
Large-scale atmospheric circulation, semi-geostrophic motion and
Lagrangian particle methods

Sebastian Reich

(joint work with Colin Cotter (Imperial College London))

The compressible non-viscous Euler equations provide the starting point for mod-
eling atmospheric and ocean dynamics [5, 6]. Given typical length and time-scales
for global circulation patterns, approximations are often employed which filter non-
significant flow patterns from the equations of motion. Among the most popular
and useful approximations are the hydrostatic and the semi-geostrophic approxi-
mations, which reads [5]
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A practical implication in the northern hemisphere is that pressure increases to
the right if you stand with our back to the wind.

The semi-geostrophic equations make use of the geostrophic wind approxima-
tion in a particularly clever way giving rise to many interesting underlying geo-
metric features including links to optimal transportation, variational mechanics
and constraint dynamics. One can explain these ideas by going first to the shallow
water equations and then further on to a single fluid parcel approximation

ṗ = J2p− ε∇µ(τ,q), J2 =
(

0 1
−1 0

)
,

q̇ = p,

with state variable z = (qT ,pT )T ∈ R4, µ a given (time-dependent) potential, and
the small parameter ε > 0. The associated “semi-geostrophic” equations are given
by

ṗg = J2p− ε∇µ(τ,q),(1)
q̇ = p,(2)

with geostrophic “wind” pg = −εJ2∇µ(τ,q). For time-independent µ (which we
assume from now on), the energy

E =
1
2
‖pg‖2 + εµ(q)

is preserved.
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Much insight into the semi-geostrophic approximation has been gained by the
Hoskins’ transformation [5]

qε = q + ε∇µ(q) = q + J2pg,

which leads to the following equation in the transformed variable qε:

(3) q̇ε = −εJ2∇µ(q).

It turns out that the Hoskin’s transform is linked to an optimal transportation
problem. See [5] for the fascinating details.

While the semi-geostrophic equations are well studied much less is known about
its range of validity in terms of the small parameter ε. Improved semi-geostrophic
models can be found in [6]. More recently, asymptotic expansions have been
considered within the Lagrangian variational framework in [8, 9].

A different approach has been taken in [3], which applies Hamiltonian normal
form theory to the gyroscopic particle problem (1)-(2), i.e., one finds a canonical
near-identity change of coordinates Ψn : zε → z so that

(4) Hn = H0 ◦Ψn = K + εGn + εn+1Rn,

where

(5) {Gn,K} = 0, K =
1
2
‖pε‖2,

with {·, ·} being the Poisson bracket for (1)-(2). Optimal truncation in the in-
dex n yields the desired exponential dependence on ε and the preservation of
“geostrophic/gyroscopic” balance over exponentially long periods of time.

As a consequence of (4) and (5), we may consider the reduced equations

0 = ṗε = J2∇pGn(qε, 0)− εGn(qε, 0),
q̇ε = ∇pGn(qε, 0),

for initial conditions satisfying p0 = 0. These equations are equivalent to

q̇ε = −εJ2∇qGn(qε, 0)

and the leading order term coincide with Hoskin’s transformed equation (3).
Furthermore, the normal form estimates remain valid for many particle systems

of type (1)-(2), which couple through a multi-particle potential µ(q1, . . .qN ). This
observation allows one to go back to the continuum limit by first considering
finite dimensional particle approximations of the shallow-water equations (see,
e.g., [1, 2]. The continuum limit gives rise to a set of regularized fluid equations
which can be interpreted as Euler’s equations subject to a regularized pressure
field [7]. Similar pressure regularizations arise from semi-implicit time-stepping
methods, which are widely used in numerical weather prediction. See [4] and
references therein.
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