Dirac Cotangent Bundle Reduction

Hiroaki Yoshimura

Applied Mechanics and Aerospace Engineering
Waseda University

Joint work with Jerrold E. Marsden

Applied Dynamics and Geometric Mechanics
Oberwolfach, July 20-26, 2008

Acknowledgement

\square We would like to thank Hernán Cendra and Tudor Ratiu for their helpful suggestions.

Acknowledgement

\square We would like to thank Hernán Cendra and Tudor Ratiu for their helpful suggestions.
\square References

- Lagrangian Reduction by Stages [CMR2001]: Cendra, Marsden and Ratiu, Memoirs of AMS, 722, 2001.
- Hamilton-Poincaré Equations [CMPR2003]: Cendra, Marsden, Pekarsky and Ratiu, Moscow Math. Jour. 3, 833-867, 2003.
- Hamiltonian Reduction by Stages [MMOR2007]: Marsden, Misiolek, et al, vol.1913, Lecture Notes in Mathematics. Springer.
- Implicit Lagrangian Systems [YoMa2006]: Yoshimura and Marsden, J. Geom. Phys., 57, 133-156, 209-250, 2006.
- Lie-Dirac Reduction [YoMa2007]: Yoshimura and Marsden, Rep. on Math. Phy., 60, 381-426, 2007.

Contents

\square Background
\square Review of Dirac Structures in Mechanics
\square Lie-Dirac Reduction: The Case $Q=G$
\square Reduction of Hamilton-Pontryagin Principle
\square Dirac Cotangent Bundle Reduction
\square Lagrange-Poincaré-Dirac Reduction
\square Hamilton-Poincaré-Dirac Reduction

Motivations

- Dirac structures (Courant and Weinstein [1988]) is an idea of synthesizing pre-symplectic structures (not necessarily closed, and possibly degenerate) and almost Poisson structures (brackets that need not satisfy Jacobi identity).

Motivations

- Dirac structures (Courant and Weinstein [1988]) is an idea of synthesizing pre-symplectic structures (not necessarily closed, and possibly degenerate) and almost Poisson structures (brackets that need not satisfy Jacobi identity).
- An almost Dirac structure on P is a subbundle

$$
D_{P} \subset T P \oplus T^{*} P
$$

such that $D_{P}=D_{P}^{\perp}$, where, for each $x \in P$,

$$
\begin{aligned}
& D_{P}^{\perp}(x)=\left\{\left(u_{x}, \beta_{x}\right) \in T_{x} P \times T_{x}^{*} P \mid\right. \\
& \left\langle\left\langle\left(v_{x}, \alpha_{x}\right),\left(u_{x}, \beta_{x}\right)\right\rangle\right\rangle=\alpha_{x}\left(u_{x}\right)+\beta_{x}\left(v_{x}\right)=0, \\
& \left.\quad \text { for all }\left(v_{x}, \alpha_{x}\right) \in D_{P}(x)\right\} .
\end{aligned}
$$

Motivations

- Dirac structures (Courant and Weinstein [1988]) is an idea of synthesizing pre-symplectic structures (not necessarily closed, and possibly degenerate) and almost Poisson structures (brackets that need not satisfy Jacobi identity).
- An almost Dirac structure on P is a subbundle

$$
D_{P} \subset T P \oplus T^{*} P
$$

such that $D_{P}=D_{P}^{\perp}$, where, for each $x \in P$,

$$
\begin{aligned}
& D_{P}^{\perp}(x)=\left\{\left(u_{x}, \beta_{x}\right) \in T_{x} P \times T_{x}^{*} P \mid\right. \\
& \quad\left\langle\left\langle\left(v_{x}, \alpha_{x}\right),\left(u_{x}, \beta_{x}\right)\right\rangle\right\rangle=\alpha_{x}\left(u_{x}\right)+\beta_{x}\left(v_{x}\right)=0, \\
& \left.\quad \text { for all }\left(v_{x}, \alpha_{x}\right) \in D_{P}(x)\right\} .
\end{aligned}
$$

- An integrable Dirac structure satisfies

$$
\left\langle £_{X_{1}} \alpha_{2}, X_{3}\right\rangle+\left\langle £_{X_{2}} \alpha_{3}, X_{1}\right\rangle+\left\langle £_{X_{3}} \alpha_{1}, X_{2}\right\rangle=0,
$$

for all $\left(X_{1}, \alpha_{1}\right),\left(X_{2}, \alpha_{2}\right),\left(X_{3}, \alpha_{3}\right)$ that take values in D_{P}.

- Relevant with degenerate Lagrangian systems as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.
- Relevant with degenerate Lagrangian systems as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.
- On the Hamiltonian side, an implicit Hamiltonian system was defined by van der Schaft and Maschke [1995] as a triple $\left(H, D_{P}, X\right)$ that satisfies

$$
(X, \mathbf{d} H) \in D_{P}
$$

- Relevant with degenerate Lagrangian systems as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.
- On the Hamiltonian side, an implicit Hamiltonian system was defined by van der Schaft and Maschke [1995] as a triple $\left(H, D_{P}, X\right)$ that satisfies

$$
(X, \mathbf{d} H) \in D_{P}
$$

- On the Lagrangian side, an implicit Lagrangian system was defined by Yoshimura and Marsden[2006] as a triple $\left(L, D_{P}, X\right)$, where $X: T Q \oplus T^{*} Q \rightarrow T T^{*} Q$, that satisfies

$$
\left(X,\left.\mathbf{d} E\right|_{T P}\right) \in D_{P},
$$

where $E(q, v, p)=\langle p, v\rangle-L(q, v)$.

- Relevant with degenerate Lagrangian systems as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.
- On the Hamiltonian side, an implicit Hamiltonian system was defined by van der Schaft and Maschke [1995] as a triple $\left(H, D_{P}, X\right)$ that satisfies

$$
(X, \mathbf{d} H) \in D_{P}
$$

- On the Lagrangian side, an implicit Lagrangian system was defined by Yoshimura and Marsden[2006] as a triple $\left(L, D_{P}, X\right)$, where $X: T Q \oplus T^{*} Q \rightarrow T T^{*} Q$, that satisfies

$$
\left(X,\left.\mathbf{d} E\right|_{T P}\right) \in D_{P},
$$

where $E(q, v, p)=\langle p, v\rangle-L(q, v)$.

- Applications to interconnected systems of multiport networks such as electric circuits with Dirac constraints as well as multibody systems with nonholonomic constraints.
- The Hamilton-Pontryagin principle (originally developed by Livens [1919]) is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{L(q(t), v(t))+p(t) \cdot(\dot{q}(t)-v(t))\} d t=0
$$

with the fixed endpoints $q(t)$. One can obtain the implicit Euler-Lagrange equations:

$$
p=\frac{\partial L}{\partial v}, \quad \dot{q}=v, \quad \dot{p}=\frac{\partial L}{\partial q} .
$$

- The Hamilton-Pontryagin principle (originally developed by Livens [1919]) is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{L(q(t), v(t))+p(t) \cdot(\dot{q}(t)-v(t))\} d t=0
$$

with the fixed endpoints $q(t)$. One can obtain the implicit Euler-Lagrange equations:

$$
p=\frac{\partial L}{\partial v}, \quad \dot{q}=v, \quad \dot{p}=\frac{\partial L}{\partial q} .
$$

- Reduction of Dirac structures was studied by Courant, Dorfman, van der Schaft, Blankenstein and Ratiu (singular case), etc..., most of those are based on some generalization from the construction of Lie-Poisson structures.
- The Hamilton-Pontryagin principle (originally developed by Livens [1919]) is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{L(q(t), v(t))+p(t) \cdot(\dot{q}(t)-v(t))\} d t=0
$$

with the fixed endpoints $q(t)$. One can obtain the implicit Euler-Lagrange equations:

$$
p=\frac{\partial L}{\partial v}, \quad \dot{q}=v, \quad \dot{p}=\frac{\partial L}{\partial q} .
$$

- Reduction of Dirac structures was studied by Courant, Dorfman, van der Schaft, Blankenstein and Ratiu (singular case), etc..., most of those are based on some generalization from the construction of Lie-Poisson structures.
- Namely, letting G be a Lie group and \mathfrak{g} be a Lie algebra, the canonical Dirac structure on $T^{*} G$ can be reduced to a Dirac structure on \mathfrak{g}^{*} by using the Lie-Poisson brackets.

Euler-Poincaré Reduction

- Let $L: T G \rightarrow \mathbb{R}$ be a left invariant Lagrangian and $l:=L \mid \mathfrak{g}$ be the reduced Lagrangian, where we employ $T G \cong G \times \mathfrak{g}$.

The reduced constrained variational principle is given by

$$
\delta \int_{t_{1}}^{t_{2}} l(\xi(t)) d t=0
$$

where $\xi=g^{-1} \dot{g} \in \mathfrak{g}$ and the variations are given by

$$
\delta \xi=\dot{\eta} \pm[\xi, \eta]
$$

with the boundary conditions $\eta\left(t_{1}\right)=\eta\left(t_{2}\right)=0$.

Euler-Poincaré Reduction

- Let $L: T G \rightarrow \mathbb{R}$ be a left invariant Lagrangian and $l:=L \mid \mathfrak{g}$ be the reduced Lagrangian, where we employ $T G \cong G \times \mathfrak{g}$.

The reduced constrained variational principle is given by

$$
\delta \int_{t_{1}}^{t_{2}} l(\xi(t)) d t=0
$$

where $\xi=g^{-1} \dot{g} \in \mathfrak{g}$ and the variations are given by

$$
\delta \xi=\dot{\eta} \pm[\xi, \eta]
$$

with the boundary conditions $\eta\left(t_{1}\right)=\eta\left(t_{2}\right)=0$.

- It naturally induces Euler-Poincaré equations

$$
\frac{d}{d t} \frac{\partial l}{\partial \xi}= \pm \operatorname{ad}_{\xi}^{*} \frac{\partial l}{\partial \xi} .
$$

Lie-Poisson Variational Principle

- Let H be a left invariant Hamiltonian on $T^{*} G$ and let $h=H \mid \mathfrak{g}^{*}$ be a reduced Hamiltonian, where $T^{*} G \cong G \times \mathfrak{g}^{*}$. Reduction of Hamilton's phase space principle is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{\langle\mu(t), \xi(t)\rangle-h(\mu(t))\} d t=0
$$

where $\xi=g^{-1} \dot{g} \in \mathfrak{g}$ and $\mu=T_{e}^{*} L_{g} p \in \mathfrak{g}^{*}$ and the variation of ξ is given by $\delta \xi=\dot{\eta}+[\xi, \eta]$, with the fixed endpoint boundary conditions $\eta\left(t_{1}\right)=\eta\left(t_{2}\right)=0$.

Lie-Poisson Variational Principle

- Let H be a left invariant Hamiltonian on $T^{*} G$ and let $h=H \mid \mathfrak{g}^{*}$ be a reduced Hamiltonian, where $T^{*} G \cong G \times \mathfrak{g}^{*}$. Reduction of Hamilton's phase space principle is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{\langle\mu(t), \xi(t)\rangle-h(\mu(t))\} d t=0
$$

where $\xi=g^{-1} \dot{g} \in \mathfrak{g}$ and $\mu=T_{e}^{*} L_{g} p \in \mathfrak{g}^{*}$ and the variation of ξ is given by $\delta \xi=\dot{\eta}+[\xi, \eta]$, with the fixed endpoint boundary conditions $\eta\left(t_{1}\right)=\eta\left(t_{2}\right)=0$.

- Then, it leads to

$$
\xi=\frac{\partial h}{\partial \mu}, \quad \frac{d \mu}{d t}=\operatorname{ad}_{\xi}^{*} \mu
$$

which are to be equivalent with Lie-Poisson equations.

Lie-Poisson Variational Principle

- Let H be a left invariant Hamiltonian on $T^{*} G$ and let $h=H \mid \mathfrak{g}^{*}$ be a reduced Hamiltonian, where $T^{*} G \cong G \times \mathfrak{g}^{*}$. Reduction of Hamilton's phase space principle is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{\langle\mu(t), \xi(t)\rangle-h(\mu(t))\} d t=0
$$

where $\xi=g^{-1} \dot{g} \in \mathfrak{g}$ and $\mu=T_{e}^{*} L_{g} p \in \mathfrak{g}^{*}$ and the variation of ξ is given by $\delta \xi=\dot{\eta}+[\xi, \eta]$, with the fixed endpoint boundary conditions $\eta\left(t_{1}\right)=\eta\left(t_{2}\right)=0$.

- Then, it leads to

$$
\xi=\frac{\partial h}{\partial \mu}, \quad \frac{d \mu}{d t}=\operatorname{ad}_{\xi}^{*} \mu
$$

which are to be equivalent with Lie-Poisson equations.

- This reduction procedure of Lie-Poisson Variational Principle is done on the larger space $V=\mathfrak{g} \oplus \mathfrak{g}^{*}$ rather than \mathfrak{g}^{*} !

Our Goals

\square How can we reduce Hamilton-Pontryagin Principle, namely, variational principles on the reduced Pontryagin Bundle $\left(T Q \oplus T^{*} Q\right) / G$?

Our Goals

\square How can we reduce Hamilton-Pontryagin Principle, namely, variational principles on the reduced Pontryagin Bundle $\left(T Q \oplus T^{*} Q\right) / G$?
\square How can we construct a reduction procedure of Dirac structures on the cotangent bundle $P=T^{*} Q$, namely, $D \subset T P \oplus T^{*} P$?

Our Goals

\square How can we reduce Hamilton-Pontryagin Principle, namely, variational principles on the reduced Pontryagin Bundle $\left(T Q \oplus T^{*} Q\right) / G$?
\square How can we construct a reduction procedure of Dirac structures on the cotangent bundle $P=T^{*} Q$, namely, $D \subset T P \oplus T^{*} P$?
\square How can we develop implicit analogue of LagrangePoincaré equations and Hamilton-Poincaré equations?

Our Goals

\square How can we reduce Hamilton-Pontryagin Principle, namely, variational principles on the reduced Pontryagin Bundle $\left(T Q \oplus T^{*} Q\right) / G$?
\square How can we construct a reduction procedure of Dirac structures on the cotangent bundle $P=T^{*} Q$, namely, $D \subset T P \oplus T^{*} P$?
\square How can we develop implicit analogue of LagrangePoincaré equations and Hamilton-Poincaré equations?

Our goals are to answer these questions!

Examples

Artificial Satellite

Space Robots

Examples

Examples

Cotangent Bundle Reduction

- Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].

Cotangent Bundle Reduction

- Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].
- Hamiltonian reduction by stages [MMOR 2007] Let $H: T^{*} Q \rightarrow \mathbb{R}$ be a left invariant Hamiltonian with a Lie group G acting freely and properly on Q. Choose a principal connection A on the shape space bundle $Q \rightarrow Q / G$.

Cotangent Bundle Reduction

- Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].
- Hamiltonian reduction by stages [MMOR 2007] Let $H: T^{*} Q \rightarrow \mathbb{R}$ be a left invariant Hamiltonian with a Lie group G acting freely and properly on Q. Choose a principal connection A on the shape space bundle $Q \rightarrow Q / G$.
- The key idea lies in the connection dependent isomorpshim

$$
T^{*} Q / G \cong \cong_{A} T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*} .
$$

Cotangent Bundle Reduction

- Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].
- Hamiltonian reduction by stages [MMOR 2007] Let $H: T^{*} Q \rightarrow \mathbb{R}$ be a left invariant Hamiltonian with a Lie group G acting freely and properly on Q. Choose a principal connection A on the shape space bundle $Q \rightarrow Q / G$.
- The key idea lies in the connection dependent isomorpshim

$$
T^{*} Q / G \cong \cong_{A} T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*} .
$$

- Reduced Hamilton's equations on this space are called Hamilton Poincaré equations and for the case $Q=G$, it leads to Lie-Poisson equations ([CMPR2003]).

Tangent Bundle Reduction

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.

Tangent Bundle Reduction

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on $T Q$ with a Lie group G acting freely and properly on Q, such that there is a principal bundle $Q \rightarrow Q / G$, and we choose a principal connection A.

Tangent Bundle Reduction

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on $T Q$ with a Lie group G acting freely and properly on Q, such that there is a principal bundle $Q \rightarrow Q / G$, and we choose a principal connection A.
- The key idea lies in the connection dependent isomorpshim

$$
T Q / G \cong T(Q / G) \oplus \tilde{\mathfrak{g}} .
$$

Tangent Bundle Reduction

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on $T Q$ with a Lie group G acting freely and properly on Q, such that there is a principal bundle $Q \rightarrow Q / G$, and we choose a principal connection A.
- The key idea lies in the connection dependent isomorpshim

$$
T Q / G \cong T(Q / G) \oplus \tilde{\mathfrak{g}} .
$$

- Reduced variational principle of Hamilton was developed in Lagrangian Reduction by Stages [CMR2001].

Tangent Bundle Reduction

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on $T Q$ with a Lie group G acting freely and properly on Q, such that there is a principal bundle $Q \rightarrow Q / G$, and we choose a principal connection A.
- The key idea lies in the connection dependent isomorpshim

$$
T Q / G \cong T(Q / G) \oplus \tilde{\mathfrak{g}} .
$$

- Reduced variational principle of Hamilton was developed in Lagrangian Reduction by Stages [CMR2001].
- Reduced Euler-Lagrange equations on this space are called Lagrange-Poincaré equations and for the case $Q=G$, it leads to Euler-Poincaré equations.

What are the Problems?

- How can we deal with Pontryagin Bundle $T Q \oplus T^{*} Q$?

What are the Problems ?

- How can we deal with Pontryagin Bundle $T Q \oplus T^{*} Q$?
- How can we develop reduction of Dirac structures on the cotangent bundle?

What are the Problems?

- How can we deal with Pontryagin Bundle $T Q \oplus T^{*} Q$?
- How can we develop reduction of Dirac structures on the cotangent bundle?
- How can we construct the Hamiltonian and Lagrangian reduction throughout the reduced Dirac structure?

What are the Problems ?

- How can we deal with Pontryagin Bundle $T Q \oplus T^{*} Q$?
- How can we develop reduction of Dirac structures on the cotangent bundle?
- How can we construct the Hamiltonian and Lagrangian reduction throughout the reduced Dirac structure?
- Is there any variational structure associated with the Lagrangian and Hamiltonian reduction accompanied with the reduced Dirac structures?

What are the Problems ?

- How can we deal with Pontryagin Bundle $T Q \oplus T^{*} Q$?
- How can we develop reduction of Dirac structures on the cotangent bundle?
- How can we construct the Hamiltonian and Lagrangian reduction throughout the reduced Dirac structure?
- Is there any variational structure associated with the Lagrangian and Hamiltonian reduction accompanied with the reduced Dirac structures?

Let us first go to see the special case $Q=G!$

Hamilton-Pontryagin Principle

- Let $L: T G \rightarrow \mathbb{R}$ be a left Lagrangian and recall the HamiltonPontryagin principle is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{L(g(t), v(t))+p(t) \cdot(\dot{g}(t)-v(t))\} d t=0 .
$$

Hamilton-Pontryagin Principle

- Let $L: T G \rightarrow \mathbb{R}$ be a left Lagrangian and recall the HamiltonPontryagin principle is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{L(g(t), v(t))+p(t) \cdot(\dot{g}(t)-v(t))\} d t=0 .
$$

- Reduction of the Hamilton-Pontryagin principle may be described by

$$
\delta \int_{t_{1}}^{t_{2}}\{l(\eta(t))+\mu(t) \cdot(\xi(t)-\eta(t))\} d t=0
$$

with $\delta \xi(t)=\dot{\zeta}(t)+[\xi(t), \zeta(t)]$ and $\zeta\left(t_{1}\right)=\zeta\left(t_{2}\right)=0$.

Hamilton-Pontryagin Principle

- Let $L: T G \rightarrow \mathbb{R}$ be a left Lagrangian and recall the HamiltonPontryagin principle is given by

$$
\delta \int_{t_{1}}^{t_{2}}\{L(g(t), v(t))+p(t) \cdot(\dot{g}(t)-v(t))\} d t=0 .
$$

- Reduction of the Hamilton-Pontryagin principle may be described by

$$
\delta \int_{t_{1}}^{t_{2}}\{l(\eta(t))+\mu(t) \cdot(\xi(t)-\eta(t))\} d t=0
$$

with $\delta \xi(t)=\dot{\zeta}(t)+[\xi(t), \zeta(t)]$ and $\zeta\left(t_{1}\right)=\zeta\left(t_{2}\right)=0$.

- It follows implicit Euler-Poincaré equations

$$
\mu=\frac{\delta l}{\delta \eta}, \quad \xi=\eta, \quad \dot{\mu}=\operatorname{ad}_{\xi}^{*} \mu .
$$

Invariance of Dirac Structures

- The canonical Dirac structure on $P=T^{*} G$ is given by

$$
D=\operatorname{graph} \Omega \subset T P \oplus T^{*} P .
$$

In view of the trivialized isomorphism

$$
\bar{\lambda}: P=T^{*} G \rightarrow G \times \mathfrak{g}^{*}
$$

a Dirac structure \bar{D} on $G \times \mathfrak{g}^{*}$ can be naturally defined.

Invariance of Dirac Structures

- The canonical Dirac structure on $P=T^{*} G$ is given by

$$
D=\operatorname{graph} \Omega \subset T P \oplus T^{*} P
$$

In view of the trivialized isomorphism

$$
\bar{\lambda}: P=T^{*} G \rightarrow G \times \mathfrak{g}^{*},
$$

a Dirac structure \bar{D} on $G \times \mathfrak{g}^{*}$ can be naturally defined.

- Let Φ denote the G-action on $G \times \mathfrak{g}^{*}$, so that

$$
\Phi_{h}(g, \mu)=(h g, \mu) .
$$

The Dirac structure \bar{D} is to be G-invariant, since

$$
\left(\Phi_{h^{*}} X,\left(\Phi_{h}^{*}\right)^{-1} \alpha\right) \in \bar{D}
$$

holds for all $(X, \alpha) \in \bar{D}$.

Lie-Dirac Reduction

- One can obtain the quotient of \bar{D} by G as

$$
[\bar{D}]_{G} \cong D / G \subset\left(T P \oplus T^{*} P\right) / G,
$$

where $[\bar{D}]_{G}$ is a Dirac structure on the bundle

$$
T P / G \cong \mathfrak{g}^{*} \times V
$$

over $P / G \cong \mathfrak{g}^{*}$, which is the reduction of the canonical Dirac structure D on $P=T^{*} G$.

Lie-Dirac Reduction

- One can obtain the quotient of \bar{D} by G as

$$
[\bar{D}]_{G} \cong D / G \subset\left(T P \oplus T^{*} P\right) / G
$$

where $[\bar{D}]_{G}$ is a Dirac structure on the bundle

$$
T P / G \cong \mathfrak{g}^{*} \times V
$$

over $P / G \cong \mathfrak{g}^{*}$, which is the reduction of the canonical Dirac structure D on $P=T^{*} G$.

- For each $\mu \in \mathfrak{g}^{*}$, it follows that $[\bar{D}]_{G}(\mu)$ is given by

$$
\begin{aligned}
& {[\bar{D}]_{G}(\mu)=\left\{((\xi, \kappa),(\nu, \xi)) \in V \oplus V^{*} \mid\right.} \\
&\left.\nu+\kappa=\operatorname{ad}_{\xi}^{*} \mu\right\},
\end{aligned}
$$

where $V=\mathfrak{g} \oplus \mathfrak{g}^{*}$.

- Define the trivialized generalized energy on $G \times V$ by

$$
\bar{E}(g, \eta, \mu)=\langle\mu, \eta\rangle-\bar{L}(g, \eta) .
$$

The quotient of $\mathbf{d} \bar{E}$ is the map

$$
[\mathbf{d} \bar{E}]_{G}: V \rightarrow V \times \mathfrak{g}^{*} \times V^{*},
$$

which is given by, for each $(\eta, \mu) \in V$,

$$
[\mathbf{d} \bar{E}]_{G}(\eta, \mu)=\left(\eta, \mu, 0, \mu-\frac{\partial l}{\partial \eta}, \eta\right) .
$$

- Define the trivialized generalized energy on $G \times V$ by

$$
\bar{E}(g, \eta, \mu)=\langle\mu, \eta\rangle-\bar{L}(g, \eta) .
$$

The quotient of $\mathbf{d} \bar{E}$ is the map

$$
[\mathbf{d} \bar{E}]_{G}: V \rightarrow V \times \mathfrak{g}^{*} \times V^{*},
$$

which is given by, for each $(\eta, \mu) \in V$,

$$
[\mathbf{d} \bar{E}]_{G}(\eta, \mu)=\left(\eta, \mu, 0, \mu-\frac{\partial l}{\partial \eta}, \eta\right) .
$$

- Since $\partial \bar{E} / \partial \eta=0$ naturally induces the reduced Legendre transform

$$
\mu=\partial l / \partial \eta \in \mathfrak{g}^{*}
$$

the restriction of $[\mathbf{d} \bar{E}]_{G}$ to $\mathfrak{g}^{*} \times V$ is given by

$$
\left.[\mathbf{d} \bar{E}]_{G}(\eta, \mu)\right|_{\mathfrak{g}^{*} \times V}=(\mu, 0, \eta) \in \mathfrak{g}^{*} \times V^{*} .
$$

- The partial vector field

$$
X: T G \oplus T^{*} G \rightarrow T T^{*} G,
$$

is given by

$$
X(g, v, p)=(g, p, \dot{g}, \dot{p}),
$$

where \dot{g} and \dot{p} are functions of (g, v, p). Notice that X is left invariant as

$$
h \cdot X(g, v, p)=X\left(h g, T_{g} L_{h} \cdot v, T_{h g}^{*} L_{h^{-1}} \cdot p\right) .
$$

- The partial vector field

$$
X: T G \oplus T^{*} G \rightarrow T T^{*} G,
$$

is given by

$$
X(g, v, p)=(g, p, \dot{g}, \dot{p})
$$

where \dot{g} and \dot{p} are functions of (g, v, p). Notice that X is left invariant as

$$
h \cdot X(g, v, p)=X\left(h g, T_{g} L_{h} \cdot v, T_{h g}^{*} L_{h^{-1}} \cdot p\right) .
$$

- The reduction of the partial vector field is given by the quotient

$$
[\bar{X}]_{G}: V \rightarrow \mathfrak{g}^{*} \times V,
$$

which is denoted by

$$
[\bar{X}]_{G}(\eta, \mu)=(\mu, \xi, \dot{\mu}) \in \mathfrak{g}^{*} \times V
$$

Here, note that ξ and $\dot{\mu}$ are functions of (η, μ).

Euler-Poincaré-Dirac Reduction

- The reduction of an implicit Lagrangian system (L, D, X) is given by a triple

$$
\left(l,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies, for each $\eta \in \mathfrak{g}$, the condition

$$
\left([\bar{X}]_{G}(\eta, \mu),\left.[\mathbf{d} \bar{E}]_{G}(\eta, \mu)\right|_{\mathfrak{g}^{*} \times V}\right) \in[\bar{D}]_{G}(\mu),
$$

where $\mu=\mathbb{F l}(\eta) \in \mathfrak{g}^{*}$ holds.

Euler-Poincaré-Dirac Reduction

- The reduction of an implicit Lagrangian system (L, D, X) is given by a triple

$$
\left(l,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies, for each $\eta \in \mathfrak{g}$, the condition

$$
\left([\bar{X}]_{G}(\eta, \mu),\left.[\mathbf{d} \bar{E}]_{G}(\eta, \mu)\right|_{\mathfrak{g}^{*} \times V}\right) \in[\bar{D}]_{G}(\mu),
$$

where $\mu=\mathbb{F l}(\eta) \in \mathfrak{g}^{*}$ holds.

- This induces implicit Euler-Poincaré equations on $V=\mathfrak{g} \oplus \mathfrak{g}^{*}$ as

$$
\mu=\frac{\partial l}{\partial \eta}, \quad \xi=\eta, \quad \frac{d \mu}{d t}=\operatorname{ad}_{\xi}^{*} \mu .
$$

Lie-Poisson-Dirac Reduction

- The reduction of an implicit Hamiltonian system (H, D, X) is given by a triple

$$
\left(h,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies, for each $\eta \in \mathfrak{g}$, the condition

$$
\left([\bar{X}]_{G},[\mathbf{d} \bar{H}]_{G}\right) \in[\bar{D}]_{G},
$$

where $[\bar{X}]_{G}=(\mu, \xi(\mu), \dot{\mu})$ and $[\mathbf{d} \bar{H}]_{G}=(\mu, 0, \partial h / \partial \mu)$.

Lie-Poisson-Dirac Reduction

- The reduction of an implicit Hamiltonian system (H, D, X) is given by a triple

$$
\left(h,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies, for each $\eta \in \mathfrak{g}$, the condition

$$
\left([\bar{X}]_{G},[\mathbf{d} \bar{H}]_{G}\right) \in[\bar{D}]_{G},
$$

where $[\bar{X}]_{G}=(\mu, \xi(\mu), \dot{\mu})$ and $[\mathbf{d} \bar{H}]_{G}=(\mu, 0, \partial h / \partial \mu)$.

- This induces implicit Lie-Poisson equations on $V=\mathfrak{g} \oplus \mathfrak{g}^{*}$ as

$$
\xi=\frac{\partial h}{\partial \mu}, \quad \frac{d \mu}{d t}=\operatorname{ad}_{\xi}^{*} \mu,
$$

which is consistent with the results in [CMPR2003].

Principal Bundle with a Lie Group

- Let $\pi: Q \rightarrow Q / G$ be a principal bundle with a Lie group G acting freely and properly on Q and choose a principal connection on Q as $A: T Q \rightarrow \mathfrak{g}$.

Principal Bundle with a Lie Group

- Let $\pi: Q \rightarrow Q / G$ be a principal bundle with a Lie group G acting freely and properly on Q and choose a principal connection on Q as $A: T Q \rightarrow \mathfrak{g}$.
- The group G acts on curves $(q(t), v(t), p(t)) \in T Q \oplus T^{*} Q$ as

$$
\begin{aligned}
& h \cdot(q(t), v(t), p(t)) \\
& \quad=\left(h q(t), T_{q(t)} L_{h} \cdot v(t), T_{h q(t)}^{*} L_{h^{-1}} \cdot p(t)\right) .
\end{aligned}
$$

Principal Bundle with a Lie Group

- Let $\pi: Q \rightarrow Q / G$ be a principal bundle with a Lie group G acting freely and properly on Q and choose a principal connection on Q as $A: T Q \rightarrow \mathfrak{g}$.
- The group G acts on curves $(q(t), v(t), p(t)) \in T Q \oplus T^{*} Q$ as

$$
\begin{aligned}
& h \cdot(q(t), v(t), p(t)) \\
& \quad=\left(h q(t), T_{q(t)} L_{h} \cdot v(t), T_{h q(t)}^{*} L_{h^{-1}} \cdot p(t)\right) .
\end{aligned}
$$

- The curves in $\left(T Q \oplus T^{*} Q\right) / G$ are isomorphic to the curves in $T(Q / G) \oplus T^{*}(Q / G) \oplus V$, namely,

$$
[q(t), v(t), p(t)]_{G} \cong(x(t), u(t), y(t)) \oplus(\bar{\eta}(t), \bar{\mu}(t)),
$$

where $\tilde{V}=\tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^{*}$ and where we have employed

$$
T Q / G \cong T(Q / G) \oplus \tilde{\mathfrak{g}} \quad \text { and } \quad T^{*} Q / G \cong T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*} .
$$

Reduced H-P Variational Principle

- The stationarity for the reduced Hamilton-Pontryagin principle is given by

$$
\begin{gathered}
\delta \int_{t_{0}}^{t_{1}}\{l(x(t), u(t), \bar{\eta}(t))+\langle y(t), \dot{x}(t)-u(t)\rangle \\
+\langle\bar{\mu}(t), \bar{\xi}(t)-\bar{\eta}(t)\rangle\} d t=0
\end{gathered}
$$

with arbitrary variations $\delta x, \delta u, \delta \bar{\eta}, \delta y, \delta \bar{\mu}, \bar{\zeta}$ and the covariant variation

$$
\delta^{A} \bar{\xi}=\frac{D[q, \zeta]_{G}}{D t}+[q,[\xi, \zeta]]_{G}+\widetilde{B}(\delta x, \dot{x}),
$$

together with the boundary conditions

$$
\delta x\left(t_{0}\right)=\delta x\left(t_{1}\right)=0 \text { and } \zeta\left(t_{0}\right)=\zeta\left(t_{1}\right)=0 .
$$

Implicit Lagrange-Poincaré Equations

- Corresponding to the horizontal variations $\delta x, \delta u$ and δy, it follows horizontal implicit Lagrange-Poincaré equations as

$$
\frac{D y}{D t}=\frac{\partial l}{\partial x}-\langle\bar{\mu}, \widetilde{B}(\dot{x}, \cdot)\rangle, \quad \dot{x}=u, \quad y=\frac{\partial l}{\partial u} .
$$

Implicit Lagrange-Poincaré Equations

- Corresponding to the horizontal variations $\delta x, \delta u$ and δy, it follows horizontal implicit Lagrange-Poincaré equations as

$$
\frac{D y}{D t}=\frac{\partial l}{\partial x}-\langle\bar{\mu}, \widetilde{B}(\dot{x}, \cdot)\rangle, \quad \dot{x}=u, \quad y=\frac{\partial l}{\partial u} .
$$

- Corresponding to the vertical variations $\delta \bar{\eta}, \delta \bar{\mu}$ and $\bar{\zeta}$, it follows vertical implicit Lagrange-Poincaré equations as

$$
\frac{D \bar{\mu}}{D t}=\operatorname{ad}_{\bar{\xi}}^{*} \bar{\mu}, \quad \bar{\xi}=\bar{\eta}, \quad \bar{\mu}=\frac{\partial l}{\partial \bar{\eta}} .
$$

Trivialized Expressions

- Let us pull back the G-principal bundle $\pi: Q \rightarrow Q / G$ by $\pi_{Q / G}: T^{*}(Q / G) \rightarrow Q / G$ to obtain the G-principal bundle

$$
\widetilde{Q}^{*}=\left\{\left(q, \alpha_{[q]}\right) \mid \pi_{Q / G}\left(\alpha_{[q]}\right)=\pi(q)=[q], q \in Q,\right.
$$

$$
\left.\alpha_{[q]} \in T_{[q]}^{*}(Q / G)\right\} .
$$

Trivialized Expressions

- Let us pull back the G-principal bundle $\pi: Q \rightarrow Q / G$ by $\pi_{Q / G}: T^{*}(Q / G) \rightarrow Q / G$ to obtain the G-principal bundle

$$
\begin{aligned}
& \widetilde{Q}^{*}=\left\{\left(q, \alpha_{[q]}\right) \mid \pi_{Q / G}\left(\alpha_{[q]}\right)=\pi(q)=[q], q \in Q\right. \\
&\left.\alpha_{[q]} \in T_{[q]}^{*}(Q / G)\right\} .
\end{aligned}
$$

- Define the space $\widetilde{Q}^{*} \times \mathfrak{g}^{*}$, which is isomorphic to $T^{*} Q$ by

$$
\bar{\lambda}: T^{*} Q \rightarrow \widetilde{Q}^{*} \times \mathfrak{g}^{*} ; \quad \alpha_{q} \mapsto\left(q,\left(\alpha_{q}\right)_{q}^{h^{*}}, \rho=\mathbf{J}\left(\alpha_{q}\right)\right),
$$

The quotient map

$$
[\bar{\lambda}]_{G}:\left(T^{*} Q\right) / G \rightarrow\left(\widetilde{Q}^{*} \times \mathfrak{g}^{*}\right) / G \cong T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}
$$

is a left trivialization as

$$
\left[\alpha_{q}\right]_{G} \mapsto\left(\left(\alpha_{q}\right)_{q}^{h^{*}},\left[q, \mathbf{J}\left(\alpha_{q}\right)\right]_{G}\right)=\left(\left(\alpha_{q}\right)_{q}^{h^{*}},\left[q, T_{e}^{*} L_{g} \cdot \alpha_{q}\right]_{G}\right) .
$$

- Let us pull back the G-principal bundle $\pi: Q \rightarrow Q / G$ by the tangent bundle projection $\tau_{Q / G}: T(Q / G) \rightarrow Q / G$ to obtain the G-principal bundle

$$
\begin{aligned}
\widetilde{Q}=\left\{\left(q, u_{[q]}\right) \mid \tau_{Q / G}\left(u_{[q]}\right)=\pi(q)=[q], q\right. & \in Q \\
& \left.u_{[q]} \in T_{[q]}(Q / G)\right\} .
\end{aligned}
$$

- Let us pull back the G-principal bundle $\pi: Q \rightarrow Q / G$ by the tangent bundle projection $\tau_{Q / G}: T(Q / G) \rightarrow Q / G$ to obtain the G-principal bundle

$$
\begin{aligned}
& \widetilde{Q}=\left\{\left(q, u_{[q]}\right) \mid \tau_{Q / G}\left(u_{[q]}\right)=\pi(q)=[q], q \in Q\right. \\
&, \quad, \\
&\left.u_{[q]} \in T_{[q]}(Q / G)\right\} .
\end{aligned}
$$

- Define the space $\widetilde{Q} \times \mathfrak{g}$, which is diffeomorphic to $T Q$ by

$$
\lambda: T Q \rightarrow \widetilde{Q} \times \mathfrak{g} ; \quad v_{q} \mapsto\left(q, T \pi\left(v_{q}\right), \xi=A\left(v_{q}\right)\right) .
$$

The quotient

$$
[\lambda]_{G}:(T Q) / G \rightarrow(\widetilde{Q} \times \mathfrak{g}) / G \cong T(Q / G) \oplus \tilde{\mathfrak{g}}
$$

is a left trivialization as

$$
\begin{aligned}
{\left[v_{q}\right]_{G} } & \mapsto\left(T \pi\left(v_{q}\right),\left[q, A\left(v_{q}\right)\right]_{G}\right) \\
& =\left(T \pi\left(v_{q}\right),\left[q, T_{g} L_{g^{-1}} \cdot v_{q}\right]_{G}\right) .
\end{aligned}
$$

Dirac Structures on $\widetilde{Q}^{*} \times \mathfrak{g}^{*} \cong T^{*} Q$

Given the canonical Dirac structure D on $T^{*} Q$, one can define a Dirac structure \bar{D} on $\widetilde{Q}^{*} \times \mathfrak{g}^{*}$, in view of $T^{*} Q \cong \widetilde{Q}^{*} \times \mathfrak{g}^{*}$, which is given by

$$
\begin{aligned}
& \bar{D}(x, g, y, \rho)=\{((\dot{x}, \dot{g}, \dot{y}, \dot{\rho}),(\kappa, \nu, v, \eta)) \mid \\
& \quad\langle\kappa, \delta x\rangle+\langle\nu, \delta g\rangle+\langle\delta y, v\rangle+\langle\delta \rho, \eta\rangle \\
& =\Omega(x, g, y, \rho)((\dot{x}, \dot{g}, \dot{y}, \dot{\rho}),(\delta x, \delta g, \delta y, \delta \rho)) \\
& \left.\quad \quad \text { for all } \quad(\delta x, \delta g, \delta y, \delta \rho) \in T_{(x, g, y, \rho)}\left(\widetilde{Q}^{*} \times \mathfrak{g}^{*}\right)\right\} .
\end{aligned}
$$

Dirac Structures on $\widetilde{Q}^{*} \times \mathfrak{g}^{*} \cong T^{*} Q$

Given the canonical Dirac structure D on $T^{*} Q$, one can define a Dirac structure \bar{D} on $\widetilde{Q}^{*} \times \mathfrak{g}^{*}$, in view of $T^{*} Q \cong \widetilde{Q}^{*} \times \mathfrak{g}^{*}$, which is given by

$$
\begin{aligned}
& \bar{D}(x, g, y, \rho)=\{((\dot{x}, \dot{g}, \dot{y}, \dot{\rho}),(\kappa, \nu, v, \eta)) \mid \\
& \quad\langle\kappa, \delta x\rangle+\langle\nu, \delta g\rangle+\langle\delta y, v\rangle+\langle\delta \rho, \eta\rangle \\
& =\Omega(x, g, y, \rho)((\dot{x}, \dot{g}, \dot{y}, \dot{\rho}),(\delta x, \delta g, \delta y, \delta \rho)) \\
& \left.\quad \quad \text { for all }(\delta x, \delta g, \delta y, \delta \rho) \in T_{(x, g, y, \rho)}\left(\widetilde{Q}^{*} \times \mathfrak{g}^{*}\right)\right\} .
\end{aligned}
$$

- In the above, we have

$$
\Omega=\gamma^{*} \Omega_{T^{*}(Q / G)}-\tilde{\pi}_{Q}^{*} B_{\rho}+\omega
$$

is a symplectic form on $\widetilde{Q^{*}} \times \mathfrak{g}^{*}$.

Invariance of Dirac Structures

- The Dirac structure \bar{D} on $\widetilde{Q}^{*} \times \mathfrak{g}^{*}$ is G-invariant as

$$
\left(\Phi_{h^{*}} X,\left(\Phi_{h}^{*}\right)^{-1} \alpha\right) \in \bar{D} \quad \text { for all } \quad(X, \alpha) \in \bar{D},
$$

which follows

$$
\bar{D}\left(e, g^{-1} g, y, g^{-1} \rho\right)=\bar{D}(x, g, y, \rho) .
$$

Invariance of Dirac Structures

- The Dirac structure \bar{D} on $\widetilde{Q}^{*} \times \mathfrak{g}^{*}$ is G-invariant as

$$
\left(\Phi_{h^{*}} X,\left(\Phi_{h}^{*}\right)^{-1} \alpha\right) \in \bar{D} \quad \text { for all } \quad(X, \alpha) \in \bar{D},
$$

which follows

$$
\bar{D}\left(e, g^{-1} g, y, g^{-1} \rho\right)=\bar{D}(x, g, y, \rho) .
$$

- By taking quotients by G, it leads to a reduced Dirac structure on the bundle

$$
T T^{*} Q / G \cong \tilde{\mathfrak{g}}^{*} \times\left(T T^{*}(Q / G) \oplus \widetilde{V}\right)
$$

over $T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}$ as

$$
\begin{aligned}
{[\bar{D}]_{G} \subset \tilde{\mathfrak{g}}^{*} } & \times\left(T T^{*}(Q / G) \oplus \widetilde{V} \oplus T^{*} T^{*}(Q / G) \oplus \widetilde{V}^{*}\right) \\
& \cong\left(T T^{*} Q / G\right) \oplus\left(T^{*} T^{*} Q / G\right)
\end{aligned}
$$

Gauged Dirac Structures

- The reduced Dirac structure $[\bar{D}]_{G}$ is given by, for each $(x, y, \bar{\mu}) \in T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}$.

$$
[\bar{D}]_{G}(x, y, \bar{\mu})=[\bar{D}]_{G}^{\mathrm{Hor}}(x, y) \oplus[\bar{D}]_{G}^{\mathrm{Ver}}(\bar{\mu}),
$$

where we shall call $[\bar{D}]_{G}=[\bar{D}]_{G}^{\mathrm{Hor}} \oplus[\bar{D}]_{G}^{\mathrm{Ver}}$ a gauged Dirac structure.

Gauged Dirac Structures

- The reduced Dirac structure $[\bar{D}]_{G}$ is given by, for each $(x, y, \bar{\mu}) \in T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}$.

$$
[\bar{D}]_{G}(x, y, \bar{\mu})=[\bar{D}]_{G}^{\mathrm{Hor}}(x, y) \oplus[\bar{D}]_{G}^{\mathrm{Ver}}(\bar{\mu}),
$$

where we shall call $[\bar{D}]_{G}=[\bar{D}]_{G}^{\mathrm{Hor}} \oplus[\bar{D}]_{G}^{\mathrm{Ver}}$ a gauged Dirac structure.

- In the above, $[D]_{G}^{\text {Hor }}$ is a horizontal Dirac structure on the bundle $\tilde{\mathfrak{g}}^{*} \times T T^{*}(Q / G)$ over $T^{*}(Q / G)$, which is given by

$$
[\bar{D}]_{G}^{\mathrm{Hor}}(x, y)=\left\{((\dot{x}, \dot{y}),(\beta, \dot{x})) \mid \dot{y}+\beta=-\widetilde{B}_{\bar{\mu}}(\dot{x}, \cdot)\right\},
$$

while $[D]_{G}^{\mathrm{Ver}}$ is a vertical Dirac structure on the bundle $\tilde{\mathfrak{g}}^{*} \times \widetilde{V}$ over $\tilde{\mathfrak{g}}^{*}$ given by

$$
[\bar{D}]_{G}^{\operatorname{Ver}}(\bar{\mu})=\left\{((\bar{\xi}, \dot{\bar{\mu}}),(\bar{\nu}, \bar{\xi})) \mid \dot{\bar{\mu}}+\bar{\nu}=\operatorname{ad}_{\xi}^{*} \bar{\mu}\right\} .
$$

Differential of the Generalized Energy

- Associated with the generalized energy on $T Q \oplus T^{*} Q$

$$
E(q, v, p)=\langle p, v\rangle-L(q, v),
$$

the quotient of $\mathbf{d} \bar{E}$ is given by

$$
\begin{aligned}
{[\mathbf{d} \bar{E}]_{G}: } & T(Q / G) \oplus T^{*}(Q / G) \oplus \tilde{V} \\
& \rightarrow \tilde{\mathfrak{g}}^{*} \times\left(T^{*} T(Q / G) \oplus \tilde{V} \oplus T^{*} T^{*}(Q / G) \oplus \tilde{V}^{*}\right)
\end{aligned}
$$

Differential of the Generalized Energy

- Associated with the generalized energy on $T Q \oplus T^{*} Q$

$$
E(q, v, p)=\langle p, v\rangle-L(q, v)
$$

the quotient of $\mathbf{d} \bar{E}$ is given by

$$
\begin{aligned}
{[\mathrm{d} \bar{E}]_{G}: } & T(Q / G) \oplus T^{*}(Q / G) \oplus \tilde{V} \\
& \rightarrow \tilde{\mathfrak{g}}^{*} \times\left(T^{*} T(Q / G) \oplus \tilde{V} \oplus T^{*} T^{*}(Q / G) \oplus \tilde{V}^{*}\right) .
\end{aligned}
$$

- The restriction to $\tilde{\mathfrak{g}}^{*} \times\left(T T^{*}(Q / G) \oplus \widetilde{V}\right)$ is given as

$$
\left.[\mathbf{d} \bar{E}]_{G}\right|_{\tilde{\mathfrak{g}}^{*} \times\left(T T^{*}(Q / G) \oplus \tilde{V}\right)}=\left.\left.[\mathbf{d} \bar{E}]_{G}^{\mathrm{Hor}}\right|_{\mathfrak{q}^{*} \times T T^{*}(Q / G)} \oplus[\mathbf{d} \bar{E}]_{G}\right|_{\mathfrak{g}^{*} \times \tilde{V}},
$$

where

$$
\left.[\mathbf{d} \bar{E}]_{G}^{\mathrm{Hor}}\right|_{\mathfrak{g}^{*} \times T T^{*}(Q / G)}=\left(x, y,-\frac{\partial l}{\partial x}, u\right),
$$

and

$$
\left.[\mathbf{d} \bar{E}]_{G}\right|_{\mathfrak{g}^{*} \times \tilde{V}}=(\bar{\mu}, 0, \bar{\eta}) .
$$

The Reduced Legendre Transform

- The reduced Legendre transform may be decomposed as

$$
\mathbb{F} l=\mathbb{F} l^{\mathrm{Hor}} \oplus \mathbb{F} l^{\mathrm{Ver}}: T(Q / G) \oplus \tilde{\mathfrak{g}} \rightarrow T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}
$$

The Reduced Legendre Transform

- The reduced Legendre transform may be decomposed as

$$
\mathbb{F} l=\mathbb{F} l^{\mathrm{Hor}} \oplus \mathbb{F} l^{\mathrm{Ver}}: T(Q / G) \oplus \tilde{\mathfrak{g}} \rightarrow T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}
$$

- In the above, the horizontal Legendre transformation

$$
\mathbb{F} l^{\text {Hor }}: T(Q / G) \rightarrow T^{*}(Q / G)
$$

is given by

$$
(x, u) \mapsto\left(x, y=\frac{\partial l}{\partial u}\right),
$$

while the vertical Legendre transformation

$$
\mathbb{F} l^{\mathrm{Ver}}: \tilde{\mathfrak{g}} \rightarrow \tilde{\mathfrak{g}}^{*},
$$

is given by

$$
\bar{\eta} \mapsto \bar{\mu}=\frac{\partial l}{\partial \bar{\eta}} \in \tilde{\mathfrak{g}}^{*} .
$$

Reduction of the Partial Vector Field

- Let \bar{X} be the trivialized partial vector field associated to $X: T Q \oplus T^{*} Q \rightarrow T T^{*} Q$. Then, the reduced partial vector field $[\bar{X}]_{G}$ can be represented by

$$
[\bar{X}]_{G}(x, u, y, \bar{\eta}, \bar{\mu})=[\bar{X}]_{G}^{\mathrm{Hor}}(x, u, y) \oplus[\bar{X}]_{G}^{\mathrm{Ver}}(\bar{\eta}, \bar{\mu}) .
$$

Reduction of the Partial Vector Field

- Let \bar{X} be the trivialized partial vector field associated to $X: T Q \oplus T^{*} Q \rightarrow T T^{*} Q$. Then, the reduced partial vector field $[\bar{X}]_{G}$ can be represented by

$$
[\bar{X}]_{G}(x, u, y, \bar{\eta}, \bar{\mu})=[\bar{X}]_{G}^{\mathrm{Hor}}(x, u, y) \oplus[\bar{X}]_{G}^{\mathrm{Ver}}(\bar{\eta}, \bar{\mu}) .
$$

- In the above, the horizontal partial vector field

$$
[\bar{X}]_{G}^{\mathrm{Hor}}: T(Q / G) \oplus T^{*}(Q / G) \rightarrow \tilde{\mathfrak{g}}^{*} \times T T^{*}(Q / G)
$$

is given by

$$
[\bar{X}]_{G}^{\mathrm{Hor}}(x, u, y)=(x, y, \dot{x}, \dot{y})
$$

and the vertical partial vector field

$$
[\bar{X}]_{G}^{\mathrm{Ver}}: \widetilde{V} \rightarrow \tilde{\mathfrak{g}}^{*} \times \tilde{V}
$$

is given by

$$
\left.[\bar{X}]_{G}^{\mathrm{Ver}} \bar{\eta}, \bar{\mu}\right)=(\bar{\mu}, \bar{\xi}, \dot{\bar{\mu}}) \in \tilde{\mathfrak{g}}^{*} \times \widetilde{V} .
$$

Lagrange-Poincaré-Dirac Reduction

- The reduction of a standard implicit Lagrangian system (L, D, X) that satisfies

$$
\left(X,\left.\mathbf{d} E\right|_{T T^{*} Q}\right) \in D
$$

is given by a triple

$$
\left(l,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies

$$
\left([\bar{X}]_{G},\left.[\mathbf{d} \bar{E}]_{G}\right|_{\tilde{\mathfrak{g}}^{*} \times\left(T T^{*}(Q / G) \oplus \tilde{V}\right)}\right) \in[\bar{D}]_{G} .
$$

Lagrange-Poincaré-Dirac Reduction

- The reduction of a standard implicit Lagrangian system (L, D, X) that satisfies

$$
\left(X,\left.\mathbf{d} E\right|_{T T^{*} Q}\right) \in D
$$

is given by a triple

$$
\left(l,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies

$$
\left([\bar{X}]_{G},\left.[\mathbf{d} \bar{E}]_{G}\right|_{\tilde{\mathfrak{g}}^{*} \times\left(T T^{*}(Q / G) \oplus \widetilde{V}\right)}\right) \in[\bar{D}]_{G} .
$$

- The reduced implicit Lagrangian system can be decomposed into the horizontal and vertical parts such that

$$
\left(l,[\bar{D}]_{G},[\bar{X}]_{G}\right)=\left(l,[\bar{D}]_{G}^{\mathrm{Hor}},[\bar{X}]_{G}^{\mathrm{Hor}}\right) \oplus\left(l,[\bar{D}]_{G}^{\mathrm{Ver}},[\bar{X}]_{G}^{\mathrm{Ver}}\right) .
$$

Horizontal Implicit Lagrange-Poincaré Equations

- The horizontal implicit Lagrangian system is a triple

$$
\left(l,[\bar{D}]_{G}^{\mathrm{Hor}},[\bar{X}]_{G}^{\mathrm{Hor}}\right)
$$

that satisfies

$$
\left([\bar{X}]_{G}^{\mathrm{Hor}},[\mathbf{d} \bar{E}]_{\left.\left.G\right|_{\mathbf{a}^{*} \times T T^{*}(Q / G)} ^{\mathrm{Hor}}\right)}\right) \in[\bar{D}]_{G}^{\mathrm{Hor}}
$$

together with the horizontal Legendre transformation

$$
\mathbb{F} l^{\text {Hor }}: T(Q / G) \rightarrow T^{*}(Q / G) .
$$

Horizontal Implicit Lagrange-Poincaré Equations

- The horizontal implicit Lagrangian system is a triple

$$
\left(l,[\bar{D}]_{G}^{\mathrm{Hor}},[\bar{X}]_{G}^{\mathrm{Hor}}\right)
$$

that satisfies

$$
\left([\bar{X}]_{G}^{\mathrm{Hor}},[\mathbf{d} \bar{E}]_{\left.G\right|_{\mathbf{g}^{*} \times T T^{*} *(Q / G)} ^{\mathrm{Hor}}}^{\mathrm{H}}\right) \in[\bar{D}]_{G}^{\mathrm{Hor}}
$$

together with the horizontal Legendre transformation

$$
\mathbb{F} l^{\text {Hor }}: T(Q / G) \rightarrow T^{*}(Q / G) .
$$

- This induces horizontal implicit Lagrange-Poincaré equations:

$$
\frac{D y}{D t}=\frac{\partial l}{\partial x}-\langle\bar{\mu}, \widetilde{B}(\dot{x}, \cdot)\rangle, \quad \frac{d x}{d t}=u, \quad y=\frac{\partial l}{\partial u} .
$$

Vertical Implicit Lagrange-Poincaré Equations

- The vertical implicit Lagrangian system is a triple

$$
\left(l,[\bar{D}]_{G}^{\mathrm{Ver}},[\bar{X}]_{G}^{\mathrm{Ver}}\right)
$$

that satisfies

$$
\left([\bar{X}]_{G}^{\mathrm{Ver}},\left.[\mathbf{d} \bar{E}]_{G}^{\mathrm{Ver}}\right|_{\mathfrak{g}^{*} \times \widetilde{V}}\right) \in[\bar{D}]_{G}^{\mathrm{Ver}}
$$

together with the vertical Legendre transformation

$$
\mathbb{F} l^{\mathrm{Ver}}: \tilde{\mathfrak{g}} \rightarrow \tilde{\mathfrak{g}}^{*}
$$

Vertical Implicit Lagrange-Poincaré Equations

- The vertical implicit Lagrangian system is a triple

$$
\left(l,[\bar{D}]_{G}^{\mathrm{Ver}},[\bar{X}]_{G}^{\mathrm{Ver}}\right)
$$

that satisfies

$$
\left([\bar{X}]_{G}^{V_{\text {er }}},\left.[\mathbf{d} \bar{E}]_{G}^{V_{G}^{\text {er }}}\right|_{\mathfrak{g}^{*} \times \tilde{V}}\right) \in[\bar{D}]_{G}^{\mathrm{Ver}}
$$

together with the vertical Legendre transformation

$$
\mathbb{F}^{\mathrm{Ver}}: \tilde{\mathfrak{g}} \rightarrow \tilde{\mathfrak{g}}^{*}
$$

- This induces the vertical implicit Lagrange-Poincaré equations:

$$
\frac{D \bar{\mu}}{D t}=\operatorname{ad}_{\bar{\xi}}^{*} \bar{\mu}, \quad \bar{\xi}=\bar{\eta}, \quad \bar{\mu}=\frac{\partial l}{\partial \bar{\eta}} .
$$

Hamilton-Poincaré-Dirac Reduction

- Let (H, D, X) be a standard implicit Hamiltonian system and let $h: T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*} \rightarrow \mathbb{R}$ be the reduced Hamiltonian. Then, the reduced implicit Hamiltonian system of (H, D, X) is a triple

$$
\left(h,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies the condition, for each $(x, y, \bar{\mu}) \in T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}$,

$$
\left([\bar{X}]_{G}(x, y, \bar{\mu}),[\mathbf{d} \bar{H}]_{G}(x, y, \bar{\mu}) \in[\bar{D}]_{G}(x, y, \bar{\mu}) .\right.
$$

Hamilton-Poincaré-Dirac Reduction

- Let (H, D, X) be a standard implicit Hamiltonian system and let $h: T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*} \rightarrow \mathbb{R}$ be the reduced Hamiltonian. Then, the reduced implicit Hamiltonian system of (H, D, X) is a triple

$$
\left(h,[\bar{D}]_{G},[\bar{X}]_{G}\right)
$$

that satisfies the condition, for each $(x, y, \bar{\mu}) \in T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}$,

$$
\left([\bar{X}]_{G}(x, y, \bar{\mu}),[\mathbf{d} \bar{H}]_{G}(x, y, \bar{\mu}) \in[\bar{D}]_{G}(x, y, \bar{\mu}) .\right.
$$

- The reduced implicit Hamiltonian system is decomposed into the two parts, namely, horizontal and vertical implicit Hamiltonian systems such that

$$
\left(h,[\bar{D}]_{G},[\bar{X}]_{G}\right)=\left(h,[\bar{D}]_{G}^{\mathrm{Hor}},[\bar{X}]_{G}^{\mathrm{Hor}}\right) \oplus\left(h,[\bar{D}]_{G}^{\mathrm{Ver}},[\bar{X}]_{G}^{\mathrm{Ver}}\right) .
$$

- In the above, $\left(h,[\bar{D}]_{G}^{\text {Hor }},[\bar{X}]_{G}^{\text {Hor }}\right)$ is the horizontal implicit Hamiltonian system that satisfies, for $(x, y) \in T^{*}(Q / G)$,

$$
\left([\bar{X}]_{G}^{\mathrm{Hor}}(x, y),[\mathbf{d} \bar{H}]_{G}^{\mathrm{Hor}}(x, y)\right) \in[\bar{D}]_{G}^{\mathrm{Hor}}(x, y),
$$

which induces horizontal implicit Hamilton-Poincaré equations:

$$
\frac{D y}{D t}=-\frac{\partial h}{\delta x}-\langle\bar{\mu}, \widetilde{B}(\dot{x}, \cdot)\rangle, \quad \frac{d x}{d t}=\frac{\partial h}{\partial y} .
$$

- In the above, $\left(h,[\bar{D}]_{G}^{\text {Hor }},[\bar{X}]_{G}^{\text {Hor }}\right)$ is the horizontal implicit Hamiltonian system that satisfies, for $(x, y) \in T^{*}(Q / G)$,

$$
\left([\bar{X}]_{G}^{\mathrm{Hor}}(x, y),[\mathbf{d} \bar{H}]_{G}^{\mathrm{Hor}}(x, y)\right) \in[\bar{D}]_{G}^{\mathrm{Hor}}(x, y),
$$

which induces horizontal implicit Hamilton-Poincaré equations:

$$
\frac{D y}{D t}=-\frac{\partial h}{\delta x}-\langle\bar{\mu}, \widetilde{B}(\dot{x}, \cdot)\rangle, \quad \frac{d x}{d t}=\frac{\partial h}{\partial y} .
$$

- On the other hand, $\left(h,[\bar{D}]_{G}^{\mathrm{Ver}},[\bar{X}]_{G}^{\mathrm{Ver}}\right)$ is the vertical implicit Hamiltonian system that satisfies, for $\bar{\mu} \in \tilde{\mathfrak{g}}^{*}$,

$$
\left([\bar{X}]_{G}^{\mathrm{Ver}}(\bar{\mu}),[\mathbf{d} \bar{H}]_{G}^{\mathrm{Ver}}(\bar{\mu}) \in[\bar{D}]_{G}^{\mathrm{Ver}}(\bar{\mu}),\right.
$$

which induces vertical implicit Hamilton-Poincaré equations:

$$
\frac{D \bar{\mu}}{D t}=\operatorname{ad}_{\bar{\xi}}^{*} \bar{\mu}, \quad \xi=\frac{\partial h}{\partial \bar{\mu}} .
$$

Summary

- We have shown a reduction procedure for the Hamilton-Pontryagin principle, which yields horizontal and vertical implicit Lagrange-Poincaré equations as the reduced implicit Euler-Lagrange equations.
- Using a chosen principal connection, we have developed a reduction procedure for the canonical Dirac structure on the cotangent bundle, which we call Dirac cotangent bundle reduction. It induces a gauged Dirac structure, which is the direct sum of horizontal and vertical Dirac structures.
- We have constructed Lagrange-Poincaré-Dirac reduction that induces horizontal and vertical implicit LagrangePoincaré equations as well as Hamilton-Poincaré-Dirac reduction that yields horizontal and vertical implicit HamiltonPoincaré equations.

Current and Future Works

- A general class of Dirac anchored vector bundles and its associated reduction (with Cendra, Marsden and Tudor).
- Dirac cotangent bundle reduction for nonholonomic mechanical systems with symmetry together with variational structures.
- Construction of Dirac structures for Field theory; to bridge with multisymplectic structures and Stokes-Dirac structures.
- Construction of Dirac structures and implicit Lagrangian systems for time dependent systems, which might include the stochastic systems.
- Reduction for Implicit Controlled Lagrangian systems
- Dirac integrators for constrained mechanical systems.

