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The compressible non-viscous Euler equations provide the starting point for mod-
eling atmospheric and ocean dynamics [5, 6]. Given typical length and time-scales
for global circulation patterns, approximations are often employed which filter non-
significant flow patterns from the equations of motion. Among the most popular
and useful approximations are the hydrostatic and the semi-geostrophic approxi-
mations, which reads [5]
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A practical implication in the northern hemisphere is that pressure increases to
the right if you stand with our back to the wind.

The semi-geostrophic equations make use of the geostrophic wind approxima-
tion in a particularly clever way giving rise to many interesting underlying geo-
metric features including links to optimal transportation, variational mechanics
and constraint dynamics. One can explain these ideas by going first to the shallow
water equations and then further on to a single fluid parcel approximation
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with state variable z = (q7, p?)T € R*, i1 a given (time-dependent) potential, and
the small parameter € > 0. The associated “semi-geostrophic” equations are given
by
(1) pg = J2P - €VIU’(T1 q)7
with geostrophic “wind” py = —eJoVu(7,q). For time-independent p (which we
assume from now on), the energy
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is preserved.



Much insight into the semi-geostrophic approximation has been gained by the
Hoskins’ transformation [5]

9: = q+¢eVu(q) = q+ Japg,

which leads to the following equation in the transformed variable q.:

(3) qe = -2V u(q).

It turns out that the Hoskin’s transform is linked to an optimal transportation
problem. See [5] for the fascinating details.

While the semi-geostrophic equations are well studied much less is known about
its range of validity in terms of the small parameter €. Improved semi-geostrophic
models can be found in [6]. More recently, asymptotic expansions have been
considered within the Lagrangian variational framework in [8, 9.

A different approach has been taken in [3], which applies Hamiltonian normal
form theory to the gyroscopic particle problem (1)-(2), i.e., one finds a canonical
near-identity change of coordinates W, : z. — z so that
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with {-,-} being the Poisson bracket for (1)-(2). Optimal truncation in the in-
dex n yields the desired exponential dependence on e and the preservation of
“geostrophic/gyroscopic” balance over exponentially long periods of time.

As a consequence of (4) and (5), we may consider the reduced equations

Ozps = J2VpGn(CIE;O)_5Gn(anO)>
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for initial conditions satisfying pg = 0. These equations are equivalent to
qe = _EJQVan(QEa 0)

and the leading order term coincide with Hoskin’s transformed equation (3).

Furthermore, the normal form estimates remain valid for many particle systems
of type (1)-(2), which couple through a multi-particle potential 1(qq, . ..qn). This
observation allows one to go back to the continuum limit by first considering
finite dimensional particle approximations of the shallow-water equations (see,
e.g., [1, 2]. The continuum limit gives rise to a set of regularized fluid equations
which can be interpreted as Euler’s equations subject to a regularized pressure
field [7]. Similar pressure regularizations arise from semi-implicit time-stepping
methods, which are widely used in numerical weather prediction. See [4] and
references therein.
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