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Motivations

•Dirac structures (Courant and Weinstein [1988]) is an idea
of synthesizing pre-symplectic structures (not necessar-
ily closed, and possibly degenerate) and almost Poisson
structures (brackets that need not satisfy Jacobi identity).
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•An almost Dirac structure on P is a subbundle
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P (x) = {(ux, βx) ∈ TxP × T ∗
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〈〈 (vx, αx), (ux, βx) 〉〉 = αx(ux) + βx(vx) = 0,
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Motivations

•Dirac structures (Courant and Weinstein [1988]) is an idea
of synthesizing pre-symplectic structures (not necessar-
ily closed, and possibly degenerate) and almost Poisson
structures (brackets that need not satisfy Jacobi identity).

•An almost Dirac structure on P is a subbundle

DP ⊂ TP ⊕ T ∗P

such that DP = D⊥
P , where, for each x ∈ P ,

D⊥
P (x) = {(ux, βx) ∈ TxP × T ∗

xP |
〈〈 (vx, αx), (ux, βx) 〉〉 = αx(ux) + βx(vx) = 0,

for all (vx, αx) ∈ DP (x)}.
•An integrable Dirac structure satisfies

〈£X1
α2, X3〉 + 〈£X2

α3, X1〉 + 〈£X3
α1, X2〉 = 0,

for all (X1, α1), (X2, α2), (X3, α3) that take values in DP .
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•Relevant with degenerate Lagrangian systems as Dirac
[1950] originally started his theory of constraints. However, not
enough studied from the view point of Lagrangian systems.
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triple (H,DP , X) that satisfies

(X,dH) ∈ DP .

•On the Lagrangian side, an implicit Lagrangian system
was defined by Yoshimura and Marsden[2006] as a triple

(L,DP , X), where X : TQ ⊕ T ∗Q → TT ∗Q, that satisfies
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•Relevant with degenerate Lagrangian systems as Dirac
[1950] originally started his theory of constraints. However, not
enough studied from the view point of Lagrangian systems.

•On the Hamiltonian side, an implicit Hamiltonian sys-
tem was defined by van der Schaft and Maschke [1995] as a
triple (H,DP , X) that satisfies

(X,dH) ∈ DP .

•On the Lagrangian side, an implicit Lagrangian system
was defined by Yoshimura and Marsden[2006] as a triple

(L,DP , X), where X : TQ ⊕ T ∗Q → TT ∗Q, that satisfies

(X,dE|TP ) ∈ DP ,

where E(q, v, p) = 〈p, v〉 − L(q, v).

•Applications to interconnected systems of multiport networks
such as electric circuits with Dirac constraints as well as
multibody systems with nonholonomic constraints.
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•The Hamilton–Pontryagin principle (originally devel-
oped by Livens [1919]) is given by

δ

∫ t2

t1

{L(q(t), v(t)) + p(t) · (q̇(t) − v(t))} dt = 0

with the fixed endpoints q(t). One can obtain the implicit
Euler–Lagrange equations:

p =
∂L

∂v
, q̇ = v, ṗ =

∂L

∂q
.
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•The Hamilton–Pontryagin principle (originally devel-
oped by Livens [1919]) is given by

δ

∫ t2

t1

{L(q(t), v(t)) + p(t) · (q̇(t) − v(t))} dt = 0

with the fixed endpoints q(t). One can obtain the implicit
Euler–Lagrange equations:

p =
∂L

∂v
, q̇ = v, ṗ =

∂L

∂q
.

•Reduction of Dirac structures was studied by Courant,
Dorfman, van der Schaft, Blankenstein and Ratiu (singular
case), etc..., most of those are based on some generalization
from the construction of Lie-Poisson structures.

•Namely, letting G be a Lie group and g be a Lie algebra, the
canonical Dirac structure on T ∗G can be reduced to a Dirac
structure on g∗ by using the Lie-Poisson brackets.
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Euler–Poincaré Reduction

• Let L : TG → R be a left invariant Lagrangian and l := L|g
be the reduced Lagrangian, where we employ TG ∼= G × g.

The reduced constrained variational principle is
given by

δ

∫ t2

t1

l(ξ(t)) dt = 0,

where ξ = g−1ġ ∈ g and the variations are given by

δξ = η̇ ± [ξ, η]

with the boundary conditions η(t1) = η(t2) = 0.
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Euler–Poincaré Reduction

• Let L : TG → R be a left invariant Lagrangian and l := L|g
be the reduced Lagrangian, where we employ TG ∼= G × g.

The reduced constrained variational principle is
given by

δ

∫ t2

t1

l(ξ(t)) dt = 0,

where ξ = g−1ġ ∈ g and the variations are given by

δξ = η̇ ± [ξ, η]

with the boundary conditions η(t1) = η(t2) = 0.

• It naturally induces Euler–Poincaré equations

d

dt

∂l

∂ξ
= ±ad∗ξ

∂l

∂ξ
.
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Lie-Poisson Variational Principle

• Let H be a left invariant Hamiltonian on T ∗G and let h = H|g∗
be a reduced Hamiltonian, where T ∗G ∼= G×g∗. Reduction
of Hamilton’s phase space principle is given by

δ

∫ t2

t1

{〈µ(t), ξ(t)〉 − h(µ(t))} dt = 0,

where ξ = g−1ġ ∈ g and µ = T ∗
e Lg p ∈ g∗ and the variation of

ξ is given by δξ = η̇ + [ξ, η], with the fixed endpoint boundary
conditions η(t1) = η(t2) = 0.
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Lie-Poisson Variational Principle

• Let H be a left invariant Hamiltonian on T ∗G and let h = H|g∗
be a reduced Hamiltonian, where T ∗G ∼= G×g∗. Reduction
of Hamilton’s phase space principle is given by

δ

∫ t2

t1

{〈µ(t), ξ(t)〉 − h(µ(t))} dt = 0,

where ξ = g−1ġ ∈ g and µ = T ∗
e Lg p ∈ g∗ and the variation of

ξ is given by δξ = η̇ + [ξ, η], with the fixed endpoint boundary
conditions η(t1) = η(t2) = 0.

•Then, it leads to

ξ =
∂h

∂µ
,

dµ

dt
= ad∗ξµ,

which are to be equivalent with Lie–Poisson equations.

•This reduction procedure of Lie-Poisson Variational Principle
is done on the larger space V = g ⊕ g∗ rather than g∗!
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¤How can we reduce Hamilton-Pontryagin Prin-
ciple, namely, variational principles on the reduced
Pontryagin Bundle (TQ ⊕ T ∗Q)/G ?
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Our Goals

¤How can we reduce Hamilton-Pontryagin Prin-
ciple, namely, variational principles on the reduced
Pontryagin Bundle (TQ ⊕ T ∗Q)/G ?

¤How can we construct a reduction procedure of Dirac
structures on the cotangent bundle P = T ∗Q,
namely, D ⊂ TP ⊕ T ∗P ?

¤How can we develop implicit analogue of Lagrange-
Poincaré equations and Hamilton-Poincaré
equations ?

Our goals are to answer these questions !
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Examples

Artificial Satellite

Arm 1

Arm 2

Base Body

End Effector

Space Robots
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Cotangent Bundle Reduction

•Gauged Poisson structures associated with Hamiltonian
reduction on the cotangent bundle; see Montgomery, Marsden
and Ratiu[1984] and Montgomery[1986].
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•Gauged Poisson structures associated with Hamiltonian
reduction on the cotangent bundle; see Montgomery, Marsden
and Ratiu[1984] and Montgomery[1986].

•Hamiltonian reduction by stages [MMOR 2007]

Let H : T ∗Q → R be a left invariant Hamiltonian with a Lie
group G acting freely and properly on Q. Choose a principal
connection A on the shape space bundle Q → Q/G.

•The key idea lies in the connection dependent isomorpshim

T ∗Q/G ∼=A T ∗(Q/G) ⊕ g̃∗.

•Reduced Hamilton’s equations on this space are called Hamil-
ton Poincaré equations and for the case Q = G, it leads
to Lie-Poisson equations ([CMPR2003]).
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Tangent Bundle Reduction

•Lagrangian reduction on the tangent bundles: Marsden
and Scheurle [1993] developed a Lagrangian analogue of the
Hamiltonian reduction on the cotangent bundle by using the
so-called mechanical connection.

• Let L be a left invariant Lagrangian on TQ with a Lie group G
acting freely and properly on Q, such that there is a principal
bundle Q → Q/G, and we choose a principal connection A.

•The key idea lies in the connection dependent isomorpshim

TQ/G ∼= T (Q/G) ⊕ g̃.

•Reduced variational principle of Hamilton was developed in
Lagrangian Reduction by Stages [CMR2001].

•Reduced Euler-Lagrange equations on this space are called
Lagrange-Poincaré equations and for the case Q = G,
it leads to Euler-Poincaré equations.
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What are the Problems ?

•How can we deal with Pontryagin Bundle TQ ⊕ T ∗Q ?

•How can we develop reduction of Dirac structures on the
cotangent bundle ?

•How can we construct the Hamiltonian and Lagrangian
reduction throughout the reduced Dirac structure ?

• Is there any variational structure associated with the La-
grangian and Hamiltonian reduction accompanied with the re-
duced Dirac structures ?

Let us first go to see the special case Q = G !
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Hamilton–Pontryagin Principle

• Let L : TG → R be a left Lagrangian and recall the Hamilton–
Pontryagin principle is given by

δ

∫ t2

t1

{L(g(t), v(t)) + p(t) · (ġ(t) − v(t))} dt = 0.
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δ

∫ t2

t1

{L(g(t), v(t)) + p(t) · (ġ(t) − v(t))} dt = 0.

•Reduction of the Hamilton–Pontryagin principle
may be described by

δ

∫ t2

t1

{l(η(t)) + µ(t) · (ξ(t) − η(t))} dt = 0

with δξ(t) = ζ̇(t) + [ξ(t), ζ(t)] and ζ(t1) = ζ(t2) = 0.
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Hamilton–Pontryagin Principle

• Let L : TG → R be a left Lagrangian and recall the Hamilton–
Pontryagin principle is given by

δ

∫ t2

t1

{L(g(t), v(t)) + p(t) · (ġ(t) − v(t))} dt = 0.

•Reduction of the Hamilton–Pontryagin principle
may be described by

δ

∫ t2

t1

{l(η(t)) + µ(t) · (ξ(t) − η(t))} dt = 0

with δξ(t) = ζ̇(t) + [ξ(t), ζ(t)] and ζ(t1) = ζ(t2) = 0.

• It follows implicit Euler–Poincaré equations

µ =
δl

δη
, ξ = η, µ̇ = ad∗ξµ.
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Invariance of Dirac Structures

•The canonical Dirac structure on P = T ∗G is given by

D = graph Ω ⊂ TP ⊕ T ∗P.

In view of the trivialized isomorphism

λ̄ : P = T ∗G → G × g∗,

a Dirac structure D̄ on G × g∗ can be naturally defined.
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Invariance of Dirac Structures

•The canonical Dirac structure on P = T ∗G is given by

D = graph Ω ⊂ TP ⊕ T ∗P.

In view of the trivialized isomorphism

λ̄ : P = T ∗G → G × g∗,

a Dirac structure D̄ on G × g∗ can be naturally defined.

• Let Φ denote the G–action on G × g∗, so that

Φh(g, µ) = (hg, µ).

The Dirac structure D̄ is to be G–invariant, since

(Φh∗X, (Φ∗
h)

−1α) ∈ D̄

holds for all (X,α) ∈ D̄.
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Lie-Dirac Reduction

•One can obtain the quotient of D̄ by G as

[D̄]G ∼= D/G ⊂ (TP ⊕ T ∗P )/G,

where [D̄]G is a Dirac structure on the bundle

TP/G ∼= g∗ × V

over P/G ∼= g∗, which is the reduction of the canonical
Dirac structure D on P = T ∗G.
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Lie-Dirac Reduction

•One can obtain the quotient of D̄ by G as

[D̄]G ∼= D/G ⊂ (TP ⊕ T ∗P )/G,

where [D̄]G is a Dirac structure on the bundle

TP/G ∼= g∗ × V

over P/G ∼= g∗, which is the reduction of the canonical
Dirac structure D on P = T ∗G.

•For each µ ∈ g∗, it follows that [D̄]G(µ) is given by

[D̄]G(µ) ={((ξ, κ), (ν, ξ)) ∈ V ⊕ V ∗ |
ν + κ = ad∗ξ µ},

where V = g ⊕ g∗.
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•Define the trivialized generalized energy on G × V by

Ē(g, η, µ) = 〈µ, η〉 − L̄(g, η).

The quotient of dĒ is the map

[dĒ]G : V → V × g∗ × V ∗,

which is given by, for each (η, µ) ∈ V ,

[dĒ]G(η, µ) =

(
η, µ, 0, µ − ∂l

∂η
, η

)
.
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•Define the trivialized generalized energy on G × V by

Ē(g, η, µ) = 〈µ, η〉 − L̄(g, η).

The quotient of dĒ is the map

[dĒ]G : V → V × g∗ × V ∗,

which is given by, for each (η, µ) ∈ V ,

[dĒ]G(η, µ) =

(
η, µ, 0, µ − ∂l

∂η
, η

)
.

• Since ∂Ē/∂η = 0 naturally induces the reduced Legendre
transform

µ = ∂l/∂η ∈ g∗,

the restriction of [dĒ]G to g∗ × V is given by

[dĒ]G(η, µ)|g∗×V = (µ, 0, η) ∈ g∗ × V ∗.
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•The partial vector field

X : TG ⊕ T ∗G → TT ∗G,

is given by
X(g, v, p) = (g, p, ġ, ṗ),

where ġ and ṗ are functions of (g, v, p). Notice that X is left
invariant as

h · X(g, v, p) = X(hg, TgLh · v, T ∗
hgLh−1 · p).
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•The partial vector field

X : TG ⊕ T ∗G → TT ∗G,

is given by
X(g, v, p) = (g, p, ġ, ṗ),

where ġ and ṗ are functions of (g, v, p). Notice that X is left
invariant as

h · X(g, v, p) = X(hg, TgLh · v, T ∗
hgLh−1 · p).

•The reduction of the partial vector field is given by
the quotient

[X̄ ]G : V → g∗ × V,

which is denoted by

[X̄ ]G(η, µ) =
(
µ, ξ, µ̇

)
∈ g∗ × V.

Here, note that ξ and µ̇ are functions of (η, µ).
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Euler-Poincaré-Dirac Reduction

•The reduction of an implicit Lagrangian system
(L,D,X) is given by a triple

(l, [D̄]G, [X̄ ]G)

that satisfies, for each η ∈ g, the condition

([X̄ ]G(η, µ), [dĒ]G(η, µ)|g∗×V ) ∈ [D̄]G(µ),

where µ = Fl(η) ∈ g∗ holds.
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where µ = Fl(η) ∈ g∗ holds.

•This induces implicit Euler-Poincaré equations on

V = g ⊕ g∗ as

µ =
∂l

∂η
, ξ = η,

dµ

dt
= ad∗ξµ.
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Lie-Poisson-Dirac Reduction

•The reduction of an implicit Hamiltonian system
(H,D,X) is given by a triple

(h, [D̄]G, [X̄ ]G)

that satisfies, for each η ∈ g, the condition

([X̄ ]G, [dH̄ ]G) ∈ [D̄]G,

where [X̄ ]G = (µ, ξ(µ), µ̇) and [dH̄ ]G = (µ, 0, ∂h/∂µ).
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Lie-Poisson-Dirac Reduction

•The reduction of an implicit Hamiltonian system
(H,D,X) is given by a triple

(h, [D̄]G, [X̄ ]G)

that satisfies, for each η ∈ g, the condition

([X̄ ]G, [dH̄ ]G) ∈ [D̄]G,

where [X̄ ]G = (µ, ξ(µ), µ̇) and [dH̄ ]G = (µ, 0, ∂h/∂µ).

•This induces implicit Lie-Poisson equations

on V = g ⊕ g∗ as

ξ =
∂h

∂µ
,

dµ

dt
= ad∗ξµ,

which is consistent with the results in [CMPR2003].

22



Principal Bundle with a Lie Group

• Let π : Q → Q/G be a principal bundle with a Lie group
G acting freely and properly on Q and choose a principal
connection on Q as A : TQ → g.
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Principal Bundle with a Lie Group

• Let π : Q → Q/G be a principal bundle with a Lie group
G acting freely and properly on Q and choose a principal
connection on Q as A : TQ → g.

•The group G acts on curves (q(t), v(t), p(t)) ∈ TQ ⊕ T ∗Q as

h · (q(t), v(t), p(t))

= (hq(t), Tq(t)Lh · v(t), T ∗
hq(t)Lh−1 · p(t)).

•The curves in (TQ ⊕ T ∗Q)/G are isomorphic to the curves in
T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ , namely,

[q(t), v(t), p(t)]G ∼= (x(t), u(t), y(t)) ⊕ (η̄(t), µ̄(t)),

where Ṽ = g̃ ⊕ g̃∗ and where we have employed

TQ/G ∼= T (Q/G) ⊕ g̃ and T ∗Q/G ∼= T ∗(Q/G) ⊕ g̃∗.
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Reduced H-P Variational Principle

•The stationarity for the reduced Hamilton-Pontryagin
principle is given by

δ

∫ t1

t0

{l(x(t), u(t), η̄(t)) + 〈y(t), ẋ(t) − u(t)〉

+
〈
µ̄(t), ξ̄(t) − η̄(t)

〉}
dt = 0,

with arbitrary variations δx, δu, δη̄, δy, δµ̄, ζ̄ and the covari-
ant variation

δAξ̄ =
D[q, ζ ]G

Dt
+ [q, [ξ, ζ ]]G + B̃(δx, ẋ),

together with the boundary conditions

δx(t0) = δx(t1) = 0 and ζ(t0) = ζ(t1) = 0.
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Implicit Lagrange-Poincaré Equations

•Corresponding to the horizontal variations δx, δu and δy, it
follows horizontal implicit Lagrange-Poincaré equa-
tions as

Dy

Dt
=

∂l

∂x
−

〈
µ̄, B̃(ẋ, ·)

〉
, ẋ = u, y =

∂l

∂u
.
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Implicit Lagrange-Poincaré Equations

•Corresponding to the horizontal variations δx, δu and δy, it
follows horizontal implicit Lagrange-Poincaré equa-
tions as

Dy

Dt
=

∂l

∂x
−

〈
µ̄, B̃(ẋ, ·)

〉
, ẋ = u, y =

∂l

∂u
.

•Corresponding to the vertical variations δη̄, δµ̄ and ζ̄, it follows
vertical implicit Lagrange-Poincaré equations as

Dµ̄

Dt
= ad ∗

ξ̄µ̄, ξ̄ = η̄, µ̄ =
∂l

∂η̄
.
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Trivialized Expressions

• Let us pull back the G-principal bundle π : Q → Q/G
by πQ/G : T ∗(Q/G) → Q/G to obtain the G-principal bundle

Q̃∗ =
{
(q, α[q]) | πQ/G(α[q]) = π(q) = [q], q ∈ Q,

α[q] ∈ T ∗
[q](Q/G)

}
.
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Trivialized Expressions

• Let us pull back the G-principal bundle π : Q → Q/G
by πQ/G : T ∗(Q/G) → Q/G to obtain the G-principal bundle

Q̃∗ =
{
(q, α[q]) | πQ/G(α[q]) = π(q) = [q], q ∈ Q,

α[q] ∈ T ∗
[q](Q/G)

}
.

•Define the space Q̃∗ × g∗, which is isomorphic to T ∗Q by

λ̄ : T ∗Q → Q̃∗ × g∗; αq 7→ (q, (αq)
h∗

q , ρ = J(αq)),

The quotient map

[λ̄]G : (T ∗Q)/G → (Q̃∗ × g∗)/G ∼= T ∗(Q/G) ⊕ g̃∗

is a left trivialization as

[αq]G 7→
(
(αq)

h∗

q , [q, J(αq)]G
)

=
(
(αq)

h∗

q , [q, T ∗
e Lg · αq]G

)
.
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• Let us pull back the G-principal bundle π : Q → Q/G
by the tangent bundle projection τQ/G : T (Q/G) → Q/G to
obtain the G-principal bundle

Q̃ =
{
(q, u[q]) | τQ/G(u[q]) = π(q) = [q], q ∈ Q,

u[q] ∈ T[q](Q/G)
}

.
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• Let us pull back the G-principal bundle π : Q → Q/G
by the tangent bundle projection τQ/G : T (Q/G) → Q/G to
obtain the G-principal bundle

Q̃ =
{
(q, u[q]) | τQ/G(u[q]) = π(q) = [q], q ∈ Q,

u[q] ∈ T[q](Q/G)
}

.

•Define the space Q̃ × g, which is diffeomorphic to TQ by

λ : TQ → Q̃ × g; vq 7→ (q, Tπ(vq), ξ = A(vq)).

The quotient

[λ]G : (TQ)/G → (Q̃ × g)/G ∼= T (Q/G) ⊕ g̃

is a left trivialization as

[vq]G 7→ (Tπ(vq), [q, A(vq)]G)

=
(
Tπ(vq),

[
q, TgLg−1 · vq

]
G

)
.
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Dirac Structures on Q̃∗ × g∗ ∼= T ∗Q

•Given the canonical Dirac structure D on T ∗Q, one can define
a Dirac structure D̄ on Q̃∗ × g∗, in view of T ∗Q ∼= Q̃∗ × g∗,
which is given by

D̄(x, g, y, ρ) = {((ẋ, ġ, ẏ, ρ̇), (κ, ν, v, η)) |
〈κ, δx〉 + 〈ν, δg〉 + 〈δy, v〉 + 〈δρ, η〉

= Ω(x, g, y, ρ)((ẋ, ġ, ẏ, ρ̇), (δx, δg, δy, δρ))

for all (δx, δg, δy, δρ) ∈ T(x,g,y,ρ)(Q̃
∗ × g∗)}.
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Dirac Structures on Q̃∗ × g∗ ∼= T ∗Q

•Given the canonical Dirac structure D on T ∗Q, one can define
a Dirac structure D̄ on Q̃∗ × g∗, in view of T ∗Q ∼= Q̃∗ × g∗,
which is given by

D̄(x, g, y, ρ) = {((ẋ, ġ, ẏ, ρ̇), (κ, ν, v, η)) |
〈κ, δx〉 + 〈ν, δg〉 + 〈δy, v〉 + 〈δρ, η〉

= Ω(x, g, y, ρ)((ẋ, ġ, ẏ, ρ̇), (δx, δg, δy, δρ))

for all (δx, δg, δy, δρ) ∈ T(x,g,y,ρ)(Q̃
∗ × g∗)}.

• In the above, we have

Ω = γ∗ΩT ∗(Q/G) − π̃∗
QBρ + ω

is a symplectic form on Q̃∗ × g∗.
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Invariance of Dirac Structures

•The Dirac structure D̄ on Q̃∗ × g∗ is G–invariant as

(Φh∗X, (Φ∗
h)

−1α) ∈ D̄ for all (X,α) ∈ D̄,

which follows

D̄(e, g−1g, y, g−1ρ) = D̄(x, g, y, ρ).
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Invariance of Dirac Structures

•The Dirac structure D̄ on Q̃∗ × g∗ is G–invariant as

(Φh∗X, (Φ∗
h)

−1α) ∈ D̄ for all (X,α) ∈ D̄,

which follows

D̄(e, g−1g, y, g−1ρ) = D̄(x, g, y, ρ).

•By taking quotients by G, it leads to a reduced Dirac
structure on the bundle

TT ∗Q/G ∼= g̃∗ × (TT ∗(Q/G) ⊕ Ṽ )

over T ∗(Q/G) ⊕ g̃∗ as

[D̄]G ⊂ g̃∗ × (TT ∗(Q/G) ⊕ Ṽ ⊕ T ∗T ∗(Q/G) ⊕ Ṽ ∗)

∼= (TT ∗Q/G) ⊕ (T ∗T ∗Q/G).
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Gauged Dirac Structures

•The reduced Dirac structure [D̄]G is given by, for each
(x, y, µ̄) ∈ T ∗(Q/G) ⊕ g̃∗.

[D̄]G(x, y, µ̄) = [D̄]Hor
G (x, y) ⊕ [D̄]Ver

G (µ̄),

where we shall call [D̄]G = [D̄]Hor
G ⊕ [D̄]Ver

G a gauged Dirac
structure.
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Gauged Dirac Structures

•The reduced Dirac structure [D̄]G is given by, for each
(x, y, µ̄) ∈ T ∗(Q/G) ⊕ g̃∗.

[D̄]G(x, y, µ̄) = [D̄]Hor
G (x, y) ⊕ [D̄]Ver

G (µ̄),

where we shall call [D̄]G = [D̄]Hor
G ⊕ [D̄]Ver

G a gauged Dirac
structure.

• In the above, [D]Hor
G is a horizontal Dirac structure on

the bundle g̃∗ × TT ∗(Q/G) over T ∗(Q/G), which is given by

[D̄]Hor
G (x, y)=

{
((ẋ, ẏ), (β, ẋ)) | ẏ + β = −B̃µ̄(ẋ, ·)

}
,

while [D]Ver
G is a vertical Dirac structure on the bundle

g̃∗ × Ṽ over g̃∗ given by

[D̄]Ver
G (µ̄) =

{(
(ξ̄, ˙̄µ), (ν̄, ξ̄)

)
| ˙̄µ + ν̄ = ad∗ξµ̄

}
.
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Differential of the Generalized Energy

•Associated with the generalized energy on TQ ⊕ T ∗Q

E(q, v, p) = 〈p, v〉 − L(q, v),

the quotient of dĒ is given by

[dĒ]G : T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ

→ g̃∗ × (T ∗T (Q/G) ⊕ Ṽ ⊕ T ∗T ∗(Q/G) ⊕ Ṽ ∗).
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Differential of the Generalized Energy

•Associated with the generalized energy on TQ ⊕ T ∗Q

E(q, v, p) = 〈p, v〉 − L(q, v),

the quotient of dĒ is given by

[dĒ]G : T (Q/G) ⊕ T ∗(Q/G) ⊕ Ṽ

→ g̃∗ × (T ∗T (Q/G) ⊕ Ṽ ⊕ T ∗T ∗(Q/G) ⊕ Ṽ ∗).

•The restriction to g̃∗ × (TT ∗(Q/G) ⊕ Ṽ ) is given as

[dĒ]G|g̃∗×(TT ∗(Q/G)⊕Ṽ ) = [dĒ]Hor
G |g̃∗×TT ∗(Q/G) ⊕ [dĒ]G|g̃∗×Ṽ ,

where

[dĒ]Hor
G |g̃∗×TT ∗(Q/G) =

(
x, y,− ∂l

∂x
, u

)
,

and
[dĒ]G|g̃∗×Ṽ = (µ̄, 0, η̄) .
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The Reduced Legendre Transform

•The reduced Legendre transform may be decomposed as

Fl = FlHor ⊕ FlVer : T (Q/G) ⊕ g̃ → T ∗(Q/G) ⊕ g̃∗.
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The Reduced Legendre Transform

•The reduced Legendre transform may be decomposed as

Fl = FlHor ⊕ FlVer : T (Q/G) ⊕ g̃ → T ∗(Q/G) ⊕ g̃∗.

• In the above, the horizontal Legendre transformation

FlHor : T (Q/G) → T ∗(Q/G)

is given by

(x, u) 7→
(

x, y =
∂l

∂u

)
,

while the vertical Legendre transformation

FlVer : g̃ → g̃∗,

is given by

η̄ 7→ µ̄ =
∂l

∂η̄
∈ g̃∗.
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Reduction of the Partial Vector Field

• Let X̄ be the trivialized partial vector field associated
to X : TQ⊕T ∗Q → TT ∗Q. Then, the reduced partial vector
field [X̄ ]G can be represented by

[X̄ ]G(x, u, y, η̄, µ̄) = [X̄ ]Hor
G (x, u, y) ⊕ [X̄ ]Ver

G (η̄, µ̄).
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Reduction of the Partial Vector Field

• Let X̄ be the trivialized partial vector field associated
to X : TQ⊕T ∗Q → TT ∗Q. Then, the reduced partial vector
field [X̄ ]G can be represented by

[X̄ ]G(x, u, y, η̄, µ̄) = [X̄ ]Hor
G (x, u, y) ⊕ [X̄ ]Ver

G (η̄, µ̄).

• In the above, the horizontal partial vector field

[X̄ ]Hor
G : T (Q/G) ⊕ T ∗(Q/G) → g̃∗ × TT ∗(Q/G)

is given by
[X̄ ]Hor

G (x, u, y) = (x, y, ẋ, ẏ)

and the vertical partial vector field

[X̄ ]Ver
G : Ṽ → g̃∗ × Ṽ

is given by

[X̄ ]Ver
G (η̄, µ̄) = (µ̄, ξ̄, ˙̄µ) ∈ g̃∗ × Ṽ .
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Lagrange-Poincaré-Dirac Reduction

•The reduction of a standard implicit Lagrangian
system (L,D,X) that satisfies

(X,dE|TT ∗Q) ∈ D

is given by a triple
(l, [D̄]G, [X̄ ]G)

that satisfies(
[X̄ ]G, [dĒ]G|g̃∗×(TT ∗(Q/G)⊕Ṽ )

)
∈ [D̄]G.
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Lagrange-Poincaré-Dirac Reduction

•The reduction of a standard implicit Lagrangian
system (L,D,X) that satisfies

(X,dE|TT ∗Q) ∈ D

is given by a triple
(l, [D̄]G, [X̄ ]G)

that satisfies(
[X̄ ]G, [dĒ]G|g̃∗×(TT ∗(Q/G)⊕Ṽ )

)
∈ [D̄]G.

•The reduced implicit Lagrangian system can be decomposed
into the horizontal and vertical parts such that

(l, [D̄]G, [X̄ ]G) = (l, [D̄]Hor
G , [X̄ ]Hor

G ) ⊕ (l, [D̄]Ver
G , [X̄ ]Ver

G ).
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Horizontal Implicit Lagrange-Poincaré Equations

•The horizontal implicit Lagrangian system is a triple

(l, [D̄]Hor
G , [X̄ ]Hor

G )

that satisfies

([X̄ ]Hor
G , [dĒ]Hor

G|g̃∗×TT∗(Q/G)
) ∈ [D̄]Hor

G

together with the horizontal Legendre transformation

FlHor : T (Q/G) → T ∗(Q/G).

35



Horizontal Implicit Lagrange-Poincaré Equations

•The horizontal implicit Lagrangian system is a triple

(l, [D̄]Hor
G , [X̄ ]Hor

G )

that satisfies

([X̄ ]Hor
G , [dĒ]Hor

G|g̃∗×TT∗(Q/G)
) ∈ [D̄]Hor

G

together with the horizontal Legendre transformation

FlHor : T (Q/G) → T ∗(Q/G).

•This induces horizontal implicit Lagrange-Poincaré
equations:

Dy

Dt
=

∂l

∂x
−

〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
= u, y =

∂l

∂u
.
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Vertical Implicit Lagrange-Poincaré Equations

•The vertical implicit Lagrangian system is a triple

(l, [D̄]Ver
G , [X̄ ]Ver

G )

that satisfies

([X̄ ]Ver
G , [dĒ]Ver

G |
g̃∗×Ṽ ) ∈ [D̄]Ver

G

together with the vertical Legendre transformation

FlVer : g̃ → g̃∗.
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Vertical Implicit Lagrange-Poincaré Equations

•The vertical implicit Lagrangian system is a triple

(l, [D̄]Ver
G , [X̄ ]Ver

G )

that satisfies

([X̄ ]Ver
G , [dĒ]Ver

G |
g̃∗×Ṽ ) ∈ [D̄]Ver

G

together with the vertical Legendre transformation

FlVer : g̃ → g̃∗.

•This induces the vertical implicit Lagrange-Poincaré
equations:

Dµ̄

Dt
= ad ∗

ξ̄ µ̄, ξ̄ = η̄, µ̄ =
∂l

∂η̄
.
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Hamilton-Poincaré-Dirac Reduction

• Let (H,D,X) be a standard implicit Hamiltonian system and
let h : T ∗(Q/G)⊕ g̃∗ → R be the reduced Hamiltonian. Then,
the reduced implicit Hamiltonian system of (H,D,X)
is a triple

(h, [D̄]G, [X̄ ]G)

that satisfies the condition, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

([X̄ ]G (x, y, µ̄) , [dH̄ ]G(x, y, µ̄) ∈ [D̄]G(x, y, µ̄).

37



Hamilton-Poincaré-Dirac Reduction

• Let (H,D,X) be a standard implicit Hamiltonian system and
let h : T ∗(Q/G)⊕ g̃∗ → R be the reduced Hamiltonian. Then,
the reduced implicit Hamiltonian system of (H,D,X)
is a triple

(h, [D̄]G, [X̄ ]G)

that satisfies the condition, for each (x, y, µ̄) ∈ T ∗(Q/G)⊕ g̃∗,

([X̄ ]G (x, y, µ̄) , [dH̄ ]G(x, y, µ̄) ∈ [D̄]G(x, y, µ̄).

•The reduced implicit Hamiltonian system is decomposed into
the two parts, namely, horizontal and vertical implicit
Hamiltonian systems such that

(h, [D̄]G, [X̄ ]G) = (h, [D̄]Hor
G , [X̄ ]Hor

G ) ⊕ (h, [D̄]Ver
G , [X̄ ]Ver

G ).
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• In the above, (h, [D̄]Hor
G , [X̄ ]Hor

G ) is the horizontal implicit Hamil-
tonian system that satisfies, for (x, y) ∈ T ∗(Q/G),

([X̄ ]Hor
G (x, y) , [dH̄ ]Hor

G (x, y)) ∈ [D̄]Hor
G (x, y),

which induces horizontal implicit Hamilton-Poincaré
equations:

Dy

Dt
= −∂h

δx
−

〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
=

∂h

∂y
.
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• In the above, (h, [D̄]Hor
G , [X̄ ]Hor

G ) is the horizontal implicit Hamil-
tonian system that satisfies, for (x, y) ∈ T ∗(Q/G),

([X̄ ]Hor
G (x, y) , [dH̄ ]Hor

G (x, y)) ∈ [D̄]Hor
G (x, y),

which induces horizontal implicit Hamilton-Poincaré
equations:

Dy

Dt
= −∂h

δx
−

〈
µ̄, B̃(ẋ, ·)

〉
,

dx

dt
=

∂h

∂y
.

•On the other hand, (h, [D̄]Ver
G , [X̄ ]Ver

G ) is the vertical implicit
Hamiltonian system that satisfies, for µ̄ ∈ g̃∗,

([X̄ ]Ver
G (µ̄) , [dH̄ ]Ver

G (µ̄) ∈ [D̄]Ver
G (µ̄),

which induces vertical implicit Hamilton-Poincaré

equations:
Dµ̄

Dt
= ad ∗

ξ̄ µ̄, ξ =
∂h

∂µ̄
.
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Summary

•We have shown a reduction procedure for the Hamilton-Pontryagin
principle, which yields horizontal and vertical implicit
Lagrange-Poincaré equations as the reduced implicit
Euler-Lagrange equations.

•Using a chosen principal connection, we have developed a reduc-
tion procedure for the canonical Dirac structure on the cotan-
gent bundle, which we call Dirac cotangent bundle re-
duction. It induces a gauged Dirac structure, which is
the direct sum of horizontal and vertical Dirac structures.

•We have constructed Lagrange-Poincaré-Dirac reduc-
tion that induces horizontal and vertical implicit Lagrange-
Poincaré equations as well as Hamilton-Poincaré-Dirac
reduction that yields horizontal and vertical implicit Hamilton-
Poincaré equations.
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Current and Future Works

•A general class of Dirac anchored vector bundles and
its associated reduction (with Cendra, Marsden and Tudor).

•Dirac cotangent bundle reduction for nonholonomic me-
chanical systems with symmetry together with varia-
tional structures.

•Construction of Dirac structures for Field theory; to
bridge with multisymplectic structures and Stokes-Dirac struc-
tures.

•Construction of Dirac structures and implicit Lagrangian sys-
tems for time dependent systems, which might include
the stochastic systems.

•Reduction for Implicit Controlled Lagrangian systems

•Dirac integrators for constrained mechanical systems.
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