2/s 2J/s
= oF / X - Xoo(X) dBJFT = Str[FEET] = er{{IE~117]
B

= %(n, Mg, (13)



where the second line in the equation results from the relation a;-a; = trja;®a;).

The total energy is then given by
H(F,I) = %(n,n)._,-, +W(ETF), (14)
with equations of motion given as

F = E™ (15)

M = -FQ28cW(FTF)),

where C = FTF. The Hamiltonian function in eqn. 14 then induces hamil-
tonian structure with configuration space @ = GL*(3,R) and phase space
P = T*GL*(3,R) with pairing between T*GL*(3,R) and TGL*(3,R) given
by (I, V) := ¢tr[ITV).

As mentioned before, W(FTF) is invariant under the action of symmetry
group SO(3). It is also clear that the kinetic energy is also invariant under this
group since it was formed by inner product (and the body is homogeneous).
Hence SO(3) is the symmetry group for our hamiltonian system. This group
action generates an infinitesimal generator which itself induces a momentum
map as was explained in detail in [2]. Here we can identify an element of so(3)

with one of R?® under the isomorphism
feso3)»EcRPefa=¢txa YaeR, (16)

and the infinitesimal generator of the action of SO(3) on Q, &g (F) = £F = £xF,

induces cotangent lift momentum map (cf. eqn. 1),

J(F,II) - £ = (I, F) = (IIFT, §) = (skew([lIFT),§) VE€R?,  (17)



where the skewness results from the skewness of the elements of s0*(3) = J(P).
Hence the total angular momentum matrix in so*(3) is given by J(F,II) =
skew[HFT]. We will use this expression later on in the amended potential.

By the definition of the locked inertia tensor in the preceding section, we

have in this case Z(F) : R? — R? which is obtained as follows,

£ I(F)n § - J(F,FL(nq(F))) = ({F,FL(nq(F))) (18)

(€F,7F)g = tr[EFE@HF)T) = —tr[§FEFT7)

—tr[#é(FEFT)] = —trfiié(e)] = tr((n- E)e — (n ® £)e]

tr((n - §)e] — tri(n ® §)e] = (- §)tr(e] — tr(n ® (e€)]

§-(triel)n ~ € -en=¢ - [trle]l — e]n,

where the first and third equalities in the second line are the consequence of
eqn. 3 and the skewness of 7, respectively. Hence, we obtain the spatial locked

inertia tensor (it's spatial since it’s in the form FsFT)

I(F) (tr[e]I — e] = Fltrie]C~! - E|FT (19)

F[tr[FEFT|C™! - E|FT = F{tr[EC|C™! - E|FT,

where the last equality comes from the definition of E in egn. 11.
From the spatial locked inertia tensor obtained in the previous paragraph,

the amended potential is given as
1
Vu(F) := W(EFTF) + H I-YF)p. (20)

In order to obtain the shifted momenta, we need to define the space of variations

at a configuration F € Q. Let 6F be the material variation and éf be the spatial



variation at a configuration F. Then the tangent space of the material variation

is given as TrQ = {6F = 6f - F | 6f € L(3,R)}. Since Il = FE,
FL(SF) = 6FE = §fFF'eF-T = [6f e]F~7, (21)
and hence II,,, := [(Z(F)~!p.)e]F-T which gives the shifted momenta as
M:=N-1,, =[0FT - (I(F) 'u)e]FT. (22)

By choosing [ITFT —(Z(F)~! u)e] to be symmetric, we get J(F, IT) = skew([I[IFT] =
skew|[lTFT — (Z(F)~pc)e] = 0 as required from the previous section. The re-

duced hamiltonian is given as

(B, D) = Vi, + 2T (23)

The further detail on the stability analysis of relative equilibria of pseudo-rigid

body is also given in [1].
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