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(Courant and Weinstein [1988]) is an idea
of synthesizing (not necessar-
ily closed, and possibly degenerate) and

(brackets that need not satisfy Jacobi identity).

An Dirac structure on P is a subbundle
DpCcTP® TP
such that Dp = D3, where, for each z € P,
D+(z) = {(uy, 8,) € T,P x T*P]

( (g, az), (g, Br) ) = Qulug) + Bulvy) =0,
for all (v, ) € Dp(x)}.

An satisfies
(£x,00, X3) + (L x,03, X1) + (Lx,01, Xo) =0,
for all (X7, aq), (Xs, as), (X3, ag) that take values in Dp.
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Relevant with as Dirac
11950] originally started his theory of constraints. However, not
enough studied from the view point of Lagrangian systems.

On the Hamiltonian side, an
was defined by van der Schaft and Maschke [1995] as a

triple (H, Dp, X) that satisfies
(X, dH) c Dp.

On the Lagrangian side, an
was defined by Yoshimura and Marsden|2006| as a triple

(L, Dp, X), where X : TQ & T*Q — TT*Q, that satisfies
(X, dE’Tp) c Dp,

where E(q,v,p) = (p,v) — L(g, v).

Applications to interconnected systems of multiport networks
such as with Dirac constraints as well as
with nonholonomic constraints.
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oped by Livens [1919]) is given by
(%)

0 [ 1L(q(t),v(t)) + p(t) - (4(t) —v(t))} dt =0

A
with the fixed endpoints ¢(t). One can obtain the

)
p_ava q_vv p_aq

was studied by Courant,
Dorfman, van der Schaft, Blankenstein and Ratiu (singular
case), etc..., most of those are based on some generalization
from the construction of Lie-Poisson structures.

Namely, letting G be a Lie group and g be a Lie algebra, the
canonical Dirac structure on T*G can be reduced to a Dirac
structure on g* by using the
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where ¢ = ¢g71¢ € g and the variations are given by
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dol .ol
dtog  ~ ¢
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Lie-Poisson Variational Principle

Let H be a left invariant Hamiltonian on T*G and let h = H|g*
be a reduced Hamiltonian, where TG = G X g*.
1S given by

i | {(ult), E(8)) — h(u(t))} dt =0,

where £ = g7'g € gand u =T L, p € g* and the variation of
¢ is given by 06 = n+ £, n|, with the fixed endpoint boundary
conditions n(t;) = n(ty) = 0.
Then, it leads to

h d,u
ou’ dt

which are to be equivalent with

0
§ — — adg:ua

This reduction procedure of Lie-Poisson Variational Principle
is done on the
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assoclated with Hamiltonian

reduction on the cotangent bundle; see Montgomery, Marsden
and Ratiu[1984| and Montgomery|1986.

IMMOR 2007]

Let H : T*() — R be a left invariant Hamiltonian with a Lie

ecroup G acting freely and properly on (). Choose a principal
connection A on the Q — Q/G.

The key idea lies in the connection dependent isomorpshim
T°Q/G =, T*(Q/G) & §".

Reduced Hamilton’s equations on this space are called
and for the case () = G, it leads
to ((CMPR2003]).
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on the tangent bundles: Marsden
and Scheurle [1993] developed a Lagrangian analogue of the
Hamiltonian reduction on the cotangent bundle by using the
so-called

Let L be a left invariant Lagrangian on T'C) with a Lie group G
acting freely and properly on (), such that there is a
Q) — Q/G, and we choose a principal connection A.

The key idea lies in the connection dependent isomorpshim
TQ/G=TQ/G) 8.

Reduced variational principle of Hamilton was developed in

Reduced Euler-Lagrange equations on this space are called

and for the case () = G,
it leads to
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How can we develop reduction of
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How can we construct the and
throughout the reduced Dirac structure 7

Is there any associated with the La-
erangian and Hamiltonian reduction accompanied with the re-
duced Dirac structures 7

Let us first go to see the



Hamilton—Pontryagin Principle

Let L : TG — R be aleft Lagrangian and recall the
1s given by
()

0 [ 1L(g(t),v(t)) + p(t) - (g(t) —v(t))} dt = 0.

t



Hamilton—Pontryagin Principle

Let L : TG — R be aleft Lagrangian and recall the
1s given by
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Hamilton—Pontryagin Principle

Let L : TG — R be aleft Lagrangian and recall the
1s given by

ﬁ[?ﬁ@@ﬂw»+mwwmw—v@ndhﬂm

may be described by

5t2ﬂm@D+Mﬂ%ﬂﬂ—n®ﬂcﬁzo

with 0§(t) = ¢(2) + [£(¢), C(t)] and ((t1) = ¢(t2) = 0.

It follows

ol | )
=50 E=mn, f=adep.
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Invariance of Dirac Structures

The on P =T"G is given by
D =graphQ C TP T™P.

In view of the

AN P=TG—Gxg,
a Dirac structure D on G X g* can be naturally defined.
Let @ denote the G—action on G X g*, so that

®p(g, 1) = (hg, p).

The Dirac structure D is to be , since

(P4 X, (P3) ') € D
holds for all (X, ) € D.
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Lie-Dirac Reduction

One can obtain the of D by G as

Dl = D/G C (TP&T*P)/G,

where | D] is a Dirac structure on the bundle
TP/G=g"xV

over P/G = g*, which is the
Don P=T"G.

For each € g*, it follows that |D]g(u) is given by

[Dla(p) ={((&, ), (n,§) eV V"]
v+ k= adgp},
where V' =g & ¢g~.
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Define the on G XV by

The quotient of dF is the map

dE]g:V =V xg"x V7
which is given by, for each (n, u) € V,
[dE]c(n, p) = (n,u,O, ,77> .
Since OF/On = 0 naturally induces the
p=0l/on e g,
the of [dE]g to g* x V is given by
[dE]G(na N)’g*xv — (,LL, 07 77) S g* x V™.
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The
X:TGoaTG— TTG,
1s given by
X(g,v.p) = (90,9, D),

where ¢ and p are functions of (g, v, p). Notice that X is left
invariant as

h-X(g,v,p) = X(hg, TyLy - v, T, Ly - p).

The 1S given by
the quotient

[X]GIV%Q*XV,
which is denoted by

Xla(n, 1) = (m,u) cg-xV.

Here, note that £ and f are functions of (n, ).
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Euler-Poincaré-Dirac Reduction

The
(L, D, X) is given by a triple

(I, [Dle, [Xle)
that satisfies, for each n € g, the condition

(IX]e(n, 1), [dE]a(n, 1)

where p = Fl(n) € g* holds.

gxv) € [D]a(p),

This induces on
V=g&dgas
ol du

2 g=p, L —adiu
2! 8777 ‘f 1, dt ag:u
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ie-Poisson-Dirac Reduction

The
(H, D, X) is given by a triple

(h, [Dla, [X]c)
that satisfies, for each n € g, the condition

([X]g, [dH]c) € [De,
where [X]e = (1, §(1), f2) and [dH]g = (u,0,0h/0p).

This induces

onV =g®g" as
Oh du

- — = d*
g aﬂ? dt A 5“7

which is consistent with the results in [CMPR2003].



Principal Bundle with a Lie Group

Let m: Q — Q/G be a with a Lie group
G acting freely and properly on () and choose a
on@as A:TQ — g.



Principal Bundle with a Lie Group

Let m: Q — Q/G be a with a Lie group
G acting freely and properly on () and choose a
on@as A:TQ — g.

The group G acts on curves (q(t),v(t),p(t)) € TQ & T*Q as

hi- (q(t), v(t), p(t))
= (hq(t), Tq(t)Lh (1), T}jq(t)Lh—l - p(t)).



Principal Bundle with a Lie Group

Let m: Q — Q/G be a with a Lie group
G acting freely and properly on () and choose a
on@as A:TQ — g.

The group G acts on curves (q(t),v(t),p(t)) € TQ & T*Q as

h-(q(t),v(t), p(t))
= (hq(t), TywyLn - v(t), Ty Lu-1 - p(1)).

The curves in (T'QQ & T*Q)/G are isomorphic to the curves in

TQ/G)aT*(Q/G) ® V. namely,
q(t), v(t), p(t)]c = (x(t), ult), y(t)) & (n(t), p(¢)),

where V = g @ g* and where we have employed

TQ/G=TQ/G)dg and T°Q/G=T(Q/G)®



Reduced H-P Variational Principle

The stationarity for the
1S given by

5 / (), ult) n(0) + (y(t), i) — u(t)

+ (R(t), &) — ()} dt = 0,
with arbitrary variations dz, du, 67, dy, dfi, ¢ and the

g = 20Sle 10 16, e + Blow, ).

together with the boundary conditions
0x(ty) = dx(t1) =0 and ((to) = ((t1) = 0.




Implicit Lagrange-Poincaré Equations

Corresponding to the horizontal variations ox,ou and dy, it

tollows
as
Dy 0Ol ~ . Ol
YYy_9 /o > _ _ 9
= —(mB)), d=u  y=-



Implicit Lagrange-Poincaré Equations

Corresponding to the horizontal variations ox,ou and dy, it

follows
as
Dy 0Ol ~ . Ol
_— — — T B . > — = —,
= —(mB)), d=u  y=-

Corresponding to the vertical variations 01, d 1t and ¢, it follows
as

Dp . ol
Dt e |



Trivialized Expressions

Let us

T:Q —Q/G

by 7TQ o T*(Q/G) — @Q/G to obtain the G-principal bundle

Q" ={(q, q

) | mgelay) =

m(q) =

q], q € Q,
0 € TH(Q/G)



Trivialized Expressions

Let us T:Q —Q/G
by 7TQ /G . T*(Q/G) — @Q/G to obtain the G-principal bundle
= {(¢, ) | mqsclay) = m(q) = ld], ¢ € Q,

oy € T(@Q/G)
Define the space @* X g%, which is isomorphic to T*(Q) by

A T°Q) — é* X g% Uy (Q7 (Oéq)g*,ﬂ — J@“Q))a
The quotient map
Ne: (T°Q)/G — (Q" x ¢7)/G 2 T(Q/G) @

1S a as

[CVQ]G — ((Oéqle*? [q7 J(O‘CI)]G) — ((%)2*» [Q, Te*Lg ' QQ]G) ’



Let us T:Q —Q/G
by the tangent bundle projection 7g,¢ : T(Q/G) — Q/G to
obtain the G-principal bundle

Q = {(q,u) | Tg/a(uy) = 7(q) = ld], ¢ € Q,
Ulg] © T[Q]<Q/G)} '



Let us T:Q —Q/G
by the tangent bundle projection 7g,¢ : T(Q/G) — Q/G to
obtain the G-principal bundle
Q = {(q,uy) | Tqrcluy) =(q) =ld], ¢ € Q,
u € T}y(Q/G)} -

Define the space @ X @, which is diffeomorphic to 1T'C) by
ATQ — é X g v (g, T(vg), & = Alvy)).

The quotient
No: (TQ)/G — (@ x 9)/G=T(Q/G) @ g
vgla — (T7(vy), g, Alvg)]c)
— (Tﬂ'(?}q), [q, TyL, - vq] G) .



Dirac Structures on QQ* X g* = T7()

Given the canonical Dirac structure D on T7@), one can define
a Dirac structure D on Q* x g*, in view of T7Q) = Q* X g,
which 1s given by

D(z,g,y,p) = {((£,9,9,p), (k,v,v,1)) |
(K, 0z) + (V,09) + {dy,v) + (0p,n)

=z, 9,9, 0)((%,9,9, p), (02,09, y, op))
for all (0x,9g,0y,0p) € Ty gy,(Q° X g7)}.



Dirac Structures on QQ* X g* = T7()

Given the canonical Dirac structure D on T7@), one can define
a Dirac structure D on Q* x g*, in view of T7Q) = Q* X g,
which 1s given by

D(z,g,y.p) ={((%, 9,9, p), (k,v,0,m)) |
(K, 0x) + (v, 09) + {0y, v) + (0p, 7)
=z, 9,9, 0)((%,9,9, p), (02,09, y, op))
for all (0x,9g,0y,0p) € Ty gy,(Q° X g7)}.
In the above, we have

0= 7"0rqje) — TeB, tw

is a symplectic form on @* X g~



Invariance of Dirac Structures

The Dirac structure D on @* X g*1s as
(DX, (@) 'a) € D forall (X,a)€ D,
which follows

D(e,g 'g,y,9 'p) = D(z,g,y, p).



Invariance of Dirac Structures

The Dirac structure D on @* X g* 1s as
(DX, (D) ') € D forall (X,a)€ D,
which follows
D(e,g™'9,y,9 'p) = D(x,9.9,p).

By by G, it leads to a
on the bundle

TT*Q/G = §* x (TT*Q/G) & V)
over T*(Q/G) ® g* as
Dle C g x (TT(Q/G) &V & T'T*(Q/G) & V*)
=(TT"°Q/G)d (T™"T"Q/G).



Gauged Dirac Structures

The D]q is given by, for each
(z,y, 1) € THQ/G) D "

Dlc(x,y, i) = [Dlg" (=, y) @ [D]g" (1),

where we shall call [D]g = [D]2* & [D]5" a




Gauged Dirac Structures

The D]q is given by, for each
(2, y,1) € THQ/G) D g".

Dlg(z,y, i) = D] (z,y) & [D]g" (1),

where we shall call [D]g = [D]2* @ [D]5" a

In the above, [D]5”" is a on
the bundle g* x TT*(Q/G) over T*(Q)/G), which is given by

D) (2, ) ={ (2, 9), (8,8)) | 9+ 8 = =Bl ) }

WhileiD]\C/fr is a on the bundle
g* x V over g* given by

DI () = {((& R), (0,8) | b+ v =adifi} .



Differential of the Generalized Energy

Associated with the on TQ) & T*(Q)
E(Qa U7p) — <p7 U> o L(Qa U),
the of dF is given by

dE)q:T(Q/G) & THQ/G) &V
— g x (T'T(Q/G)®dV & T'T*(Q/G) & V*).



Differential of the Generalized Energy

Associated with the on TQ) dT*(Q)
E(Q? Uap) — <p7 U> o L(Q) U),
the of dF is given by

dE]q:T(Q/G) o TH(Q/G) @V
— " x (T'T(Q/G) eV & T'T*(Q/G) & V*).
The to g* x (TT*(Q/G) & V) is given as
dElclgwrrqeer) = [AEIG lxrr0/¢) © [dElGlg 7

where o)
Hor
[dE] ‘g *XTT*(Q/G) — (ZE, Y, _%7 U) )

and
[dE]G‘g s 1/ (,LL,O 77)
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The Reduced Legendre Transform

The may be decomposed as

FIl=FI" o FI"™ :T(Q/G)dg— TQ/G) @ g*.
In the above, the

FI™™ : T(Q/G) — T(Q/G)

1S given by
(z, 1) Ol
r,u)— | x,y=—
, ) y au ,
while the
]Fl\/er : @ _ g*’
1s given by



Reduction of the Partial Vector Field

Let X be the associated
to X :TQ®T*Q) — TT*(). Then, the reduced partial vector

field | X | can be represented by
Xo(@,uy, 0. 1) = [X]g" (@, u,y) & [X]¢" (. ).



Reduction of the Partial Vector Field

Let X be the associated
to X : TQ®T*Q) — TT*(). Then, the reduced partial vector

field | X|q can be represented by

(Xa(z,u,y,7, 1) = [X]g" (2, u,y) © [X]&" (0, A).
In the above, the
X]g" T(Q/G) T (Q/G) — g" x TTH(Q/G)

1s given by )
X]6" (@, u,y) = (2,9, 2, 9)
and the
X5V =g xV
is given by

X8 (7, 1) = (1, €, 1) €g" x V.



Lagrange-Poincaré-Dirac Reduction

The
(L, D, X) that satisfies

(X, dE‘TT*Q) cD
1s given by a triple

(I, [Dla, [ X]a)
that satisfies

((X]e, [dE]e

Q*X(TT*(Q/G)@‘N/)) € [Dle




Lagrange-Poincaré-Dirac Reduction

The
(L, D, X) that satisfies

(X, dE‘TT*Q) cD
1s given by a triple

(I, [Dla, [ X]a)
that satisfies

([X]e, [dE]q

o xrre/aen) € Dle

The reduced implicit Lagrangian system can be decomposed
into the parts such that

(1, [Dle, [X]e) = (1, [Dg", [X]g") @ (1, [D]g™, [X]&").



Horizontal Implicit Lagrange-Poincaré Equations

The 1s a triple
(1, [D]g”, [(X]6™)
that satisfies
([X]&, [dE]G ) € [D]e”

Glgxrr@/a)
together with the horizontal Legendre transformation

FI' - T(Q/G) — T*(Q/G).



Horizontal Implicit Lagrange-Poincaré Equations

The 1s a triple
(1, [D]g”, [(X]6™)
that satisfies
([X]&, [dE]G ) € [D]e”

Glgxrr@/a)
together with the horizontal Legendre transformation

FI' - T(Q/G) — T*(Q/G).

This induces

Dy 0l
“I PR a Bl =
Dt Oz <,u, (#, >>’ dt ey ou

~



Vertical Implicit Lagrange-Poincaré Equations

The 1S a triple
(1, [D]", [X15)
that satisfies

((Xle", [dElG"4.7) € [Dlg”

together with the vertical Legendre transformation

FI¥ . g — g*.



Vertical Implicit Lagrange-Poincaré Equations

The 1S a triple
(1, [D]", [X15)
that satisfies

((Xle", [dElG"4.7) € [Dlg”

together with the vertical Legendre transformation
FI¥ . g — g*.
This induces the



Hamilton-Poincaré-Dirac Reduction

Let (H, D, X) be a standard implicit Hamiltonian system and
let h : T*(Q/G) D g* — R be the reduced Hamiltonian. Then,
the of (H, D, X)

1S a triple

(h, [D]e, [X]a)
that satisfies the condition, for each (x,y, 1) € T*(Q/G) P g*,

([X]G (CE, Y, Ia) ) [dH]G(Iv Y, ﬂ) = [D]G(xa Y, Ia)



Hamilton-Poincaré-Dirac Reduction

Let (H, D, X) be a standard implicit Hamiltonian system and
let h : T*(Q/G) D g* — R be the reduced Hamiltonian. Then,
the of (H, D, X)
1S a triple

(h, [D]e, [X]a)
that satisfies the condition, for each (x,y, 1) € T*(Q/G) P g*,

([X]G (CE, Y, Ia) ) [dH]G(Iv Y, ﬂ) = [D]G(xa Y, Ia)

The reduced implicit Hamiltonian system is decomposed into

the two parts, namely, and
such that

(h, [D]e, [X]e) = (h, [Dlg", [X]¢™) @ (h, [D]g", [X]&").



In the above, (h, [D]2, [X] &™) is the horizontal implicit Hamil-
tonian system that satisfies, for (x,y) € T*(Q/G),

(X" (=, y), [dH]G" (z,)) € [D]g"(z, y).

which induces

Dy Oh dx  Oh
— = —— — (0, B(z, - — = —.
Dt oz <”’ (#, )>’ dt Oy

~



In the above, (h, [D]2, [X] &™) is the horizontal implicit Hamil-
tonian system that satisfies, for (x,y) € T*(Q/G),

(X" (=, y), [dH]G" (z,)) € [D]g"(z, y).

which induces

— = —— — T, - — =

Dt~ oz NPT T Ty
On the other hand, (h, [D]5", [X]5") is the vertical implicit
Hamiltonian system that satisfies, for i € g*,

((X]e" (), [dH]G" (1) € [D]g"(R).

which induces



We have shown a reduction procedure for the Hamilton-Pontryagin
principle, which yields and

as the reduced implicit
FEuler-Lagrange equations.

Using a chosen principal connection, we have developed a reduc-
tion procedure for the canonical Dirac structure on the cotan-
cent bundle, which we call

. It induces a . which is
the direct sum of horizontal and vertical Dirac structures.

We have constructed
that induces horizontal and vertical implicit Lagrange-
Poincaré equations as well as
that yields horizontal and vertical implicit Hamilton-
Poincaré equations.



Current and Future Works

A general class of and
its associated reduction (with Cendra, Marsden and Tudor).

Dirac cotangent bundle reduction for
together with varia-

tional structures.

Construction of - to
bridge with multisymplectic structures and Stokes-Dirac struc-
tures.

Construction of Dirac structures and implicit Lagrangian sys-
tems for , which might include
the stochastic systems.

Reduction for

for constrained mechanical systems.



