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Motion camouflage is a stealth strategy observed in nature. We formulate the problem as
a feedback system for particles moving at constant speed, and define what it means for
the system to be in a state of motion camouflage. (Here, we focus on the planar setting,
although the results can be generalized to three-dimensional motion.) We propose a
biologically plausible feedback law, and use a high-gain limit to prove the accessibility of
a motion-camouflage state in finite time. We discuss connections to work in missile
guidance. We also present simulation results to explore the performance of the motion-
camouflage feedback law for a variety of settings.
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1. Introduction

Motion camouflage is a stealth strategy employed by various visual insects and
animals to achieve prey capture, mating or territorial combat. In one type of
motion camouflage, the predator camouflages itself against a fixed background
object so that the prey observes no relative motion between the predator and the
fixed object. In the other type of motion camouflage, the predator approaches the
prey such that from the point of view of the prey, the predator always appears to
be at the same bearing. (In this case, we say that the object against which the
predator is camouflaged is a point at infinity.) The motion-camouflage strategy
serves to minimizemotion parallax cues that moving prey would be able to extract
from the apparent relative motion of objects at various distances (Srinivasan &
Davey 1995). For example, insects with compound eyes are quite sensitive to
optical flow (which arises from the transverse component of the relative velocity
between the predator and the prey), but are far less sensitive to looming (which
arises from the component of the relative velocity between the predator and the
prey along the line joining them). More broadly, such interactions may also apply
to settings of mating activity or territorial manoeuvre as well. In Srinivasan &
Davey (1995), it was suggested that the data on visually mediated interactions
between two hoverflies Syritta pipiens, obtained earlier by Collett & Land (1975),
support a motion-camouflage hypothesis. Later, Mizutani et al. (2003), observing
the territorial aerial manoeuvres of dragonflies Hemianax papuensis, concluded
that the flight pattern is motivated by motion camouflage (see fig. 1 in Mizutani
et al. 2003). See also Srinivasan & Zhang (2004) for a review of related themes in
insect vision and flight control.
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Motion camouflage can be used by a predator to stealthily pursue the prey, but
a motion-camouflage strategy can also be used by the prey to evade a predator.
The only difference between the strategy of the predator and the strategy of the
evader is that the predator seeks to approach the prey while maintaining motion
camouflage, whereas the evader seeks to move away from the predator while
maintaining motion camouflage. Besides explaining certain biological pursuit
strategies, motion camouflage may also be quite useful in certain military
scenarios (although the ‘predator’ and ‘prey’ labels may not be descriptive). In
some settings, as is the case in Collett & Land (1975), Srinivasan & Davey (1995)
and Mizutani et al. (2003), it is more appropriate to substitute the labels
‘shadower’ and ‘shadowee’ for the predator–prey terminology.

The essential geometry of motion camouflage (see §2a) is not limited to
encounters between visual insects. In a recent work on the neuroethology of
insect-capture behaviour in echolocating bats, a strategy geometrically
indistinguishable from motion camouflage is observed (Ghose et al. 2006).

In this work, we take a structured approach to derive feedback laws for motion
camouflage, which incorporates biologically plausible (vision) sensormeasurements.
Wemodel the predator and prey as point particlesmoving at constant (but different)
speeds, and subject to steering (curvature) control. For an appropriate choice of
feedback control law for one of the particles (as the other follows a prescribed
trajectory), a state of motion camouflage is then approached as the system evolves.
(In the situation where the predator follows a motion-camouflage law, and the speed
of the predator exceeds the speed of the prey, the predator is able to pass ‘close’ to the
prey in finite time. In practice, once the predator is sufficiently close to the prey, it
would change its strategy from a pursuit strategy to an intercept strategy.)

What distinguishes this work from an earlier study on motion-camouflage
trajectories in Glendinning (2004) is that we present biologically plausible feedback
laws leading to motion camouflage. Furthermore, unlike the neural-network
approach used in Anderson & McOwan (2003a) to achieve motion camouflage
using biologically plausible sensor data, our approach gives an explicit form for the
feedback law which has a straightforward physical interpretation.

The study of motion-camouflage problems also naturally extends earlier work
on interacting systems of particles, using the language of curves and moving
frames (Justh & Krishnaprasad 2002, 2003, 2005; Zhang et al. 2004).
2. Planar pursuit–evasion model

For concreteness, we consider the problem of motion camouflage in which the
predator (which we refer to as the ‘pursuer’) attempts to intercept the prey
(which we refer to as the ‘evader’) while it appears to the prey as if it is always at
the same bearing (i.e. motion camouflaged against a point at infinity). In this
model, we consider that the pursuer moves at unit speed in the plane, while the
evader moves at a constant speed n!1. The dynamics of the pursuer are given by

_rp Zxp;

_xp Zypup;

_yp ZKxpup;

9>=
>; ð2:1Þ
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Figure 1. Planar trajectories for the pursuer and evader, and their respective natural Frenet frames.
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where rp is the position of the pursuer, xp is the unit tangent vector to the
trajectory of the pursuer, yp is the corresponding unit normal vector (which
completes a right-handed orthonormal basis with xp), and the plane curvature up

is the steering control for the pursuer. Similarly, the dynamics of the evader are

_re Z nxe;

_xe Z nyeue;

_ye ZKnxeue;

9>=
>; ð2:2Þ

where re is the position of the evader, xe is the unit tangent vector to the
trajectory of the evader, ye is the corresponding unit normal vector and ue is the
steering control for the evader. Figure 1 illustrates equations (2.1) and (2.2).
Note that fxp;ypg and fxe;yeg are planar natural Frenet frames for the
trajectories of the pursuer and evader, respectively.

We model the pursuer and evader as point particles (confined to the plane), and
use natural frames and curvature controls to describe their motion, because this is
a simple model for which we can derive both physical intuition and concrete
control laws. (Furthermore, this approach generalizes nicely for three-dimensional
motion, as in Justh & Krishnaprasad (2005) and Reddy et al. (2006).) Flying
insects and animals (also unmanned aerial vehicles) have limited manoeuvrability
and must maintain sufficient airspeed to stay aloft, so that treating their motion as
constant speed with steering control is physically reasonable, at least for some
range of flight conditions. (Note that the steering control directly drives the
angular velocity of the particle, and hence is actually an acceleration input.
However, this acceleration is constrained to be perpendicular to the instantaneous
direction of motion, and therefore, the speed remains unchanged.)

We refer to (2.1) and (2.2) as the ‘pursuit–evader system’. In what follows, we
assume that the pursuer follows a feedback strategy to drive the system towards a
state of motion camouflage, and close in on the evader. The evader, on the other
hand, follows an open-loop strategy. The analysis we present for the pursuer
feedback strategy also suggests (with a sign change in the control law) how the
evader could use feedback and a motion-camouflage strategy to conceal its flight
from the pursuer. Ultimately, it would be interesting to investigate the game-
theoretic problem in which both the pursuer and the evader follow feedback
strategies, so that the system would truly be a pursuit–evader system. (What we
address in this work would be more properly described as a pursuer–pursuee
Proc. R. Soc. A (2006)
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system. However, we keep the pursuer–evader terminology because it sets the
stage for analysing the true pursuer–evader system, which we aim to discuss in a
future paper.)

Equations (2.1) and (2.2) represent curve evolution for two particles in the Lie
group SEð2Þ of rigid motions in the plane. In the setting of cooperative
interacting particles, generalization to the three-dimensional setting is developed
in Justh & Krishnaprasad (2005).
(a ) Motion camouflage with respect to a point at infinity

Motion camouflage with respect to a point at infinity is given by

rp Z reClrN; ð2:3Þ

where rN is a fixed unit vector and l is a time-dependent scalar (see also §5 in
Glendinning (2004)). In the rest of this paper, it should be understood that by
‘motion camouflage’ we mean with respect to a point at infinity (see, however, §6).

Let
r Z rpKre; ð2:4Þ

be the vector from the evader to the pursuer. We refer to r as the ‘baseline
vector’, and jrj as the ‘baseline length’. We restrict our attention to non-collision
states, i.e. rs0. In that case, the component of the pursuer velocity _rp

transverse to the base line is

_rpK
r

jrj $ _rp

� �
r

jrj ;

and similarly, that of the evader is

_reK
r

jrj $ _re

� �
r

jrj :

The relative transverse component is

wZ ð _rpK _reÞK
r

jrj $ð _rpK _reÞ
� �

r

jrj Z _rK
r

jrj $ _r
� �

r

jrj : ð2:5Þ

Lemma 2.1 Infinitesimal characterization of motion camouflage.The pursuit–
evasion system (2.1) –(2.2) is in a state of motion camouflage without collision on
an interval iff wZ0 on that interval.

Proof. ð0Þ Suppose motion camouflage holds. Thus,

rðtÞZ lðtÞrN; t2½0;T �: ð2:6Þ
Differentiating, _rZ _lrN. Hence, noting that jljs0 under non-collision,

wZ _rK
r

jrj $ _r
� �

r

jrj Z
_lrNK

l

jlj rN$
_lrN

� �
l

jlj rNZ 0 on ½0;T �: ð2:7Þ

ð*Þ Suppose wZ0 on ½0;T �. Thus,

_r Z
r

jrj $ _r
� �

r

jrjbxr; ð2:8Þ
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so that

rðtÞZ exp

ðt
0
xðsÞds

� �
rð0ÞZ jrð0Þjexp

ðt
0
xðsÞds

� �
rð0Þ
jrð0Þj Z lðtÞrN; ð2:9Þ

where rNZrð0Þ=jrð0Þj and lðtÞZ jrð0Þjexpð
Ð t
0 xðsÞdsÞ. &

It follows from lemma 2.1 that the set of all motion-camouflage states
constitutes a five-dimensional smooth manifold with two connected components
(one corresponding to approach and the other corresponding to retreat), each
diffeomorphic toS1!R!SEð2Þ in the six-dimensional state spaceSEð2Þ!SEð2Þ of
the problem. In practice, we are interested in knowing how far is the pursuit–evasion
system from a state of motion camouflage. Inwhat follows, we offer ameasure of this.
(b ) Cost function

Consider the ratio

GðtÞZ
d
dt jrj
dr
dt

�� �� ; ð2:10Þ

which compares the rate of change of the baseline length to the absolute rate of
change of the baseline vector. If the baseline experiences pure lengthening, then
the ratio assumes its maximum value, GðtÞZ1. If the baseline experiences
pure shortening, then the ratio assumes its minimum value, GðtÞZK1. If the
baseline experiences pure rotation, but remains of the same length, then GðtÞZ0.
Noting that

d

dt
jrjZ r

jrj $ _r; ð2:11Þ

we see that GðtÞ may alternatively be written as

GðtÞZ r

jrj $
_r

j _rj

� �
: ð2:12Þ

Thus, GðtÞ is the dot product of two unit vectors: one in the direction of r, and
the other in the direction of _r. Note that G is well defined except at rZ0, since

1Kn% j _rjZ jxpKnxej%1Cn: ð2:13Þ

For convenience, we define the notation qt to represent the vector q rotated
counter-clockwise in the plane by an angle p=2. Thus, for example, xt

p Zyp. The
transverse component w of relative velocity, expression (2.5), then becomes

w Z _rK
r

jrj $ _r
� �

r

jrj Z
r

jrj

� �t
$ _r

� �
r

jrj

� �t
ZK

r

jrj $ _r
t

� �
r

jrj

� �t
: ð2:14Þ

For convenience, we define w to be the (signed) magnitude of w, i.e.

w Zw$
r

jrj

� �t
ZK

r

jrj $ _r
t

� �
; ð2:15Þ
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and refer also to w as the transverse component of the relative velocity. From the
orthogonal decomposition

r

jrj Z
r

jrj $
_r

j _rj

� �
_r

j _rj

� �
C

r

jrj $
_r

j _rj

� �t� �
_r

j _rj

� �t

; ð2:16Þ

it follows that

1Z
r

jrj $
_r

j _rj

� �2
C

r

jrj $
_r

j _rj

� �t� �2
ZG2 C

jwj2

j _rj2
: ð2:17Þ

Thus, ð1KG2Þ is a measure of departure from motion camouflage.
(c ) Feedback law derivation

Differentiating G along trajectories of (2.1) and (2.2) gives

_GZ
_r$ _rCr$€r

jrjj _rj

� �
K

r$ _r

j _rj

� �
r$ _r

jrj3
� �

K
r$ _r

jrj

� �
r$€r

j _rj3
� �

Z
j _rj
jrj 1K

r

jrj $
_r

j _rj

� �2� �
C

1

j _rj
r

jrjK
r

jrj $
_r

j _rj

� �
_r

j _rj

� �
$€r : ð2:18Þ

From (2.4) we obtain

_rt ZypKnye; ð2:19Þ

and

€r ZypupKn2yeue: ð2:20Þ

Also,

r

jrjK
r

jrj $
_r

j _rj

� �
_r

j _rj

� �
Z

r

jrj $
_r

j _rj

� �t� �
_r

j _rj

� �t

Z
1

j _rj2
r

jrj $ _r
t

� �
_rt: ð2:21Þ

Then, from (2.18), we obtain

_GZ
j _rj
jrj 1K

r

jrj $
_r

j _rj

� �2" #
C

1

j _rj
r

jrjK
r

jrj $
_r

j _rj

� �
_r

j _rj

� �
$ðypupKn2yeueÞ

Z
j _rj
jrj

1

j _rj2
r

jrj $ _r
t

� �2
" #

C
1

j _rj
1

j _rj2
r

jrj $ _r
t

� �
_rt

� �
$ðypupKn2yeueÞ: ð2:22Þ

Noting that

_rt$yp Z _r$xp Z 1Knðxp$xeÞR1KnO0; ð2:23Þ

and

_rt$ye Z _r$xe Z ðxp$xeÞKn; ð2:24Þ
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we obtain

_GZ
j _rj
jrj

1

j _rj2
r

jrj $ _r
t

� �2� �
C

1

j _rj
1

j _rj2
r

jrj $ _r
t

� �� �
ð1Knðxp$xeÞÞup

C
1

j _rj
1

j _rj2
r

jrj $ _r
t

� �� �
ðnK ðxp$xeÞÞn2ue: ð2:25Þ

Suppose that we take

up ZKm
r

jrj $ _r
t

� �
C

ðxp$xeÞKn

1Knðxp$xeÞ

� �
n2ue; ð2:26Þ

where mO0, so that the steering control for the pursuer consists of two terms: one
involving the motion of the evader, and the other involving the transverse
component of the relative velocity. Then,

_GZK
m

j _rj ð1Knðxp$xeÞÞK
j _rj
jrj

� �
1

j _rj
r

jrj $ _r
t

� �� �2
; ð2:27Þ

and for any choice of mO0, there exists roO0 such that

m

j _rj ð1Knðxp$xeÞÞK
j _rj
jrjO0; ð2:28Þ

for all r such that jrjOro. Thus, for control law (2.26),

_G%0; cjrjOro: ð2:29Þ
3. The high-gain limit

Control law (2.26) has the nice property that for any value of the gain mO0,
there is a disc of radius ro (depending on m) such that _G%0 outside the disc.
However, the problem with (2.26) is that the pursuer needs to know (i.e. sense
and estimate) the evader’s steering programme ue. Here we show that by taking
m as sufficiently large, motion camouflage can be achieved (in a sense we will
make precise) using a control law depending only on the transverse relative
velocity,

up ZKm
r

jrj $ _r
t

� �
; ð3:1Þ

in place of (2.26), provided juej is bounded. Comparing (3.1) to (2.15), we see
that, indeed, up is proportional to the signed length of the relative transverse
velocity vector. We will designate this as the motion camouflage proportional
guidance (MCPG) law for future reference (see §5).

As is further discussed in §5, (3.1) requires range information as well as pure
optical flow sensing. However, the range information can be coarse since range
errors (within appropriate bounds) have the same effect in (3.1) as gain variations.
We say that (3.1) is biologically plausible because the only critical sensor
measurement required is optical flow sensing. Optical flow sensing does not yield
the relative transverse velocity directly, but rather the angular speed of the image
Proc. R. Soc. A (2006)
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of the evader across the pursuer’s eye. In fact, it is the sign of the optical flow that
is most critical to measure correctly, since errors in the magnitude of the optical
flow, like range errors, only serve to modulate the gain in (3.1).

For biological systems, the capabilities of the sensors vis-à-vis the sensing
requirements for implementing (3.1) constrain the range of conditions for which
(3.1) represents a feasible control strategy. In the high-gain limit we focus on
below, the sensor noise (which is amplified by the high gain) would be expected
to have significant impact. However, to illustrate the essential behaviour, here we
neglect both sensor limitations and noise.

(a ) Bounds and estimates

Let us consider control law (3.1), and the resulting behaviour of G as a
function of time. From (2.25), we obtain the inequality

_GZK
m

j _rj ð1Knðxp$xeÞÞK
j _rj
jrj

� �
1

j _rj
r

jrj $ _r
t

� �� �2

C
1

j _rj
1

j _rj2
r

jrj $ _r
t

� �� �
ðnK ðxp$xeÞÞn2ue

%Kð1KG2Þ m

j _rj ð1Knðxp$xeÞÞK
j _rj
jrj

� �
C

1

j _rj2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KG2

p
jðnK ðxp$xeÞÞn2uej

%Kð1KG2Þ m

j _rj ð1KnÞKj _rj
jrj

� �
Cð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KG2

p
Þ n

2ð1CnÞðmaxjuejÞ
j _rj2

%Kð1KG2Þ m
1Kn

1Cn

� �
K

1Cn

jrj

� �
Cð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KG2

p
Þ n2ð1CnÞðmaxjuejÞ

ð1KnÞ2
� �

; ð3:2Þ

where we have used (2.13). For convenience, we define the constant c1O0 as

c1 Z
n2ð1CnÞðmaxjuejÞ

ð1KnÞ2
: ð3:3Þ

For any mO0, we can define roO0 and coO0 such that

mZ
1Cn

1Kn

� �
1Cn

ro
Cco

� �
; ð3:4Þ

(and it is clear that many such choices of ro and co exist). Note that (3.4) implies

mR
1Cn

1Kn

� �
1Cn

jrj Cco

� �
; cjrjRro: ð3:5Þ

Thus, for jrjRro, (3.2) becomes

_G%Kð1KG2Þ 1Cn

1Kn

� �
1Cn

jrj Cco

� �
1Kn

1Cn

� �
K

1Cn

jrj

� �
Cð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KG2

p
Þc1

ZKð1KG2Þco Cð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KG2

p
Þc1: ð3:6Þ
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Suppose that given 0!e/1, we take coR2c1=
ffiffi
e

p
. Then, for ð1KG2ÞOe,

_G%Kð1KG2Þco Cð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KG2

p
Þc1 ZKð1KG2Þ coK

c1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1KG2

p
� �

%Kð1KG2Þ coK
c1ffiffi
e

p
� �

ZKð1KG2Þc2; ð3:7Þ

where

c2 Z coK
c1ffiffi
e

p O0: ð3:8Þ

Remark 3.1. There are two possibilities for

ð1KG2Þ%e: ð3:9Þ
The state we seek to drive the system toward has GzK1; however, (3.9) can also
be satisfied for Gz1. (Recall thatK1%G%1.) There is always a set of initial
conditions such that (3.9) is satisfied with Gz1. We can address this issue as
follows: let eoO0 denote how close to K1 we wish to drive G, and let G0ZGð0Þ
denote the initial value of G. Take

eZminðeo; 1KG2
0Þ; ð3:10Þ

so that (3.7) with (3.8) applies from time tZ0.

From (3.7), we can write
dG

1KG2
%Kc2dt; ð3:11Þ

which, on integrating both sides, leads toðG
G0

d~G

1K~G
2
%Kc2

ðt
0
d~t ZKc2t; ð3:12Þ

where G0ZGðtZ0Þ. Noting thatðG
G0

d~G

1K~G
2
Z

ðG
G0

dðtanhK1 ~GÞZ tanhK1 GKtanhK1 G0; ð3:13Þ

we see that for jrjRro, (3.7) implies

GðtÞ%tanhðtanhK1 G0Kc2tÞ; ð3:14Þ
where we have used the fact that tanhK1ð$Þ is a monotone increasing function.

Now we consider estimating how long jrjRro, which in turn determines how
large t can become in inequality (3.14), and hence how close to K1 will GðtÞ be
driven. From (2.12), we have

d

dt
jrjZGðtÞj _rj; ð3:15Þ

which from (2.13) and jGðtÞj%1,ct, implies

d

dt
jrjRKjGðtÞjð1CnÞRKð1CnÞ: ð3:16Þ
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From (3.16), we conclude that

jrðtÞjR jrð0ÞjK ð1CnÞt; ctR0; ð3:17Þ

and, more to the point,

jrðtÞjRro; ct%
jrð0ÞjKro

1Cn
: ð3:18Þ

For (3.18) to be meaningful for the problem at hand, we assume that jrð0ÞjOro.
Then, defining

T Z
jrð0ÞjKro

1Cn
O0; ð3:19Þ

to be the minimum interval of time over which we can guarantee that _G%0, we
conclude that

GðTÞ%tanhðtanhK1 G0Kc2TÞ: ð3:20Þ
From (3.20), we see that by choosing c2 to be sufficiently large (which can be

accomplished by choosing coR2c1=
ffiffi
e

p
to be sufficiently large), we can force

GðTÞ%K1Ce. Noting that

tanhðxÞ%K1Ce5x%
1

2
ln

e

2Ke

� �
; ð3:21Þ

for 0!e/1, we see that

GðTÞ%K1Ce*tanhK1 G0Kc2T%
1

2
ln

e

2Ke

� �
: ð3:22Þ

Thus, if coR2c1=
ffiffi
e

p
is taken to be sufficiently large such that

c2Rð1CnÞ
tanhK1 G0K

1
2 ln

e
2Ke

	 

jrð0ÞjKro

; ð3:23Þ

then we are guaranteed (under the conditions mentioned in the above
calculations) to achieve Gðt1Þ%K1Ce at some finite time t1%T .
(b ) Statement of result

Definition 3.2. Given the system (2.1)–(2.2) with G defined by (2.12), we say
that ‘motion camouflage is accessible in finite time’ if for any eO0 there exists a
time t1O0 such that Gðt1Þ%K1Ce.

Proposition 3.3. Consider the system (2.1)–(2.2) with G defined by (2.12), and
control law (3.1), with the following hypotheses:

(A1) 0!n!1 (and n is constant),
(A2) ue is continuous and juej is bounded,
(A3) G0ZGð0Þ!1, and
(A4) jrð0ÞjO0.

Motion camouflage is accessible in finite time using high-gain feedback (i.e. by
choosing mO0 sufficiently large).
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Proof. Choose roO0 such that ro! jrð0Þj. Choose c2O0 sufficiently large so
as to satisfy (3.23), and choose co accordingly to ensure that (3.7) holds for
GOK1Ce. Then, defining m according to (3.4) ensures that GðTÞ%K1Ce, where
TO0 is defined by (3.19). &

Remark 3.4. Assumption (A 1) can be generalized to 0%n!1. (The case nZ0
corresponds to a stationary ‘evader’, so that the natural Frenet frame (2.2) and
steering control ue for the evader are not defined.)
4. Simulation results

The following simulation results illustrate the behaviour of the pursuit–evasion
system (2.1)–(2.2), under the control law (3.1) for the pursuer and various open-
loop controls for the evader. The simulations also confirm the analytical results
presented earlier. Figure 2 shows the behaviour of the system for the simplest
evader behaviour, ueZ0, which corresponds to straight-line motion. Because
control law (3.1) is the same as (2.26) when ueZ0, G tends monotonically towards
K1 (for the initial conditions and choice of gain m used in the simulation shown).
In figure 2, as in the subsequent figures showing pursuer and evader trajectories,
the solid light lines connect the pursuer and evader positions at evenly spaced time
instants. For a pursuit–evasion system in a state of motion camouflage, these lines
would all be parallel to one another. Also, each simulation is run for a finite time,
at the end of which the pursuer and evader are in close proximity. (The ratio of
speeds is nZ0:9 in all the simulations shown.)

Figure 3 illustrates the behaviour of the pursuer for a sinsusoidally varying
steering control ue of the evader, and the corresponding behaviour of GðtÞ.
Increase in the value of the feedback gain m by a factor of three is observed to
decrease the peak difference between G and K1 by a factor of about 32Z9. This
is consistent with the calculations in the proof of proposition 3.3. Figure 4
illustrates the behaviour of the pursuer for a randomly varying steering control
ue of the evader, as well as the corresponding behaviour of GðtÞ. Similar to
figure 3, figure 4 shows that increase in the feedback gain m by a factor of three
decreases the peak difference between G and K1 by a factor of about 32Z9.
Figure 4 also shows the value of initial transient in GðtÞ for t as small. As would
be expected, increase in the gain m increases the convergence rate. Figure 5
suggests a graceful degradation in performance in the presence of sensor noise—a
key requirement for biological plausibility.
5. Connections to missile guidance

There is a vast literature on the subject of missile guidance in which the problem
of pursuit of a (evasively) manoeuvring target by a tactical missile is of central
interest. A particular class of feedback laws, known as pure proportional
navigation guidance (PPNG) occupies a prominent place (Shneydor 1998). For
planar missile–target engagements, the PPNG law determining the steering
control for the missile/pursuer is

uPPNG ZN _l; ð5:1Þ
Proc. R. Soc. A (2006)



Figure 2. (a) Straight-line evader trajectory (dashed dark line), and the corresponding pursuer
trajectory (solid dark line) evolving according to (2.1) with control given by (3.1). (b) An
alternative pursuit law based on following a direct bearing towards the evader, shown for the same
duration of time and the same initial conditions as in (a). Because strategy (3.1) is time optimal,
while the direct-bearing law is not, the direct-bearing law requires longer time to achieve the same
separation tolerance (about 1.7 times as long in this simulation). For the evader following a
straight-line path, both the motion camouflage and classic pursuit (i.e. direct-bearing) strategies
can be integrated explicitly and compared as in Glendinning (2004).

–0.90
–0.91
–0.92
–0.93
–0.94
–0.95
–0.96
–0.97

–0.98
–0.99
–1.00

(a) (b)

Figure 3. (a) Evader trajectory with sinusoidally varying steering input (dashed dark line), and the
corresponding pursuer trajectory (solid dark line) evolving according to (2.1) with control given by
(3.1). (b) The corresponding cost function GðtÞ given by (2.12), plotted as a function of time. The
two traces correspond to different values of gain m: the value of m is three times as large for the dark
trace as for the light trace. (The trajectories corresponding to the two different gains are
qualitatively similar; (a) actually corresponds to the lower value of m.).
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where _l denotes the rate of rotation (in the plane) of the line-of-sight vector from
the pursuer to the evader (not to be confused with the l in §2a). Here the gain N
is a dimensionless positive constant known as the navigation constant. Note that
our motion camouflage proportional guidance (MCPG) law given by (3.1) has a
gain m, which has the dimensions of ½LENGTH�K1. Also, it is easy to see that

_lZ
w

jrj ZK
1

jrj
r

jrj $ _r
t

� �
: ð5:2Þ
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Figure 4. (a) Evader trajectory with randomly varying steering input (dashed dark line), and the
corresponding pursuer trajectory (solid dark line) evolving according to (2.1) with control given by
(3.1). (b) The corresponding cost function GðtÞ given by (2.12), plotted as a function of time. The
two traces correspond to different values of gain m: the value of m is three times as large for the dark
trace as for the light trace. (The trajectories corresponding to the two different gains are
qualitatively similar; (a) actually corresponds to the lower value of m.) (c) The cost function GðtÞ
given by (2.12), plotted as a function of time, for 1/200th of the time-interval of (b). The two traces
correspond to different values of gain m: the value of m is three times as large for the dark trace as
for the light trace. Because similar initial conditions were used, the expanded time-scale plot of
GðtÞ corresponding to figure 3 is very similar. (The time axes for (b) and (c) differ by a factor of 200,
which is why the initial transient cannot be seen in (b).)
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So, to make a proper comparison we let ro as in §3 be a length-scale for the
problem and define the dimensionless gain

NMCPG Zmro: ð5:3Þ
Thus, our MCPG law takes the form

uMCPG ZNMCPG jrj
ro

_l: ð5:4Þ

It follows that motion camouflage uses range information to support a high gain
in the initial phase of the engagement, ramping down to a lower value in the
terminal phase ðjrjzroÞ. In nature, this extra freedom of gain control is
particularly relevant for echolocating bats (see Ghose et al. 2006), which have
remarkable ranging ability.
Proc. R. Soc. A (2006)
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Figure 5. (a) Evader trajectory as in figure 4 (dashed dark line), and the corresponding pursuer
trajectory (solid dark line) using control law (3.1), but with noisy measurements. R

2-valued
independent identically distributed (iid) discrete-time Gaussian noise process with zero mean and
covariance matrix diagðs2; s2Þ, sZ0:15jrj, is added to the true relative position r at each
measurement instant. Similarly, R2-valued iid discrete-time Gaussian noise process with zero mean
and covariance matrix diagð~s2; ~s2Þ, ~sZ0:15j _rj, is added to the true relative velocity _r at each
measurement instant. These two measurement processes are then used by the pursuer to compute
(3.1). The position measurements are superimposed on the true trajectory of the evader, and it can
be seen that the absolute measurement error decreases as the relative distance jrj becomes small.
In this simulation, the gain mZ1, the measurement interval is approximately 0.5 time units (during
which a constant steering control up is applied), the pursuer moves at unit speed, and the total
simulation time is approximately 1500 time units. (b) The corresponding cost function GðtÞ given
by (2.12), plotted as a function of time. Compared to figure 4(b) (light trace), there is somewhat
more deviation from GðtÞZK1, the state of motion camouflage, as a result of the measurement noise.
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Analysis of the performance of the PPNG law is carried out inHa et al. (1990) and
Oh&Ha (1999), using arguments similar to ours (although our sufficient conditions
appear to be weaker). While motion camouflage as a strategy is discussed in
Shneydor (1998), under ‘parallel navigation’, to the best of our knowledge, the
currentwork is thefirst topresent andanalyse a feedback law formotion camouflage.
6. Directions for further work

In work under preparation, we have generalized the analysis to the case of planar
motion camouflage with respect to a fixed background object (finite point). This
requires a feedback law more complicated than (3.1), since the pursuer needs to
keep track of the background object in addition to the evader. We have also
generalized the analysis of motion camouflage (with respect to a point at infinity)
to the three-dimensional setting (Reddy et al. 2006). The three-dimensional
analysis is made possible by the use of natural Frenet frames, analogously to the
three-dimensional unit-speed particle interaction laws described in Justh &
Krishnaprasad (2005).

Because we are able to treat the motion-camouflage problem within the same
framework as our earlier formation control and obstacle-avoidance work (Justh &
Krishnaprasad 2002, 2003, 2005; Zhang et al. 2004), we would like to understand
how teams of vehicles can make use of motion camouflage, and whether we can
Proc. R. Soc. A (2006)



3643Steering laws for motion camouflage
determine the convergence behaviour of such systems.Various biologically inspired
scenarios for motion camouflage with teams have been described in Anderson &
McOwan (2003b). Considering additional military applications without biological
analogues, there are thus a variety of team motion-camouflage problems to study.
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