Lie groups and plasticity at finite strain

Alexander Mielke

Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin Institut für Mathematik, Humboldt-Universität zu Berlin www.wias-berlin.de/people/mielke/

Applied Dynamics and Geometric Mechanics MFO, 21–25 July 2008

Joint work with Andreas Mainik, see WIAS Preprint 1299 Supported by DFG Research Unit FOR 797 MICROPLAST

Overview

- 1. GSM and Plasticity
- 2. Finite-Strain Plasticity
- 3. Energetic formulation
- 4. Existence results

Conclusions

- Continuum mechanics at finite strains leads to geometric nonlinearities:
 - invariance under rigid-body motions: $SO(\mathbb{R}^d)$
 - invariance under previous plastic deformation, $SL(\mathbb{R}^d)$.

- Continuum mechanics at finite strains leads to geometric nonlinearities:
 - invariance under rigid-body motions: $SO(\mathbb{R}^d)$
 - invariance under previous plastic deformation, $SL(\mathbb{R}^d)$.
- Continuum mechanics at finite strain leads to nonsmoothness and singularities
 - if det abla arphi
 ightarrow 0, then energy, stress $ightarrow \infty$,
 - yield stress = activation thresholds = dry friction.

- Continuum mechanics at finite strains leads to geometric nonlinearities:
 - invariance under rigid-body motions: $SO(\mathbb{R}^d)$
 - invariance under previous plastic deformation, $SL(\mathbb{R}^d)$.
- Continuum mechanics at finite strain leads to nonsmoothness and singularities
 - if det abla arphi
 ightarrow 0, then energy, stress $ightarrow \infty$,
 - yield stress = activation thresholds = dry friction.
- Aim: Find plasticity models that
 - are truely invariant,
 - allow for a mathematical existence theory,
 - allow for a numerical convergence theory (not today) .

- Continuum mechanics at finite strains leads to geometric nonlinearities:
 - invariance under rigid-body motions: $SO(\mathbb{R}^d)$
 - invariance under previous plastic deformation, $SL(\mathbb{R}^d)$.
- Continuum mechanics at finite strain leads to nonsmoothness and singularities
 - if det abla arphi
 ightarrow 0, then energy, stress $ightarrow \infty$,
 - yield stress = activation thresholds = dry friction.
- Aim: Find plasticity models that
 - are truely invariant,
 - allow for a mathematical existence theory,
 - allow for a numerical convergence theory (not today) .

→ strongly dissipative geometric evolutionary system

WIAS

Overview

1. GSM and Plasticity

- 2. Finite-Strain Plasticity
- 3. Energetic formulation
- 4. Existence results

Conclusions

GSM = generalized standard materials (Halphen&Nguyen'75, Ziegler&Wehrli'87,...,Hackl'95,...) $\Omega \subset \mathbb{R}^d$ body in reference configuration $\varphi : \Omega \to \mathbb{R}^d$ deformation ($\varphi(x) = x + \varepsilon \boldsymbol{u}(x)$ with displacement \boldsymbol{u}) $z : \Omega \to Z \subset \mathbb{R}^m$ internal variable(s)

(magnetization, polarization, phase, plasticity, damage, ...)

wı

GSM = generalized standard materials (Halphen&Nguyen'75, Ziegler&Wehrli'87,...,Hackl'95,...) $\Omega \subset \mathbb{R}^d$ body in reference configuration $\varphi: \Omega \to \mathbb{R}^d$ deformation $(\varphi(x) = x + \varepsilon \boldsymbol{u}(x)$ with displacement \boldsymbol{u}) $z: \Omega \to Z \subset \mathbb{R}^m$ internal variable(s) (magnetization, polarization, phase, plasticity, damage, ...) $\begin{array}{l} \mathsf{Balance of forces} \left\{ \begin{array}{ccc} \rho \ddot{\varphi} = \mathsf{div}\, \mathbf{\Sigma} + \mathbf{f}_{\mathsf{ext}} & \mathrm{in} & \Omega, \\ \varphi(t,x) = \varphi_{\mathsf{Dir}}(t,x) & \mathrm{on} & \Gamma_{\mathsf{Dir}}, \\ \mathbf{\Sigma}(t,x)\nu(x) = \mathbf{g}_{\mathsf{ext}}(t,x) & \mathrm{on} & \Gamma_{\mathsf{Neu}}. \end{array} \right. \end{array}$ **Constitutive law** $\mathbf{\Sigma}(x) = \widehat{\mathbf{\Sigma}}(x, \nabla \varphi(x), z(x), \nabla z(x))$

GSM = generalized standard materials (Halphen&Nguyen'75, Ziegler&Wehrli'87,...,Hackl'95,...) $\Omega \subset \mathbb{R}^d$ body in reference configuration $\varphi: \Omega \to \mathbb{R}^d$ deformation ($\varphi(x) = x + \varepsilon \boldsymbol{u}(x)$ with displacement \boldsymbol{u}) $z: \Omega \to Z \subset \mathbb{R}^m$ internal variable(s) (magnetization, polarization, phase, plasticity, damage, ...) $\begin{array}{l} \mathbf{Balance \ of \ forces} \left\{ \begin{array}{ccc} \mathbf{0} = \mathrm{div}\, \mathbf{\Sigma} + \mathbf{f}_{\mathrm{ext}} & \mathrm{in} & \Omega, \\ \\ \boldsymbol{\varphi}(t,x) = \boldsymbol{\varphi}_{\mathrm{Dir}}(t,x) & \mathrm{on} & \Gamma_{\mathrm{Dir}}, \\ \\ \mathbf{\Sigma}(t,x)\nu(x) = \mathbf{g}_{\mathrm{ext}}(t,x) & \mathrm{on} & \Gamma_{\mathrm{Neu}}. \end{array} \right. \end{array}$

Constitutive law (hyperelasticity) $\Sigma(x) = \partial_F W(x, F, z, A)$, where $F = \nabla \varphi$, $A = \nabla z$

GSM = generalized standard materials (Halphen&Nguyen'75, Ziegler&Wehrli'87,...,Hackl'95,...) $\Omega \subset \mathbb{R}^d$ body in reference configuration $\varphi: \Omega \to \mathbb{R}^d$ deformation ($\varphi(x) = x + \varepsilon \boldsymbol{u}(x)$ with displacement \boldsymbol{u}) $z: \Omega \to Z \subset \mathbb{R}^m$ internal variable(s) (magnetization, polarization, phase, plasticity, damage, ...) $\begin{array}{l} \textbf{Balance of forces} \left\{ \begin{array}{ccc} 0 = \text{div}\, \boldsymbol{\Sigma} + \boldsymbol{f}_{\text{ext}} & \text{in} & \Omega, \\ \\ \boldsymbol{\varphi}(t,x) = \boldsymbol{\varphi}_{\text{Dir}}(t,x) & \text{on} & \Gamma_{\text{Dir}}, \\ \\ \boldsymbol{\Sigma}(t,x)\boldsymbol{\nu}(x) = \boldsymbol{g}_{\text{ext}}(t,x) & \text{on} & \Gamma_{\text{Neu}}. \end{array} \right. \end{array}$ **Constitutive law** (hyperelasticity)

 $\Sigma(x) = \partial_{F} W(x, F, z, A)$, where $F = \nabla \varphi$, $A = \nabla z$ Flow rule $\dot{z} = H(F, z, \nabla z, ...)$

GSM = generalized standard materials (Halphen&Nguyen'75, Ziegler&Wehrli'87,...,Hackl'95,...) $\Omega \subset \mathbb{R}^d$ body in reference configuration $\varphi: \Omega \to \mathbb{R}^d$ deformation ($\varphi(x) = x + \varepsilon \boldsymbol{u}(x)$ with displacement \boldsymbol{u}) $z: \Omega \to Z \subset \mathbb{R}^m$ internal variable(s) (magnetization, polarization, phase, plasticity, damage, ...) $\begin{array}{l} \textbf{Balance of forces} \left\{ \begin{array}{ccc} 0 = \text{div}\, \boldsymbol{\Sigma} + \boldsymbol{f}_{\text{ext}} & \text{in} & \Omega, \\ \\ \boldsymbol{\varphi}(t,x) = \boldsymbol{\varphi}_{\text{Dir}}(t,x) & \text{on} & \Gamma_{\text{Dir}}, \\ \\ \boldsymbol{\Sigma}(t,x)\boldsymbol{\nu}(x) = \boldsymbol{g}_{\text{ext}}(t,x) & \text{on} & \Gamma_{\text{Neu}}. \end{array} \right. \end{array}$ **Constitutive law** (hyperelasticity) $\boldsymbol{\Sigma}(x) = \partial_{\boldsymbol{F}} W(x, \boldsymbol{F}, z, A)$, where $\boldsymbol{F} = \nabla \varphi, A = \nabla z$

Flow rule (Ziegler&Wehrli'87)

$$0 = \partial_{\dot{z}} R(x, z, \dot{z}) + \partial_{z} W(x, \boldsymbol{F}, z, \nabla z) - \operatorname{div} \left[\partial_{A} W(x, \boldsymbol{F}, z, \nabla z) \right]$$

dissipation notential $R : \Omega \times TZ \to [0, \infty)$

$0 = \underbrace{\partial_{\dot{z}} R(x, z, \dot{z})}_{\text{friction force}} + \underbrace{\partial_{z} W(x, \boldsymbol{F}, z, \nabla z) - \text{div} \left[\partial_{A} W(x, \boldsymbol{F}, z, \nabla z)\right]}_{-\text{thermomechanical force conjugate force to } z}$

In general Z is a manifold, not a linear space. Internal force balance is defined on T^*Z $R(x, z, \cdot) : T_z Z \to \mathbb{R}$ is convex $\rightsquigarrow \quad \partial_{\dot{z}} R(x, z, \dot{z}) \in T_z^*Z$ Similarly, $W(x, F, \cdot, A) : Z \to \mathbb{R}$ implies $\partial_z W(x, F, z, A) \in T_z^*Z$

$$0 = \underbrace{\partial_{\dot{z}} R(x, z, \dot{z})}_{\text{friction force}} + \underbrace{\partial_{z} W(x, F, z, \nabla z) - \text{div} \left[\partial_{A} W(x, F, z, \nabla z)\right]}_{-\text{thermomechanical force conjugate force to } z}$$

In general Z is a manifold, not a linear space. Internal force balance is defined on T^*Z $R(x, z, \cdot) : T_z Z \to \mathbb{R}$ is convex $\rightsquigarrow \quad \partial_{\dot{z}} R(x, z, \dot{z}) \in T_z^*Z$ Similarly, $W(x, F, \cdot, A) : Z \to \mathbb{R}$ implies $\partial_z W(x, F, z, A) \in T_z^*Z$

Example : Allen-Cahn equation

 $z \in \mathbb{R}$ scalar phase-field variable (no elasticity, no F) $W(x, z, A) = \Phi(z) + \frac{\kappa^2}{2} |A|^2$ $R(x, z, \dot{z}) = \frac{r}{2} |\dot{z}|^2 \quad \rightsquigarrow \quad \partial_{\dot{z}} R(x, z, \dot{z}) = r\dot{z}$ (viscous friction)

 $0 = r\dot{z} + \Phi'(z) - \kappa^2 \Delta z$ Allen-Cahn equation

Overview

- 1. GSM and Plasticity
- 2. Finite-Strain Plasticity
- 3. Energetic formulation
- 4. Existence results
- Conclusions

Finite-strain elasticity

$$F = \nabla \varphi \in \mathsf{GL}^+(\mathbb{R}^d) \stackrel{\mathsf{def}}{=} \{ F \in \mathbb{R}^{d \times d} \mid \det F > 0 \}$$

Typical stored energy density $W : \mathbb{R}^{d \times d} \to \mathbb{R}_{\infty} \stackrel{\text{def}}{=} \mathbb{R} \cup \{\infty\}$

Polyconvex Ogden material: $(p > d, \gamma, c_1, c_2 > 0)$

$$W(\boldsymbol{F}) = \left\{ egin{array}{ll} c_1 | \boldsymbol{F} |^p + rac{c_2}{(\det \boldsymbol{F})^\gamma} & ext{if det } \boldsymbol{F} > 0, \ \infty & ext{else.} \end{array}
ight.$$

w I

Finite-strain elasticity

$$F = \nabla \varphi \in \mathsf{GL}^+(\mathbb{R}^d) \stackrel{\mathsf{def}}{=} \{ F \in \mathbb{R}^{d \times d} \mid \det F > 0 \}$$

Typical stored energy density $W : \mathbb{R}^{d \times d} \to \mathbb{R}_{\infty} \stackrel{\text{def}}{=} \mathbb{R} \cup \{\infty\}$

Polyconvex Ogden material: $(p > d, \gamma, c_1, c_2 > 0)$

$$W(\boldsymbol{F}) = \left\{ egin{array}{c} c_1 | \boldsymbol{F} |^p + rac{c_2}{(\det \boldsymbol{F})^\gamma} & ext{if det } \boldsymbol{F} > 0, \ \infty & ext{else.} \end{array}
ight.$$

Stress-strain relation

$$\boldsymbol{\Sigma}_{el}(\boldsymbol{F}) = \partial_{\boldsymbol{F}} W(\boldsymbol{F}) = \begin{cases} c_1 p |\boldsymbol{F}|^{p-2} \boldsymbol{F} - \frac{\gamma c_2}{(\det \boldsymbol{F})^{\gamma}} \boldsymbol{F}^{-\mathsf{T}} & \text{if } \det \boldsymbol{F} > 0, \\ & \text{undefined} & \text{else.} \end{cases}$$

Multiplicative decomposition (Lee'69)

$$\nabla \varphi = \boldsymbol{F} = \boldsymbol{F}_{el} \boldsymbol{F}_{plast} = \boldsymbol{F}_{el} \boldsymbol{P} \quad \rightsquigarrow \quad \boldsymbol{F}_{el} = \boldsymbol{F} \boldsymbol{P}^{-1}$$
$$W(\boldsymbol{F}, \boldsymbol{P}, \boldsymbol{A}) = W_{el}(\underbrace{\boldsymbol{F} \boldsymbol{P}^{-1}}_{=\boldsymbol{F}_{el}}) + W_{hard}(\boldsymbol{P}) + W_{grad}(\boldsymbol{P}, \boldsymbol{A})$$

Multiplicative decomposition (Lee'69)

$$\nabla \varphi = F = F_{el}F_{plast} = F_{el}P \quad \rightsquigarrow \quad F_{el} = FP^{-1}$$
$$W(F, P, A) = W_{el}(\underbrace{FP^{-1}}_{=F_{el}}) + W_{hard}(P) + W_{grad}(P, A)$$

Multiplicative decomposition (Lee'69)

W I

Multiplicative decomposition (Lee'69)

$$\nabla \varphi = \boldsymbol{F} = \boldsymbol{F}_{el} \boldsymbol{F}_{plast} = \boldsymbol{F}_{el} \boldsymbol{P} \quad \rightsquigarrow \quad \boldsymbol{F}_{el} = \boldsymbol{F} \boldsymbol{P}^{-1}$$
$$W(\boldsymbol{F}, \boldsymbol{P}, \boldsymbol{A}) = W_{el}(\underbrace{\boldsymbol{F} \boldsymbol{P}^{-1}}_{=\boldsymbol{F}_{el}}) + W_{hard}(\boldsymbol{P}) + W_{grad}(\boldsymbol{P}, \boldsymbol{A})$$
$$R(\boldsymbol{P}, \dot{\boldsymbol{P}}) = \widehat{\boldsymbol{R}}(\dot{\boldsymbol{P}} \boldsymbol{P}^{-1}) \quad \text{(plastic invariance)}$$

For specialists: Today only "kinematic hardening". WIAS Preprint 1299 is more general: z = (P, p)Applications to isotropic hardening, crystal plasticity, ...

W I A S

Plastic flow rule (assume temporarily $W_{\text{grad}} \equiv 0$) Let $\boldsymbol{\xi} = \dot{\boldsymbol{P}} \boldsymbol{P}^{-1} \in \mathsf{T}_1 \mathsf{SL}(\mathbb{R}^d) = \text{Lie algebra sl}(\mathbb{R}^d)$ $\partial_{\dot{\boldsymbol{P}}} R(\boldsymbol{P}, \dot{\boldsymbol{P}}) = \underbrace{\partial_{\boldsymbol{\xi}} \widehat{R}(\dot{\boldsymbol{P}} \boldsymbol{P}^{-1})}_{\in \mathsf{sl}^*(\mathbb{R}^d)} \boldsymbol{P}^{-\mathsf{T}} \in \mathsf{T}^*_{\boldsymbol{P}} \mathsf{SL}(\mathbb{R}^d)$ $\boldsymbol{\Sigma}_{\mathsf{el}} = \partial_{\boldsymbol{F}} W = \partial_{\boldsymbol{F}_{\mathsf{el}}} W_{\mathsf{el}}(\boldsymbol{F} \boldsymbol{P}^{-1}) \boldsymbol{P}^{-\mathsf{T}}$

$$\begin{array}{ll} \text{Plastic flow rule} & (\text{assume temporarily } W_{\text{grad}} \equiv 0) \\ \text{Let } \boldsymbol{\xi} = \dot{\boldsymbol{P}} \boldsymbol{P}^{-1} \in \mathsf{T}_1 \mathsf{SL}(\mathbb{R}^d) = \text{Lie algebra sl}(\mathbb{R}^d) \\ \partial_{\dot{\boldsymbol{P}}} R(\boldsymbol{P}, \dot{\boldsymbol{P}}) = \underbrace{\partial_{\boldsymbol{\xi}} \widehat{R}(\dot{\boldsymbol{P}} \boldsymbol{P}^{-1})}_{\in \mathsf{sl}^*(\mathbb{R}^d)} \boldsymbol{P}^{-\mathsf{T}} \in \mathsf{T}_{\boldsymbol{P}}^* \mathsf{SL}(\mathbb{R}^d) \\ \mathbf{\Sigma}_{\mathsf{el}} = \partial_{\boldsymbol{F}} W = \partial_{\boldsymbol{F}_{\mathsf{el}}} W_{\mathsf{el}}(\boldsymbol{F} \boldsymbol{P}^{-1}) \boldsymbol{P}^{-\mathsf{T}} \\ \partial_{\boldsymbol{P}} W(\boldsymbol{F}, \boldsymbol{P}) = -\underbrace{\boldsymbol{P}^{-\mathsf{T}} \boldsymbol{F}^{\mathsf{T}}}_{=\boldsymbol{F}_{\mathsf{el}}^{\mathsf{T}}} \underbrace{\partial_{\boldsymbol{F}_{\mathsf{el}}} W_{\mathsf{el}}(\boldsymbol{F} \boldsymbol{P}^{-1}) \boldsymbol{P}^{-\mathsf{T}}}_{=\boldsymbol{\Sigma}_{\mathsf{el}}} + \partial_{\boldsymbol{P}} W_{\mathsf{hard}}(\boldsymbol{P}) \end{array}$$

Plastic flow rule (assume temporarily
$$W_{grad} \equiv 0$$
)
Let $\xi = \dot{P}P^{-1} \in T_1SL(\mathbb{R}^d) = Lie$ algebra $sl(\mathbb{R}^d)$
 $\partial_{\dot{P}}R(P, \dot{P}) = \underbrace{\partial_{\xi}\widehat{R}(\dot{P}P^{-1})}_{\in sl^*(\mathbb{R}^d)}P^{-T} \in T_P^*SL(\mathbb{R}^d)$
 $\Sigma_{el} = \partial_F W = \partial_{F_{el}}W_{el}(FP^{-1})P^{-T}$
 $\partial_P W(F, P) = -\underbrace{P^{-T}F^T}_{=F_{el}^T} \underbrace{\partial_{F_{el}}W_{el}(FP^{-1})P^{-T}}_{=\Sigma_{el}} + \partial_P W_{hard}(P)$

Internal force balance (Biot's equation) $0 \in \partial_{\xi} \widehat{R}(\dot{P}P^{-1})P^{-T} - F_{el}^{T} \Sigma_{el} + \partial_{P} W_{hard}(P)$ Plastic flow rule $sl(\mathbb{R}^{d}) \ni \dot{P}P^{-1} \in \partial \widehat{R}^{-1} \left(\underbrace{F_{el}^{T} \partial_{F_{el}} W_{el}(F_{el}) - \partial_{P} W_{hard}(P)P^{-T}}_{\in sl^{*}(\mathbb{R}^{d})}\right)$

WIAS

Overview

- 1. GSM and Plasticity
- 2. Finite-Strain Plasticity
- 3. Energetic formulation
- 4. Existence results

Conclusions

... is a special weak formulation for rate-independent systems $(\mathcal{Q}, \mathcal{E}, \mathcal{R})$

State space Qcontains $q = (\varphi, P)$ (specified later)

Energy storage functional $\widehat{\mathcal{E}}(t, \varphi, \boldsymbol{P}) = \int_{\Omega} W(\nabla \varphi, \boldsymbol{P}, \nabla \boldsymbol{P}) \, \mathrm{d}x - \langle \ell(t), \varphi \rangle$ with $\langle \ell(t), \varphi \rangle = \int_{\Omega} \boldsymbol{f}_{\mathsf{ext}} \cdot \varphi \, \mathrm{d}x + \int_{\Gamma_{\mathsf{Neu}}} \boldsymbol{g}_{\mathsf{ext}} \cdot \varphi \, \mathrm{d}a$ W I

... is a special weak formulation for rate-independent systems $(Q, \mathcal{E}, \mathcal{R})$

State space Qcontains $q = (\varphi, P)$ (specified later)

Energy storage functional $\widehat{\mathcal{E}}(t, \varphi, \boldsymbol{P}) = \int_{\Omega} W(\nabla \varphi, \boldsymbol{P}, \nabla \boldsymbol{P}) \, \mathrm{d}x - \langle \ell(t), \varphi \rangle$ with $\langle \ell(t), \varphi \rangle = \int_{\Omega} \boldsymbol{f}_{\mathsf{ext}} \cdot \varphi \, \mathrm{d}x + \int_{\mathsf{\Gamma}_{\mathsf{Neu}}} \boldsymbol{g}_{\mathsf{ext}} \cdot \varphi \, \mathrm{d}a$

Rate-independent dissipation potential \mathcal{R} rate independence $\mathcal{R}(\boldsymbol{P}, \gamma \dot{\boldsymbol{P}}) = \gamma^{1} \mathcal{R}(\boldsymbol{P}, \dot{\mathcal{P}}), \gamma > 0$ \rightsquigarrow nonsmoothness: $\partial_{\dot{\boldsymbol{P}}} \mathcal{R}(\boldsymbol{P}, \dot{\boldsymbol{P}})$ set-valued subdifferential $\partial_{\dot{\boldsymbol{P}}} \mathcal{R}(\boldsymbol{P}, \gamma \dot{\boldsymbol{P}}) = \gamma^{0} \partial_{\dot{\boldsymbol{P}}} \mathcal{R}(\boldsymbol{P}, \dot{\boldsymbol{P}})$ (homog. of degree 0)

wI

Typical approach to numerics and existence theory:

Incremental minimization problems for $0 < t_1 < \cdots < t_N = T$:

With $\tau_k = t_k - t_{k-1}$ find $(\varphi^k, \mathbf{P}^k)$ minimizing $(\widetilde{\varphi}, \widetilde{\mathbf{P}}) \mapsto \widehat{\mathcal{E}}(t_k, \widetilde{\varphi}, \widetilde{\mathbf{P}}) + \tau_k \mathcal{R}(\mathbf{P}_{k-1}, \frac{1}{\tau_k}(\widetilde{\mathbf{P}} - \mathbf{P}_{k-1}))$

Typical approach to numerics and existence theory:

Incremental minimization problems for $0 < t_1 < \cdots < t_N = T$:

With
$$\tau_k = t_k - t_{k-1}$$
 find
 $(\varphi^k, \mathbf{P}^k)$ minimizing $(\widetilde{\varphi}, \widetilde{\mathbf{P}}) \mapsto \widehat{\mathcal{E}}(t_k, \widetilde{\varphi}, \widetilde{\mathbf{P}}) + \underbrace{\tau_k \mathcal{R}(\mathbf{P}_{k-1}, \frac{1}{\tau_k}(\widetilde{\mathbf{P}} - \mathbf{P}_{k-1}))}_{=\mathcal{R}(\mathbf{P}_{k-1}, \widetilde{\mathbf{P}} - \mathbf{P}_{k-1})??}$

$$\dot{\boldsymbol{P}} pprox rac{1}{ au_k} (\widetilde{\boldsymbol{P}} - \boldsymbol{P}^{k-1})
ot\in \mathsf{sl}(\mathbb{R}^d)$$
!!

Only good approximation if $t \mapsto \mathbf{P}(t, x)$ nicely differentiable, but we have to be expect discontinuities.

Typical approach to numerics and existence theory:

Incremental minimization problems for $0 < t_1 < \cdots < t_N = T$:

With
$$\tau_k = t_k - t_{k-1}$$
 find
 $(\varphi^k, \mathbf{P}^k)$ minimizing $(\widetilde{\varphi}, \widetilde{\mathbf{P}}) \mapsto \widehat{\mathcal{E}}(t_k, \widetilde{\varphi}, \widetilde{\mathbf{P}}) + \underbrace{\tau_k \mathcal{R}(\mathbf{P}_{k-1}, \frac{1}{\tau_k}(\widetilde{\mathbf{P}} - \mathbf{P}_{k-1}))}_{=\mathcal{R}(\mathbf{P}_{k-1}, \widetilde{\mathbf{P}} - \mathbf{P}_{k-1})??}$

$$\dot{\boldsymbol{P}} pprox rac{1}{ au_k} (\widetilde{\boldsymbol{P}} - \boldsymbol{P}^{k-1})
ot\in \mathsf{sl}(\mathbb{R}^d)!!$$

Only good approximation if $t \mapsto P(t, x)$ nicely differentiable, but we have to be expect discontinuities.

Engineers: $\boldsymbol{P}^{k} = \exp(\boldsymbol{\xi}^{k})\boldsymbol{P}^{k-1}$ with $\boldsymbol{\xi}^{k} \in \operatorname{sl}(\mathbb{R}^{d})$: $(\varphi^{k}, \boldsymbol{\xi}^{k})$ minimizing $(\widetilde{\varphi}, \boldsymbol{\xi}^{k}) \mapsto \widehat{\mathcal{E}}(t_{k}, \widetilde{\varphi}, \exp(\boldsymbol{\xi}^{k})\boldsymbol{P}^{k-1}) + \mathcal{R}(\boldsymbol{P}_{k-1}, \boldsymbol{\xi}^{k})$

applied analysis: geometric evolution in metric spaces

wI

rate-independent systems $(\mathcal{Q}, \mathcal{E}, \mathcal{R})$

Metric space approach for geometric evolution: Replace the infinitesimal dissipation metric \mathcal{R} by a (global) distance \mathcal{D}

Plastic dissipation distance $\mathcal{D} : \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}_{\infty}$: $\mathcal{D}(\mathbf{P}_0, \mathbf{P}_1) = \int_{\Omega} D(x, \mathbf{P}_0(x), \mathbf{P}_1(x)) dx$ where $D(x, \cdot, \cdot) : SL(\mathbb{R}^d)^2 \to [0, \infty]$ is defined via $D(x, P_0, P_1) = \inf \left\{ \int_0^1 R(x, P(s), \dot{P}(s)) ds \mid P(0) = P_0, P(1) = P_1, P \in C^1([0, 1]; SL(\mathbb{R}^d)) \right\}$

rate-independent systems $(\mathcal{Q}, \mathcal{E}, \mathcal{R})$

Metric space approach for geometric evolution: Replace the infinitesimal dissipation metric \mathcal{R} by a (global) distance \mathcal{D}

Plastic dissipation distance $\mathcal{D} : \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}_{\infty}$: $\mathcal{D}(\mathbf{P}_0, \mathbf{P}_1) = \int_{\Omega} D(x, \mathbf{P}_0(x), \mathbf{P}_1(x)) dx$ where $D(x, \cdot, \cdot) : SL(\mathbb{R}^d)^2 \to [0, \infty]$ is defined via $D(x, P_0, P_1) = \inf \left\{ \int_0^1 R(x, P(s), \dot{P}(s)) ds \mid P(0) = P_0, P(1) = P_1, P \in C^1([0, 1]; SL(\mathbb{R}^d)) \right\}$

Plastic invariance gives $D(x, P_0, P_1) = D(x, I, P_1P_0^{-1})$ Note that $D(x, I, \exp(\xi)) \le \widehat{R}(\xi) \sim |\xi|$ Hence, D has at most logarithmic growth (not coercive in L^q)

WIAC

$$\begin{split} \boldsymbol{q} &= (\boldsymbol{\varphi}, \boldsymbol{P}) \text{ state of the body,} \quad \mathcal{Q} = \mathcal{F} \times \mathcal{Z} \text{ state space} \\ \mathcal{F} &= \text{admissible deformations,} \quad \mathcal{Z} = \text{space of internal states} \\ \mathcal{E} : [0, T] \times \mathcal{Q} \to \mathbb{R}_{\infty} \text{ energy storage functional} \\ \mathcal{D} : \mathcal{Q} \times \mathcal{Q} \to [0, \infty] \text{ dissipation distance} \end{split}$$

wı

 $q = (\varphi, P)$ state of the body, $Q = \mathcal{F} \times \mathcal{Z}$ state space $\mathcal{F} =$ admissible deformations, $\mathcal{Z} =$ space of internal states $\mathcal{E} : [0, T] \times Q \rightarrow \mathbb{R}_{\infty}$ energy storage functional $\mathcal{D} : Q \times Q \rightarrow [0, \infty]$ dissipation distance

Definition. A process $\boldsymbol{q} : [0, T] \to \mathcal{Q}$ is called an *energetic* solution for the rate-independent system $(\mathcal{Q}, \mathcal{E}, \mathcal{D})$, if for all $t \in [0, T]$ we have stability (S) and energy balance (E): (S) $\forall \tilde{\boldsymbol{q}} \in \mathcal{Q} : \mathcal{E}(t, \boldsymbol{q}(t)) \leq \mathcal{E}(t, \tilde{\boldsymbol{q}}) + \mathcal{D}(\boldsymbol{q}(t), \tilde{\boldsymbol{q}}),$ (E) $\mathcal{E}(t, \boldsymbol{q}(t)) + \text{Diss}_{\mathcal{D}}(\boldsymbol{q}, [0, t]) = \mathcal{E}(0, \boldsymbol{q}(0)) + \int_{0}^{t} \partial_{s} \mathcal{E}(s, \boldsymbol{q}(s)) \, \mathrm{d}s.$

$$\mathsf{Diss}_{\mathcal{D}}(\boldsymbol{q},[0,t]) \stackrel{\mathsf{def}}{=} \sup \left\{ \sum_{1}^{N} \mathcal{D}(\boldsymbol{q}(t_{j-1}),\boldsymbol{q}(t_{j})) \mid \mathsf{all partit.} \right\}$$

 $q = (\varphi, P)$ state of the body, $Q = \mathcal{F} \times \mathcal{Z}$ state space $\mathcal{F} =$ admissible deformations, $\mathcal{Z} =$ space of internal states $\mathcal{E} : [0, T] \times Q \rightarrow \mathbb{R}_{\infty}$ energy storage functional $\mathcal{D} : Q \times Q \rightarrow [0, \infty]$ dissipation distance

Definition. A process $\boldsymbol{q} : [0, T] \to \mathcal{Q}$ is called an *energetic* solution for the rate-independent system $(\mathcal{Q}, \mathcal{E}, \mathcal{D})$, if for all $t \in [0, T]$ we have stability (S) and energy balance (E): (S) $\forall \tilde{\boldsymbol{q}} \in \mathcal{Q} : \mathcal{E}(t, \boldsymbol{q}(t)) \leq \mathcal{E}(t, \tilde{\boldsymbol{q}}) + \mathcal{D}(\boldsymbol{q}(t), \tilde{\boldsymbol{q}}),$ (E) $\mathcal{E}(t, \boldsymbol{q}(t)) + \text{Diss}_{\mathcal{D}}(\boldsymbol{q}, [0, t]) = \mathcal{E}(0, \boldsymbol{q}(0)) + \int_{0}^{t} \partial_{s} \mathcal{E}(s, \boldsymbol{q}(s)) \, \mathrm{d}s.$

$$\mathsf{Diss}_{\mathcal{D}}(\boldsymbol{q},[0,t]) \stackrel{\mathsf{def}}{=} \sup \left\{ \sum_{1}^{N} \mathcal{D}(\boldsymbol{q}(t_{j-1}),\boldsymbol{q}(t_{j})) \mid \mathsf{all partit.} \right\}$$

Smooth energetic solutions satisfy "elastic equilibrium" and the plastic flow rule.

Incremental minimization problems: Find $(\varphi^k, \mathbf{P}^k)$ minimizing $(\widetilde{\varphi}, \widetilde{\mathbf{P}}) \mapsto \widehat{\mathcal{E}}(t_k, \widetilde{\varphi}, \widetilde{\mathbf{P}}) + \mathcal{D}(\mathbf{P}_{k-1}, \widetilde{\mathbf{P}})$

Main abstract assumption for existence theory (developed with MAINIK'05, FRANCFORT'06)

- $\blacksquare \mathcal{Q}$ weakly closed subset of a Banach space
- D extended quasi-metric on Z (positivity and triangle ineq.) no coercivity in norms needed!!
- $\blacksquare \mathcal{D}$ weakly lower semi-continuous

 $\mathbf{I} \ \mathcal{E}(t,\cdot): \mathcal{Q}
ightarrow \mathbb{R}_{\infty}$ coercive and weakly lower semi-continuous

 \blacksquare If $\mathcal{E}(t, oldsymbol{q}) < \infty$, then $\mathcal{E}(\cdot, oldsymbol{q}) \in \mathsf{W}^{1,1}([0, T])$ with

 $|\partial_t \mathcal{E}(t, \boldsymbol{q})| \leq \lambda(t) \mathcal{E}(t, \boldsymbol{q})$ for fixed $\lambda \in \mathsf{L}^1([0, T])$

WIAS

Overview

- 1. GSM and Plasticity
- 2. Finite-Strain Plasticity
- 3. Energetic formulation
- 4. Existence results

Conclusions

Choice of admissible deformations for elastoplasticity

Time-dependent boundary conditions:

 $arphi(t,x) = arphi_{\mathsf{Dir}}(t,x) ext{ for } (t,x) \in [0,\,T] imes \mathsf{\Gamma}_{\mathsf{Dir}}$

Assume that an extension $\varphi_{\text{Dir}} \in C^1([0,T] \times \mathbb{R}^d; \mathbb{R}^d)$ exists with $\nabla \varphi_{\text{Dir}}, \nabla \varphi_{\text{Dir}}^{-1} \in BC^0([0,T] \times \mathbb{R}^d; \text{Lin}(\mathbb{R}^d; \mathbb{R}^d))$

Choice of admissible deformations for elastoplasticity

Time-dependent boundary conditions:

$$arphi(t,x) = arphi_{\mathsf{Dir}}(t,x) ext{ for } (t,x) \in [0,\,T] imes \mathsf{\Gamma}_{\mathsf{Dir}}$$

Assume that an extension $\varphi_{\text{Dir}} \in C^1([0,T] \times \mathbb{R}^d; \mathbb{R}^d)$ exists with $\nabla \varphi_{\text{Dir}}, \nabla \varphi_{\text{Dir}}^{-1} \in BC^0([0,T] \times \mathbb{R}^d; \text{Lin}(\mathbb{R}^d; \mathbb{R}^d))$

We search for φ in the form $\varphi(t,x) = \varphi_{\mathsf{Dir}}(t, \mathbf{y}(t,x))$ with $\mathbf{y} \in \mathcal{Y}$

$$\mathcal{Y} \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \mathbf{y} \in \mathsf{W}^{1,q_{\mathbf{y}}}(\Omega; \mathbb{R}^{d}) \ \middle| \ \mathbf{y}|_{\Gamma_{\mathsf{Dir}}} = \mathsf{id}, \ (\mathsf{GI}) \ \mathsf{holds} \end{array} \right\}$$

Global invertibility (GI)
$$\left\{ \begin{array}{l} \det \nabla y(x) \ge 0 \ \mathsf{a.e. in} \ \Omega, \\ \int_{\Omega} \det \nabla y(x) \, \mathsf{d}x \le \mathsf{vol}(y(\Omega)). \end{array} \right.$$

Choice of admissible deformations for elastoplasticity

Time-dependent boundary conditions:

$$arphi(t,x) = arphi_{\mathsf{Dir}}(t,x) ext{ for } (t,x) \in [0,\,T] imes \mathsf{\Gamma}_{\mathsf{Dir}}$$

Assume that an extension $\varphi_{\text{Dir}} \in C^1([0,T] \times \mathbb{R}^d; \mathbb{R}^d)$ exists with $\nabla \varphi_{\text{Dir}}, \nabla \varphi_{\text{Dir}}^{-1} \in BC^0([0,T] \times \mathbb{R}^d; \text{Lin}(\mathbb{R}^d; \mathbb{R}^d))$

We search for φ in the form $\varphi(t,x) = \varphi_{\mathsf{Dir}}(t, \mathbf{y}(t,x))$ with $\mathbf{y} \in \mathcal{Y}$

$$\mathcal{Y} \stackrel{\mathsf{def}}{=} \left\{ \left. \boldsymbol{y} \in \mathsf{W}^{1,q_{\boldsymbol{y}}}(\Omega;\mathbb{R}^d) \right| \boldsymbol{y}|_{\mathsf{\Gamma}_{\mathsf{Dir}}} = \mathsf{id}, \ (\mathsf{GI}) \ \mathsf{holds} \ \right\}$$

Global invertibility (GI) $\begin{cases} \det \nabla y(x) \ge 0 \text{ a.e. in } \Omega, \\ \int_{\Omega} \det \nabla y(x) \, dx \le \operatorname{vol}(y(\Omega)). \end{cases}$

Ciarlet&Necas'87: $\mathcal Y$ is weakly closed in $W^{1,q_y}(\Omega; \mathbb{R}^d)$, if $q_y > d$.

Final energy functional $\mathcal{E}(t, \boldsymbol{y}, \boldsymbol{P}) \stackrel{\text{def}}{=} \widehat{\mathcal{E}}(t, \varphi_{\text{Dir}}(t) \circ \boldsymbol{y}, \boldsymbol{P})$

Weak lower semicontinuity of \mathcal{E} : $\mathcal{E}(t, \boldsymbol{y}, \boldsymbol{P}) = \int_{\Omega} W(\nabla \varphi_{\mathsf{Dir}}(t, \boldsymbol{y}) \nabla \boldsymbol{y} \boldsymbol{P}^{-1}, \boldsymbol{P}, \nabla \boldsymbol{P}) \, \mathrm{dx} - \underbrace{\langle \ell(t), \varphi_{\mathsf{Dir}}(t) \circ \boldsymbol{y} \rangle}_{\text{w.l.o.g.} \equiv 0}$

•
$$W : \Omega \times \mathbb{R}^{d \times d} \times \mathbb{R}^{d \times d} \times \mathbb{R}^{d \times d \times d} \to \mathbb{R}_{\infty}$$
 is a normal integrand
• $W(x, \cdot, \boldsymbol{P}, \boldsymbol{A}) : \mathbb{R}^{d \times d} \to \mathbb{R}_{\infty}$ is polyconvex
• $W(x, \boldsymbol{F}_{el}, \boldsymbol{P}, \cdot) : \mathbb{R}^{d \times d \times d} \to \mathbb{R}_{\infty}$ is convex
• $W(x, \boldsymbol{F}_{el}, \boldsymbol{P}, \boldsymbol{A}) \ge c(|\boldsymbol{F}_{el}|^{q_{\boldsymbol{F}}} + |\boldsymbol{P}|^{q_{\boldsymbol{P}}} + |\boldsymbol{A}|^{r}) - C$
Choice of internal states:
 $\mathcal{Z} \stackrel{\text{def}}{=} \{ \boldsymbol{P} \in (W^{1,r} \cap L^{q_{\boldsymbol{P}}})(\Omega; \mathbb{R}^{d \times d}) \mid \boldsymbol{P}(x) \in SL(\mathbb{R}^{d}) \text{ a.e. in } \Omega \}$

coercivity
$$W(x, \mathbf{F}_{el}, \mathbf{P}, \mathbf{A}) \ge c(|\mathbf{F}_{el}|^{q_{\mathbf{F}}} + |\mathbf{P}|^{q_{\mathbf{P}}} + |\mathbf{A}|^{r}) - C$$

 $Q = \mathcal{Y} \times \mathcal{Z}$ with $\mathcal{Y} = \{ \mathbf{y} \in W^{1,q_{\mathbf{y}}}(\Omega) \mid \mathbf{y}|_{\Gamma_{\text{Dir}}} = \text{id}, \text{ (GI) holds } \}$
 $\mathcal{Z} = \{ \mathbf{P} \in (W^{1,r} \cap L^{q_{\mathbf{P}}})(\Omega; \mathbb{R}^{d \times d}) \mid \mathbf{P}(x) \in \text{SL}(\mathbb{R}^{d}) \text{ a.e. in } \Omega \}$

Proposition 1. Under the above assumptions with $\Gamma_{\text{Dir}} \neq \emptyset$, $\frac{1}{q_P} + \frac{1}{q_F} = \frac{1}{q_y} < \frac{1}{d}$, and r > 1we have that

 $\blacksquare \ \mathcal{D}$ is weakly continuous on $\mathcal{Z} \times \mathcal{Z}$ and

 $\mathbf{I} \mathcal{E}(t, \cdot)$ is coercive and weakly lower semi-continuous on \mathcal{Q} .

Control of the power of external forces

 $\partial_t \mathcal{E}(t, \boldsymbol{y}, \boldsymbol{P})$ involves $\partial_t \nabla \varphi_{\text{Dir}}(t, x)$

Additional assumption (cf. Baumann&Owen&Phillips'91, Ball'02)

 $\begin{array}{l} W(x,\cdot,\boldsymbol{P},\boldsymbol{A}) \text{ is differentiable on } \mathsf{GL}^+(\mathbb{R}^d) \text{ and there exist} \\ c_1 > 0, \ c_0 \in \mathbb{R} \text{ and a modulus of continuity } \omega \text{ such that} \\ (\mathsf{MSC1}) \quad |\partial_{\boldsymbol{F}}W(x,\boldsymbol{F},\boldsymbol{P},\boldsymbol{A})\boldsymbol{F}^\mathsf{T}| \leq c_1(W(x,\boldsymbol{F},\boldsymbol{P},\boldsymbol{A})+c_0) \\ (\mathsf{MSC2}) \quad |\partial_{\boldsymbol{F}}W(x,\boldsymbol{F},\boldsymbol{P},\boldsymbol{A})\boldsymbol{F}^\mathsf{T} - \partial_{\boldsymbol{F}}W(x,\boldsymbol{NF},\boldsymbol{P},\boldsymbol{A})(\boldsymbol{NF})^\mathsf{T}| \\ \leq \omega(|\boldsymbol{N}-1|)(W(x,\boldsymbol{F},\boldsymbol{P},\boldsymbol{A})+c_0). \end{array}$

Both conditions hold for $W(F, P, A) = W_{el}(FP^{-1}) + W_{hard,grad}(P, A)$ with $W_{el}(F_{el}) = \begin{cases} c_1 |F_{el}|^p + \frac{c_2}{(\det F_{el})^{\gamma}} & \text{if } \det F_{el} > 0, \\ \infty & \text{else.} \end{cases}$ wı

Consider $GL^+(\mathbb{R}^d) \ni F \mapsto W(F)$ (for x, P, and A fixed). $K(F) = \partial_F W(F)F^{\mathsf{T}} \in gl(\mathbb{R}^d)^* = \mathsf{T}_1^* \mathsf{GL}^+(\mathbb{R}^d)$ $K: H = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [W((\mathbf{1}+\varepsilon H)F) - W(F)]$

Multiplicative stress control:

$$(\mathsf{MSC1}) \exists c_0, c_1 \forall \boldsymbol{F} : |\partial_{\boldsymbol{F}} W(\boldsymbol{F}) \boldsymbol{F}^{\mathsf{T}}| \leq c_1 \left[c_0 + W(\boldsymbol{F}) \right]$$

Ball'02: • (MSC1) compatible w/ frame indiff. and polyconvexity • (MSC1) implies $W(F) \le C[|F|^s + |F^{-1}|^s]$

Consider
$$GL^+(\mathbb{R}^d) \ni \mathbf{F} \mapsto W(\mathbf{F})$$
 (for x, \mathbf{P} , and \mathbf{A} fixed).
 $\mathbf{K}(\mathbf{F}) = \partial_{\mathbf{F}} W(\mathbf{F}) \mathbf{F}^{\mathsf{T}} \in gl(\mathbb{R}^d)^* = \mathsf{T}_1^* \mathsf{GL}^+(\mathbb{R}^d)$
 $\mathbf{K}: \mathbf{H} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [W((\mathbf{1}+\varepsilon \mathbf{H})\mathbf{F}) - W(\mathbf{F})]$

Multiplicative stress control:

$$(\mathsf{MSC1}) \exists c_0, c_1 \forall \boldsymbol{F} : |\partial_{\boldsymbol{F}} W(\boldsymbol{F}) \boldsymbol{F}^{\mathsf{T}}| \leq c_1 [c_0 + W(\boldsymbol{F})]$$

Ball'02: • (MSC1) compatible w/ frame indiff. and polyconvexity • (MSC1) implies $W(F) \le C[|F|^s + |F^{-1}|^s]$

An easy nontrivial example: $W(\mathbf{F}) = \alpha |\mathbf{F}|^q + \frac{\beta}{(\det \mathbf{F})^r}$, 1st Piola–Kirchh. stress tensor $\mathbf{T} = \partial_{\mathbf{F}} W(\mathbf{F}) = \underbrace{\alpha q |\mathbf{F}|^{q-2} \mathbf{F}}_{\text{slower growth}} - \underbrace{\frac{\beta r}{(\det \mathbf{F})^{r+1}} \operatorname{cof} \mathbf{F}}_{\text{more singular}}$

Kirchhoff's stress tensor $\mathbf{K} = \mathbf{T}\mathbf{F}^{\mathsf{T}} = \alpha q |\mathbf{F}|^{q-2} \mathbf{F}\mathbf{F}^{\mathsf{T}} - \frac{\beta r}{(\det F)^{r}} \mathbf{1}$

A more geometric interpretation

Let d_{GL} be any left-invariant geodesic distance on $GL^+(\mathbb{R}^d)$: $d_{GL}(\boldsymbol{F}_0, \boldsymbol{F}_1) \stackrel{\text{def}}{=} \min \left\{ \int_0^1 \|\boldsymbol{F}(s)^{-1} \dot{\boldsymbol{F}}(s)\| \, ds \mid \boldsymbol{F}_0 = \boldsymbol{F}(0), \\ \boldsymbol{F}_1 = \boldsymbol{F}(1), \ \boldsymbol{F} \in C^1([0, 1], GL^+(\mathbb{R}^d)) \right\}$

For
$$W \in C^1(GL^+(\mathbb{R}^d); \mathbb{R})$$
 we have
(MSC1) \iff
 $\exists c_0, c_1 \forall F, G : |\log(W(F)+c_0) - \log(W(G)+c_0)| \le c_1 d_{GL}(F,G)$
i.e., $\log(W(\cdot)+\widehat{c}_0)$ is globally Lipschitz on $(GL^+(\mathbb{R}^d), d_{GL})$.

A more geometric interpretation

Let d_{GL} be any left-invariant geodesic distance on $GL^+(\mathbb{R}^d)$: $d_{GL}(\boldsymbol{F}_0, \boldsymbol{F}_1) \stackrel{\text{def}}{=} \min \left\{ \int_0^1 \|\boldsymbol{F}(s)^{-1} \dot{\boldsymbol{F}}(s)\| \, ds \mid \boldsymbol{F}_0 = \boldsymbol{F}(0), \\ \boldsymbol{F}_1 = \boldsymbol{F}(1), \ \boldsymbol{F} \in C^1([0, 1], GL^+(\mathbb{R}^d)) \right\}$

For
$$W \in C^1(GL^+(\mathbb{R}^d); \mathbb{R})$$
 we have
(MSC1) \iff
 $\exists c_0, c_1 \forall F, G : |\log(W(F)+c_0) - \log(W(G)+c_0)| \le c_1 d_{GL}(F, G)$
i.e., $\log(W(\cdot)+\widehat{c}_0)$ is globally Lipschitz on $(GL^+(\mathbb{R}^d), d_{GL})$.

Using
$$|\frac{1}{2}\log(\boldsymbol{F}^{\mathsf{T}}\boldsymbol{F})| \leq d_{\mathsf{GL}}(\boldsymbol{1},\boldsymbol{F}) \leq d\pi + |\frac{1}{2}\log(\boldsymbol{F}^{\mathsf{T}}\boldsymbol{F})|$$
 we obtain
Ball's upper estimate:
 $W(\boldsymbol{F}) - 2c_0 \leq \exp(c_1 d_{\mathsf{GL}}(\boldsymbol{1},\boldsymbol{F})) \leq C[|\boldsymbol{F}|^s + |\boldsymbol{F}^{-1}|^s].$

 $\begin{array}{l} (\mathsf{MSC1+2}) & |\partial_{F}W(x,F,P,A)F^{\mathsf{T}}| \leq c_{1}(W(x,F,P,A)+c_{0}) \\ |\partial_{F}W(x,F,P,A)F^{\mathsf{T}}-\partial_{F}W(x,NF,P,A)(NF)^{\mathsf{T}} \leq \omega(|N-1|)(W(x,F,P,A)+c_{0}) \end{array}$

Kirchhoff tensor for given $\boldsymbol{q} \in \mathcal{Q}$ and \boldsymbol{F} $\boldsymbol{K}_{\boldsymbol{q}}(x, \boldsymbol{F}) = \partial_{\boldsymbol{F}} W(\boldsymbol{F}\boldsymbol{P}(x)^{-1}, \boldsymbol{P}(x), \boldsymbol{A}(x))(\boldsymbol{F}\boldsymbol{P}(x)^{-1})^{\mathsf{T}} \in \mathsf{T}_{1}^{*}\mathsf{GL}^{+}(\mathbb{R}^{d})$

Proposition 2. $\mathcal{E}(t, \boldsymbol{q}) < \infty$ implies $\mathcal{E}(\cdot, \boldsymbol{q}) \in C^{1}([0, T])$ with $\partial_{t}\mathcal{E}(t, \boldsymbol{q}) = \int_{\Omega} \boldsymbol{K}_{\boldsymbol{q}}(x, \nabla \varphi_{\text{Dir}}(t, y(x)) \nabla \boldsymbol{y}(x)) : \boldsymbol{V}(t, y(x)) \, dx,$ where $\boldsymbol{V}(t, \boldsymbol{y}) = (\nabla \varphi_{\text{Dir}}(t, \boldsymbol{y}))^{-1} \frac{\partial}{\partial t} \nabla \varphi_{\text{Dir}}(t, \boldsymbol{y}),$ and the following estimates hold: $|\partial_{t}\mathcal{E}(t, \boldsymbol{q})| \leq c_{1}^{\mathcal{E}}(\mathcal{E}(t, \boldsymbol{q}) + c_{0}^{E})$ and $|\partial_{t}\mathcal{E}(t_{1}, \boldsymbol{q}) - \partial_{t}\mathcal{E}(t_{2}, \boldsymbol{q})| \leq \widetilde{\omega}(|t_{2} - t_{1}|)(\mathcal{E}(t_{1}, \boldsymbol{q}) + c_{0}^{E}).$

Main Existence Result.

Under the following assumptions (only the major ones)

- W is a normal integrand and is lower semicontinuous,
- *W* polyconvex in \mathbf{F}_{el} and convex in $\mathbf{A} = \nabla \mathbf{P}$,

•
$$W(x, \mathbf{F}_{el}, \mathbf{P}, \mathbf{A}) \ge c(|\mathbf{F}_{el}|^{q_F} + |\mathbf{P}|^{q_P} + |\mathbf{A}|^r) - C,$$

•
$$\frac{1}{q_P} + \frac{1}{q_F} = \frac{1}{q_V} < \frac{1}{d}$$
, and $r > 1$,

- dissipation distance D as above,
- φ_{Dir} has extension with $\nabla \varphi_{\mathsf{Dir}}, \nabla \varphi_{\mathsf{Dir}}^{-1} \in \mathsf{BC}^0$,

for each stable initial state $\boldsymbol{q}_0 \in \mathcal{Q}$ there exists at least one energetic solution $\boldsymbol{q} : [0, T] \rightarrow \mathcal{Q}$ of $(\mathcal{Q}, \mathcal{E}, \mathcal{D})$ with $\boldsymbol{q}(0) = \boldsymbol{q}_0$.

$$(\mathsf{S}) \quad \forall \, \widetilde{\boldsymbol{q}} \in \mathcal{Q} : \, \, \mathcal{E}(t, \boldsymbol{q}(t)) \leq \mathcal{E}(t, \widetilde{\boldsymbol{q}}) + \mathcal{D}(\boldsymbol{q}(t), \widetilde{\boldsymbol{q}}),$$

(E) $\mathcal{E}(t, \boldsymbol{q}(t)) + \text{Diss}_{\mathcal{D}}(\boldsymbol{q}, [0, t]) = \mathcal{E}(0, \boldsymbol{q}(0)) + \int_{0}^{t} \partial_{s} \mathcal{E}(s, \boldsymbol{q}(s)) \, \mathrm{d}s.$

Overview

- 1. GSM and Plasticity
- 2. Finite-Strain Plasticity
- 3. Energetic formulation
- 4. Existence results

Conclusions

Using **full regularization** and **strong coercivity** the existence of energetic solutions can be shown for many plasticity models.

Geometry and functional analysis can be combined, if METRIC concepts for geoemtric evolution are used.

Using **full regularization** and **strong coercivity** the existence of energetic solutions can be shown for many plasticity models.

Geometry and functional analysis can be combined, if METRIC concepts for geoemtric evolution are used.

Thank you for your attention!

Papers available under http://www.wias-berlin.de/people/mielke

WIAC

Literature

Ortiz et al 1999, \ldots , Miehe et al 2002, \ldots

 $\rm M/THEIL/LEVITAS$ 1999, ARMA 2002, 2004

M. [CMT 2003] Energetic formulation of multiplicative elastoplasticity

M. [SIMA 2004] Existence of minimizers in incremental elastoplasticity

FRANCFORT/M. [JRAM 2006] Existence results for rate-independent material models. (based on DAL MASO ET AL)

 $\rm M/M\ddot{u}ller$ [ZAMM 2006] Lower semicontinuity and existence of minimizers for a functional in elastoplasticity

 $\rm MAINIK/M.$ 2008 WIAS Preprint 1299.