

Dirac Cotangent Bundle Reduction

Hiroaki Yoshimura

Applied Mechanics and Aerospace Engineering Waseda University

Joint work with Jerrold E. Marsden

Applied Dynamics and Geometric Mechanics Oberwolfach, July 20-26, 2008

Acknowledgement

□ We would like to thank *Hernán Cendra* and *Tudor Ratiu* for their helpful suggestions.

Acknowledgement

- We would like to thank *Hernán Cendra* and *Tudor Ratiu* for their helpful suggestions.
 References
 - Lagrangian Reduction by Stages [CMR2001]: Cendra, Marsden and Ratiu, Memoirs of AMS, 722, 2001.
 - Hamilton-Poincaré Equations [CMPR2003]: Cendra, Marsden, Pekarsky and Ratiu, Moscow Math. Jour. **3**, 833-867, 2003.
 - Hamiltonian Reduction by Stages [MMOR2007]: Marsden, Misiolek, et al, vol.1913, Lecture Notes in Mathematics. Springer.
 - Implicit Lagrangian Systems [YoMa2006]: Yoshimura and Marsden, J. Geom. Phys., **57**, 133–156, 209–250, 2006.
 - Lie-Dirac Reduction [YoMa2007]: Yoshimura and Marsden, Rep. on Math. Phy., 60, 381–426, 2007.

□ Background

- \Box Review of Dirac Structures in Mechanics
- \Box Lie-Dirac Reduction: The Case Q=G
- □ Reduction of Hamilton-Pontryagin Principle
- Dirac Cotangent Bundle Reduction
- □ Lagrange-Poincaré-Dirac Reduction
- □ Hamilton-Poincaré-Dirac Reduction

Motivations

• **Dirac structures** (Courant and Weinstein [1988]) is an idea of synthesizing **pre-symplectic structures** (not necessarily closed, and possibly degenerate) and **almost Poisson structures** (brackets that need not satisfy Jacobi identity).

Motivations

- Dirac structures (Courant and Weinstein [1988]) is an idea of synthesizing pre-symplectic structures (not necessarily closed, and possibly degenerate) and almost Poisson structures (brackets that need not satisfy Jacobi identity).
- An almost Dirac structure on P is a subbundle

 $D_P \subset TP \oplus T^*P$ such that $D_P = D_P^{\perp}$, where, for each $x \in P$, $D_P^{\perp}(x) = \{(u_x, \beta_x) \in T_x P \times T_x^* P \mid \\ \langle \langle (v_x, \alpha_x), (u_x, \beta_x) \rangle \rangle = \alpha_x(u_x) + \beta_x(v_x) = 0, \\ \text{for all } (v_x, \alpha_x) \in D_P(x) \}.$

Motivations

- Dirac structures (Courant and Weinstein [1988]) is an idea of synthesizing pre-symplectic structures (not necessarily closed, and possibly degenerate) and almost Poisson structures (brackets that need not satisfy Jacobi identity).
- An almost Dirac structure on P is a subbundle

 $D_P \subset TP \oplus T^*P$

such that $D_P = D_P^{\perp}$, where, for each $x \in P$, $D_P^{\perp}(x) = \{(u_x, \beta_x) \in T_x P \times T_x^* P \mid \\ \langle \langle (v_x, \alpha_x), (u_x, \beta_x) \rangle \rangle = \alpha_x(u_x) + \beta_x(v_x) = 0, \\ \text{for all } (v_x, \alpha_x) \in D_P(x) \}.$

• An *integrable Dirac structure* satisfies $\langle \pounds_{X_1} \alpha_2, X_3 \rangle + \langle \pounds_{X_2} \alpha_3, X_1 \rangle + \langle \pounds_{X_2} \alpha_1, X_2 \rangle = 0,$

for all (X_1, α_1) , (X_2, α_2) , (X_3, α_3) that take values in D_P .

• Relevant with *degenerate Lagrangian systems* as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.

- Relevant with *degenerate Lagrangian systems* as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.
- On the Hamiltonian side, an *implicit Hamiltonian sys*tem was defined by van der Schaft and Maschke [1995] as a triple (H, D_P, X) that satisfies

 $(X, \mathbf{d}H) \in D_P.$

- Relevant with *degenerate Lagrangian systems* as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.
- On the Hamiltonian side, an *implicit Hamiltonian sys*tem was defined by van der Schaft and Maschke [1995] as a triple (H, D_P, X) that satisfies

 $(X, \mathbf{d}H) \in D_P.$

• On the Lagrangian side, an *implicit Lagrangian system* was defined by Yoshimura and Marsden[2006] as a triple (L, D_P, X) , where $X : TQ \oplus T^*Q \to TT^*Q$, that satisfies $(X, \mathbf{d}E|_{TP}) \in D_P$,

where $E(q, v, p) = \langle p, v \rangle - L(q, v)$.

- Relevant with *degenerate Lagrangian systems* as Dirac [1950] originally started his theory of constraints. However, not enough studied from the view point of Lagrangian systems.
- On the Hamiltonian side, an *implicit Hamiltonian sys*tem was defined by van der Schaft and Maschke [1995] as a triple (H, D_P, X) that satisfies

 $(X, \mathbf{d}H) \in D_P.$

• On the Lagrangian side, an *implicit Lagrangian system* was defined by Yoshimura and Marsden[2006] as a triple (L, D_P, X) , where $X : TQ \oplus T^*Q \to TT^*Q$, that satisfies $(X, \mathbf{d}E|_{TP}) \in D_P$,

where $E(q, v, p) = \langle p, v \rangle - L(q, v)$.

 Applications to interconnected systems of multiport networks such as *electric circuits* with Dirac constraints as well as *multibody systems* with nonholonomic constraints. • The *Hamilton–Pontryagin principle* (originally developed by Livens [1919]) is given by

$$\delta \int_{t_1}^{t_2} \left\{ L(q(t), v(t)) + p(t) \cdot (\dot{q}(t) - v(t)) \right\} \, dt = 0$$

with the fixed endpoints q(t). One can obtain the *implicit Euler–Lagrange equations:*

$$p = \frac{\partial L}{\partial v}, \quad \dot{q} = v, \quad \dot{p} = \frac{\partial L}{\partial q}.$$

• The *Hamilton–Pontryagin principle* (originally developed by Livens [1919]) is given by

$$\delta \int_{t_1}^{t_2} \left\{ L(q(t), v(t)) + p(t) \cdot (\dot{q}(t) - v(t)) \right\} \, dt = 0$$

with the fixed endpoints q(t). One can obtain the *implicit Euler–Lagrange equations:*

$$p = \frac{\partial L}{\partial v}, \quad \dot{q} = v, \quad \dot{p} = \frac{\partial L}{\partial q}.$$

• **Reduction of Dirac structures** was studied by Courant, Dorfman, van der Schaft, Blankenstein and Ratiu (singular case), etc..., most of those are based on some generalization from the construction of Lie-Poisson structures. • The *Hamilton–Pontryagin principle* (originally developed by Livens [1919]) is given by

$$\delta \int_{t_1}^{t_2} \left\{ L(q(t), v(t)) + p(t) \cdot (\dot{q}(t) - v(t)) \right\} \, dt = 0$$

with the fixed endpoints q(t). One can obtain the *implicit Euler–Lagrange equations:*

$$p = \frac{\partial L}{\partial v}, \quad \dot{q} = v, \quad \dot{p} = \frac{\partial L}{\partial q}.$$

- **Reduction of Dirac structures** was studied by Courant, Dorfman, van der Schaft, Blankenstein and Ratiu (singular case), etc..., most of those are based on some generalization from the construction of Lie-Poisson structures.
- Namely, letting G be a Lie group and \mathfrak{g} be a Lie algebra, the canonical Dirac structure on T^*G can be reduced to a Dirac structure on \mathfrak{g}^* by using the *Lie-Poisson brackets*.

Euler–Poincaré Reduction

• Let $L: TG \to \mathbb{R}$ be a left invariant Lagrangian and $l := L|\mathfrak{g}$ be the reduced Lagrangian, where we employ $TG \cong G \times \mathfrak{g}$. The *reduced constrained variational principle* is given by

$$\delta \int_{t_1}^{t_2} l(\xi(t)) dt = 0,$$

where $\xi = g^{-1}\dot{g} \in \mathfrak{g}$ and the variations are given by $\delta \xi = \dot{\eta} \pm [\xi, \eta]$ with the boundary conditions $n(t_{-}) = n(t_{-}) = 0$

with the boundary conditions $\eta(t_1) = \eta(t_2) = 0$.

Euler–Poincaré Reduction

• Let $L: TG \to \mathbb{R}$ be a left invariant Lagrangian and $l := L|\mathfrak{g}$ be the reduced Lagrangian, where we employ $TG \cong G \times \mathfrak{g}$. The *reduced constrained variational principle* is given by

$$\delta \int_{t_1}^{t_2} l(\xi(t)) dt = 0,$$

where $\xi = g^{-1}\dot{g} \in \mathfrak{g}$ and the variations are given by $\delta \xi = \dot{\eta} \pm [\xi, \eta]$

with the boundary conditions $\eta(t_1) = \eta(t_2) = 0$.

• It naturally induces *Euler*-*Poincaré equations*

$$\frac{d}{dt}\frac{\partial l}{\partial \xi} = \pm \operatorname{ad}_{\xi}^* \frac{\partial l}{\partial \xi}.$$

Lie-Poisson Variational Principle

• Let H be a left invariant Hamiltonian on T^*G and let $h = H|\mathfrak{g}^*$ be a reduced Hamiltonian, where $T^*G \cong G \times \mathfrak{g}^*$. **Reduction** of Hamilton's phase space principle is given by

$$\delta \int_{t_1}^{t_2} \left\{ \langle \mu(t), \xi(t) \rangle - h(\mu(t)) \right\} dt = 0,$$

where $\xi = g^{-1}\dot{g} \in \mathfrak{g}$ and $\mu = T_e^*L_g p \in \mathfrak{g}^*$ and the variation of ξ is given by $\delta \xi = \dot{\eta} + [\xi, \eta]$, with the fixed endpoint boundary conditions $\eta(t_1) = \eta(t_2) = 0$.

Lie-Poisson Variational Principle

• Let H be a left invariant Hamiltonian on T^*G and let $h = H|\mathfrak{g}^*$ be a reduced Hamiltonian, where $T^*G \cong G \times \mathfrak{g}^*$. **Reduction** of Hamilton's phase space principle is given by

$$\delta \int_{t_1}^{t_2} \left\{ \langle \mu(t), \xi(t) \rangle - h(\mu(t)) \right\} dt = 0,$$

where $\xi = g^{-1}\dot{g} \in \mathfrak{g}$ and $\mu = T_e^*L_g p \in \mathfrak{g}^*$ and the variation of ξ is given by $\delta \xi = \dot{\eta} + [\xi, \eta]$, with the fixed endpoint boundary conditions $\eta(t_1) = \eta(t_2) = 0$.

• Then, it leads to

$$\xi = \frac{\partial h}{\partial \mu}, \qquad \frac{d\mu}{dt} = \operatorname{ad}_{\xi}^* \mu,$$

which are to be equivalent with *Lie–Poisson equations*.

Lie-Poisson Variational Principle

• Let H be a left invariant Hamiltonian on T^*G and let $h = H|\mathfrak{g}^*$ be a reduced Hamiltonian, where $T^*G \cong G \times \mathfrak{g}^*$. **Reduction** of Hamilton's phase space principle is given by

$$\delta \int_{t_1}^{t_2} \left\{ \langle \mu(t), \xi(t) \rangle - h(\mu(t)) \right\} dt = 0,$$

where $\xi = g^{-1}\dot{g} \in \mathfrak{g}$ and $\mu = T_e^*L_g p \in \mathfrak{g}^*$ and the variation of ξ is given by $\delta\xi = \dot{\eta} + [\xi, \eta]$, with the fixed endpoint boundary conditions $\eta(t_1) = \eta(t_2) = 0$.

• Then, it leads to

$$\xi = \frac{\partial h}{\partial \mu}, \qquad \frac{d\mu}{dt} = \operatorname{ad}_{\xi}^* \mu,$$

which are to be equivalent with *Lie–Poisson equations*.

• This reduction procedure of Lie-Poisson Variational Principle is done on the *larger space* $V = \mathfrak{g} \oplus \mathfrak{g}^*$ *rather than* \mathfrak{g}^* !

□ How can we *reduce Hamilton-Pontryagin Principle*, namely, variational principles on the reduced Pontryagin Bundle $(TQ \oplus T^*Q)/G$?

□ How can we *reduce Hamilton-Pontryagin Principle*, namely, variational principles on the reduced Pontryagin Bundle $(TQ \oplus T^*Q)/G$?

□ How can we construct a reduction procedure of **Dirac** structures on the cotangent bundle $P = T^*Q$, namely, $D \subset TP \oplus T^*P$?

□ How can we *reduce Hamilton-Pontryagin Principle*, namely, variational principles on the reduced Pontryagin Bundle $(TQ \oplus T^*Q)/G$?

□ How can we construct a reduction procedure of **Dirac** structures on the cotangent bundle $P = T^*Q$, namely, $D \subset TP \oplus T^*P$?

□ How can we develop *implicit analogue* of *Lagrange-Poincaré equations* and *Hamilton-Poincaré equations* ?

□ How can we *reduce Hamilton-Pontryagin Principle*, namely, variational principles on the reduced Pontryagin Bundle $(TQ \oplus T^*Q)/G$?

□ How can we construct a reduction procedure of **Dirac structures on the cotangent bundle** $P = T^*Q$, namely, $D \subset TP \oplus T^*P$?

□ How can we develop *implicit analogue* of *Lagrange-Poincaré equations* and *Hamilton-Poincaré equations* ?

Our goals are to answer these questions !

Examples

Artificial Satellite

Space Robots

Examples

Examples

• Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].

- Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].
- Hamiltonian reduction by stages [MMOR 2007] Let $H: T^*Q \to \mathbb{R}$ be a left invariant Hamiltonian with a Lie group G acting freely and properly on Q. Choose a principal connection A on the shape space bundle $Q \to Q/G$.

- Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].
- Hamiltonian reduction by stages [MMOR 2007] Let $H: T^*Q \to \mathbb{R}$ be a left invariant Hamiltonian with a Lie group G acting freely and properly on Q. Choose a principal connection A on the shape space bundle $Q \to Q/G$.
- The key idea lies in the connection dependent isomorpshim

 $T^*Q/G \cong_A T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*.$

- Gauged Poisson structures associated with Hamiltonian reduction on the cotangent bundle; see Montgomery, Marsden and Ratiu[1984] and Montgomery[1986].
- Hamiltonian reduction by stages [MMOR 2007] Let $H: T^*Q \to \mathbb{R}$ be a left invariant Hamiltonian with a Lie group G acting freely and properly on Q. Choose a principal connection A on the shape space bundle $Q \to Q/G$.
- The key idea lies in the connection dependent isomorphim $T^*Q/G \cong_A T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*.$
- Reduced Hamilton's equations on this space are called *Hamil*ton Poincaré equations and for the case Q = G, it leads to *Lie-Poisson equations* ([CMPR2003]).

• Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on TQ with a Lie group G acting freely and properly on Q, such that there is a **principal bundle** $Q \to Q/G$, and we choose a principal connection A.

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on TQ with a Lie group G acting freely and properly on Q, such that there is a **principal bundle** $Q \to Q/G$, and we choose a principal connection A.
- The key idea lies in the connection dependent isomorphim

 $TQ/G \cong T(Q/G) \oplus \tilde{\mathfrak{g}}.$

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on TQ with a Lie group G acting freely and properly on Q, such that there is a **principal bundle** $Q \to Q/G$, and we choose a principal connection A.
- The key idea lies in the connection dependent isomorphism $TQ/G \cong T(Q/G) \oplus \tilde{\mathfrak{g}}.$
- Reduced variational principle of Hamilton was developed in *Lagrangian Reduction by Stages [CMR2001]*.

- Lagrangian reduction on the tangent bundles: Marsden and Scheurle [1993] developed a Lagrangian analogue of the Hamiltonian reduction on the cotangent bundle by using the so-called mechanical connection.
- Let L be a left invariant Lagrangian on TQ with a Lie group G acting freely and properly on Q, such that there is a **principal bundle** $Q \to Q/G$, and we choose a principal connection A.
- The key idea lies in the connection dependent isomorphism $TQ/G \cong T(Q/G) \oplus \tilde{\mathfrak{g}}.$
- Reduced variational principle of Hamilton was developed in *Lagrangian Reduction by Stages [CMR2001]*.
- Reduced Euler-Lagrange equations on this space are called Lagrange-Poincaré equations and for the case Q = G, it leads to Euler-Poincaré equations.

What are the Problems ?

• How can we deal with **Pontryagin Bundle** $TQ \oplus T^*Q$?
- How can we deal with **Pontryagin Bundle** $TQ \oplus T^*Q$?
- How can we develop reduction of *Dirac structures on the cotangent bundle* ?

- How can we deal with **Pontryagin Bundle** $TQ \oplus T^*Q$?
- How can we develop reduction of *Dirac structures on the cotangent bundle* ?
- How can we construct the *Hamiltonian* and *Lagrangian reduction* throughout the reduced Dirac structure ?

- How can we deal with **Pontryagin Bundle** $TQ \oplus T^*Q$?
- How can we develop reduction of *Dirac structures on the cotangent bundle* ?
- How can we construct the *Hamiltonian* and *Lagrangian reduction* throughout the reduced Dirac structure ?
- Is there any *variational structure* associated with the Lagrangian and Hamiltonian reduction accompanied with the reduced Dirac structures ?

- How can we deal with **Pontryagin Bundle** $TQ \oplus T^*Q$?
- How can we develop reduction of *Dirac structures on the cotangent bundle* ?
- How can we construct the *Hamiltonian* and *Lagrangian reduction* throughout the reduced Dirac structure ?
- Is there any *variational structure* associated with the Lagrangian and Hamiltonian reduction accompanied with the reduced Dirac structures ?

Let us first go to see the *special case* Q = G !

Hamilton–Pontryagin Principle

• Let $L: TG \to \mathbb{R}$ be a left Lagrangian and recall the *Hamilton*-*Pontryagin principle* is given by

$$\delta \int_{t_1}^{t_2} \left\{ L(g(t), v(t)) + p(t) \cdot (\dot{g}(t) - v(t)) \right\} \, dt = 0.$$

Hamilton–Pontryagin Principle

• Let $L: TG \to \mathbb{R}$ be a left Lagrangian and recall the *Hamilton*-*Pontryagin principle* is given by

$$\delta \int_{t_1}^{t_2} \left\{ L(g(t), v(t)) + p(t) \cdot (\dot{g}(t) - v(t)) \right\} \, dt = 0.$$

• **Reduction of the Hamilton–Pontryagin principle** may be described by

$$\delta \int_{t_1}^{t_2} \left\{ l(\eta(t)) + \mu(t) \cdot (\xi(t) - \eta(t)) \right\} dt = 0$$

with $\delta \xi(t) = \dot{\zeta}(t) + [\xi(t), \zeta(t)]$ and $\zeta(t_1) = \zeta(t_2) = 0$.

Hamilton–Pontryagin Principle

• Let $L: TG \to \mathbb{R}$ be a left Lagrangian and recall the *Hamilton*-*Pontryagin principle* is given by

$$\delta \int_{t_1}^{t_2} \left\{ L(g(t), v(t)) + p(t) \cdot (\dot{g}(t) - v(t)) \right\} \, dt = 0.$$

• **Reduction of the Hamilton–Pontryagin principle** may be described by

$$\delta \int_{t_1}^{t_2} \left\{ l(\eta(t)) + \mu(t) \cdot (\xi(t) - \eta(t)) \right\} dt = 0$$

with $\delta \xi(t) = \dot{\zeta}(t) + [\xi(t), \zeta(t)]$ and $\zeta(t_1) = \zeta(t_2) = 0$.

• It follows *implicit Euler–Poincaré equations* $\mu = \frac{\delta l}{\delta \eta}, \quad \xi = \eta, \quad \dot{\mu} = \operatorname{ad}_{\xi}^{*} \mu.$

Invariance of Dirac Structures

• The *canonical Dirac structure* on $P = T^*G$ is given by $D = \operatorname{graph} \Omega \subset TP \oplus T^*P.$

In view of the *trivialized isomorphism*

 $\bar{\lambda}: P = T^*G \to G \times \mathfrak{g}^*,$

a Dirac structure \overline{D} on $G \times \mathfrak{g}^*$ can be naturally defined.

Invariance of Dirac Structures

• The *canonical Dirac structure* on $P = T^*G$ is given by $D = \operatorname{graph} \Omega \subset TP \oplus T^*P.$

In view of the *trivialized isomorphism*

 $\bar{\lambda}: P = T^*G \to G \times \mathfrak{g}^*,$

- a Dirac structure \overline{D} on $G \times \mathfrak{g}^*$ can be naturally defined.
- Let Φ denote the *G*-action on $G \times \mathfrak{g}^*$, so that

$$\Phi_h(g,\mu) = (hg,\mu).$$

The Dirac structure \overline{D} is to be G-invariant, since $(\Phi_{h^*}X, (\Phi_h^*)^{-1}\alpha) \in \overline{D}$

holds for all $(X, \alpha) \in \overline{D}$.

Lie-Dirac Reduction

• One can obtain the **quotient** of \overline{D} by G as

$$[\overline{D}]_G \cong D/G \subset (TP \oplus T^*P)/G,$$

where $[\bar{D}]_G$ is a Dirac structure on the bundle

 $TP/G \cong \mathfrak{g}^* \times V$

over $P/G \cong \mathfrak{g}^*$, which is the *reduction of the canonical Dirac structure* D on $P = T^*G$.

Lie-Dirac Reduction

• One can obtain the **quotient** of \overline{D} by G as

$$[\overline{D}]_G \cong D/G \subset (TP \oplus T^*P)/G,$$

where $[\bar{D}]_G$ is a Dirac structure on the bundle

 $TP/G \cong \mathfrak{g}^* \times V$

over $P/G \cong \mathfrak{g}^*$, which is the *reduction of the canonical Dirac structure* D on $P = T^*G$.

• For each $\mu \in \mathfrak{g}^*$, it follows that $[D]_G(\mu)$ is given by $[\overline{D}]_G(\mu) = \{((\xi, \kappa), (\nu, \xi)) \in V \oplus V^* \mid \nu + \kappa = \operatorname{ad}_{\xi}^* \mu\},\$

where $V = \mathfrak{g} \oplus \mathfrak{g}^*$.

• Define the *trivialized generalized energy* on $G \times V$ by

$$\bar{E}(g,\eta,\mu) = \langle \mu,\eta \rangle - \bar{L}(g,\eta).$$

The quotient of $\mathbf{d}\overline{E}$ is the map

$$[\mathbf{d}\overline{E}]_G: V \to V \times \mathfrak{g}^* \times V^*,$$

which is given by, for each $(\eta, \mu) \in V$,

$$[\mathbf{d}\bar{E}]_G(\eta,\mu) = \left(\eta,\mu,0,\mu-\frac{\partial l}{\partial\eta},\eta\right).$$

• Define the *trivialized generalized energy* on $G \times V$ by

$$\bar{E}(g,\eta,\mu) = \langle \mu,\eta \rangle - \bar{L}(g,\eta).$$

The quotient of $\mathbf{d}\overline{E}$ is the map

$$\mathbf{d}\bar{E}]_G: V \to V \times \mathfrak{g}^* \times V^*,$$

which is given by, for each $(\eta, \mu) \in V$,

$$[\mathbf{d}\bar{E}]_G(\eta,\mu) = \left(\eta,\mu,0,\mu - \frac{\partial l}{\partial \eta},\eta\right)$$

• Since $\partial \bar{E}/\partial \eta = 0$ naturally induces the *reduced Legendre transform*

$$\mu = \partial l / \partial \eta \in \mathfrak{g}^*,$$

the *restriction* of $[\mathbf{d}\overline{E}]_G$ to $\mathfrak{g}^* \times V$ is given by

 $[\mathbf{d}\bar{E}]_G(\eta,\mu)|_{\mathfrak{g}^*\times V} = (\mu,0,\eta) \in \mathfrak{g}^* \times V^*.$

• The *partial vector field* $X: TG \oplus T^*G \to TT^*G,$

is given by

$$X(g,v,p) = (g,p,\dot{g},\dot{p}),$$

where \dot{g} and \dot{p} are functions of (g, v, p). Notice that X is left invariant as

$$h\cdot X(g,v,p)=X(hg,T_gL_h\cdot v,T_{hg}^*L_{h^{-1}}\cdot p).$$

• The *partial vector field* $X: TG \oplus T^*G \to TT^*G,$

is given by

$$X(g, v, p) = (g, p, \dot{g}, \dot{p}),$$

where \dot{g} and \dot{p} are functions of (g, v, p). Notice that X is left invariant as

$$h \cdot X(g, v, p) = X(hg, T_gL_h \cdot v, T_{hg}^*L_{h^{-1}} \cdot p).$$

• The *reduction of the partial vector field* is given by the quotient

$$[\bar{X}]_G: V \to \mathfrak{g}^* \times V,$$

which is denoted by

$$[\bar{X}]_G(\eta,\mu) = \left(\mu,\xi,\dot{\mu}\right) \in \mathfrak{g}^* \times V.$$

Here, note that ξ and $\dot{\mu}$ are functions of (η, μ) .

Euler-Poincaré-Dirac Reduction

• The reduction of an implicit Lagrangian system (L, D, X) is given by a triple $(l, [\bar{D}]_G, [\bar{X}]_G)$

that satisfies, for each $\eta \in \mathfrak{g}$, the condition

 $([\bar{X}]_G(\eta,\mu), [\mathbf{d}\bar{E}]_G(\eta,\mu)|_{\mathfrak{g}^*\times V}) \in [\bar{D}]_G(\mu),$

where $\mu = \mathbb{F}l(\eta) \in \mathfrak{g}^*$ holds.

Euler-Poincaré-Dirac Reduction

The reduction of an implicit Lagrangian system (L, D, X) is given by a triple

(l, [D]_G, [X]_G)
that satisfies, for each η ∈ g, the condition
([X]_G(η, μ), [dE]_G(η, μ)|_{g*×V}) ∈ [D]_G(μ),

where $\mu = \mathbb{F}l(\eta) \in \mathfrak{g}^*$ holds.

• This induces *implicit Euler-Poincaré equations* on $V = \mathfrak{g} \oplus \mathfrak{g}^*$ as $\partial l \qquad du$

$$\mu = \frac{\partial l}{\partial \eta}, \quad \xi = \eta, \quad \frac{d\mu}{dt} = \operatorname{ad}_{\xi}^* \mu.$$

Lie-Poisson-Dirac Reduction

The reduction of an implicit Hamiltonian system (H, D, X) is given by a triple

(h, [D̄]_G, [X̄]_G)
that satisfies, for each η ∈ g, the condition
([X̄]_G, [dH̄]_G) ∈ [D̄]_G,

where [X̄]_G = (μ, ξ(μ), μ) and [dH̄]_G = (μ, 0, ∂h/∂μ).

Lie-Poisson-Dirac Reduction

• The reduction of an implicit Hamiltonian system (H, D, X) is given by a triple $(h, [D]_G, [X]_G)$ that satisfies, for each $\eta \in \mathfrak{g}$, the condition $([X]_G, [\mathbf{d}H]_G) \in [D]_G,$ where $[X]_G = (\mu, \xi(\mu), \dot{\mu})$ and $[\mathbf{d}\overline{H}]_G = (\mu, 0, \partial h/\partial \mu)$. • This induces *implicit Lie-Poisson equations* on $V = \mathfrak{g} \oplus \mathfrak{g}^*$ as 01

$$\xi = \frac{\partial h}{\partial \mu}, \quad \frac{d\mu}{dt} = \operatorname{ad}_{\xi}^* \mu,$$

which is consistent with the results in [CMPR2003].

Principal Bundle with a Lie Group

• Let $\pi: Q \to Q/G$ be a **principal bundle** with a Lie group G acting freely and properly on Q and choose a **principal connection** on Q as $A: TQ \to \mathfrak{g}$.

Principal Bundle with a Lie Group

- Let $\pi: Q \to Q/G$ be a **principal bundle** with a Lie group G acting freely and properly on Q and choose a **principal connection** on Q as $A: TQ \to \mathfrak{g}$.
- \bullet The group G acts on curves $(q(t),v(t),p(t))\in TQ\oplus T^{*}Q$ as

$$\begin{aligned} h \cdot (q(t), v(t), p(t)) \\ &= (hq(t), T_{q(t)}L_h \cdot v(t), T^*_{hq(t)}L_{h^{-1}} \cdot p(t)). \end{aligned}$$

Principal Bundle with a Lie Group

- Let $\pi: Q \to Q/G$ be a **principal bundle** with a Lie group G acting freely and properly on Q and choose a **principal connection** on Q as $A: TQ \to \mathfrak{g}$.
- \bullet The group G acts on curves $(q(t),v(t),p(t))\in TQ\oplus T^{*}Q$ as

$$\begin{aligned} h \cdot (q(t), v(t), p(t)) \\ &= (hq(t), T_{q(t)}L_h \cdot v(t), T^*_{hq(t)}L_{h^{-1}} \cdot p(t)). \end{aligned}$$

• The curves in $(TQ \oplus T^*Q)/G$ are isomorphic to the curves in $T(Q/G) \oplus T^*(Q/G) \oplus \tilde{V}$, namely,

 $[q(t), v(t), p(t)]_G \cong (x(t), u(t), y(t)) \oplus (\bar{\eta}(t), \bar{\mu}(t)),$

where $\tilde{V} = \tilde{\mathfrak{g}} \oplus \tilde{\mathfrak{g}}^*$ and where we have employed

 $TQ/G \cong T(Q/G) \oplus \tilde{\mathfrak{g}}$ and $T^*Q/G \cong T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$.

Reduced H-P Variational Principle

• The stationarity for the *reduced Hamilton-Pontryagin principle* is given by

$$\begin{split} \delta \int_{t_0}^{t_1} \left\{ l(x(t), u(t), \bar{\eta}(t)) + \langle y(t), \dot{x}(t) - u(t) \rangle \right. \\ \left. + \left\langle \bar{\mu}(t), \bar{\xi}(t) - \bar{\eta}(t) \right\rangle \right\} dt = 0, \end{split}$$

with arbitrary variations δx , δu , $\delta \bar{\eta}$, δy , $\delta \bar{\mu}$, $\bar{\zeta}$ and the **covariant variation**

$$\delta^A \bar{\xi} = \frac{D[q,\zeta]_G}{Dt} + [q,[\xi,\zeta]]_G + \widetilde{B}(\delta x,\dot{x}),$$

together with the boundary conditions

$$\delta x(t_0) = \delta x(t_1) = 0$$
 and $\zeta(t_0) = \zeta(t_1) = 0.$

Implicit Lagrange-Poincaré Equations

• Corresponding to the horizontal variations $\delta x, \delta u$ and δy , it follows horizontal implicit Lagrange-Poincaré equations as

$$\frac{Dy}{Dt} = \frac{\partial l}{\partial x} - \left\langle \bar{\mu}, \tilde{B}(\dot{x}, \cdot) \right\rangle, \qquad \dot{x} = u, \qquad y = \frac{\partial l}{\partial u}.$$

Implicit Lagrange-Poincaré Equations

• Corresponding to the horizontal variations $\delta x, \delta u$ and δy , it follows horizontal implicit Lagrange-Poincaré equations as

$$\frac{Dy}{Dt} = \frac{\partial l}{\partial x} - \left\langle \bar{\mu}, \tilde{B}(\dot{x}, \cdot) \right\rangle, \qquad \dot{x} = u, \qquad y = \frac{\partial l}{\partial u}.$$

• Corresponding to the vertical variations $\delta \bar{\eta}$, $\delta \bar{\mu}$ and $\bar{\zeta}$, it follows **vertical implicit Lagrange-Poincaré equations** as

$$\frac{D\bar{\mu}}{Dt} = \operatorname{ad}_{\bar{\xi}}^*\bar{\mu}, \qquad \bar{\xi} = \bar{\eta}, \qquad \bar{\mu} = \frac{\partial l}{\partial\bar{\eta}}.$$

Trivialized Expressions

• Let us **pull back the G-principal bundle** $\pi : Q \to Q/G$ by $\pi_{Q/G} : T^*(Q/G) \to Q/G$ to obtain the G-principal bundle $\widetilde{Q}^* = \left\{ (q, \alpha_{[q]}) \mid \pi_{Q/G}(\alpha_{[q]}) = \pi(q) = [q], \ q \in Q, \\ \alpha_{[q]} \in T^*_{[q]}(Q/G) \right\}.$

Trivialized Expressions

• Let us **pull back the** *G*-**principal bundle** $\pi : Q \to Q/G$ by $\pi_{Q/G} : T^*(Q/G) \to Q/G$ to obtain the *G*-principal bundle $\widetilde{Q}^* = \left\{ (q, \alpha_{[q]}) \mid \pi_{Q/G}(\alpha_{[q]}) = \pi(q) = [q], \ q \in Q, \\ \alpha_{[q]} \in T^*_{[q]}(Q/G) \right\}.$

• Define the space $\widetilde{Q}^* \times \mathfrak{g}^*$, which is isomorphic to T^*Q by

$$\bar{\lambda}: T^*Q \to \widetilde{Q}^* \times \mathfrak{g}^*; \ \alpha_q \mapsto (q, (\alpha_q)_q^{h^*}, \rho = \mathbf{J}(\alpha_q)),$$

The quotient map

 $[\bar{\lambda}]_G : (T^*Q)/G \to (\widetilde{Q}^* \times \mathfrak{g}^*)/G \cong T^*(Q/G) \oplus \widetilde{\mathfrak{g}}^*$ is a **left trivialization** as

$$[\alpha_q]_G \mapsto \left((\alpha_q)_q^{h^*}, [q, \mathbf{J}(\alpha_q)]_G \right) = \left((\alpha_q)_q^{h^*}, [q, T_e^* L_g \cdot \alpha_q]_G \right).$$

• Let us **pull back the G-principal bundle** $\pi: Q \to Q/G$ by the tangent bundle projection $\tau_{Q/G}: T(Q/G) \to Q/G$ to obtain the G-principal bundle

$$\widetilde{Q} = \left\{ (q, u_{[q]}) \mid \tau_{Q/G}(u_{[q]}) = \pi(q) = [q], \ q \in Q, \\ u_{[q]} \in T_{[q]}(Q/G) \right\}.$$

• Let us **pull back the G-principal bundle** $\pi: Q \to Q/G$ by the tangent bundle projection $\tau_{Q/G}: T(Q/G) \to Q/G$ to obtain the G-principal bundle

$$\begin{split} \widetilde{Q} &= \left\{ (q, u_{[q]}) \mid \tau_{Q/G}(u_{[q]}) = \pi(q) = [q], \ q \in Q, \\ & u_{[q]} \in T_{[q]}(Q/G) \right\}. \end{split}$$

• Define the space $\widetilde{Q} \times \mathfrak{g}$, which is diffeomorphic to TQ by $\lambda: TQ \to \widetilde{Q} \times \mathfrak{g}; \quad v_q \mapsto (q, T\pi(v_q), \xi = A(v_q)).$

The quotient

$$[\lambda]_G : (TQ)/G \to (\widetilde{Q} \times \mathfrak{g})/G \cong T(Q/G) \oplus \widetilde{\mathfrak{g}}$$

is a *left trivialization* as

$$[v_q]_G \mapsto (T\pi(v_q), [q, A(v_q)]_G)$$

= $(T\pi(v_q), [q, T_g L_{g^{-1}} \cdot v_q]_G)$

Dirac Structures on $\widetilde{Q}^* \times \mathfrak{g}^* \cong T^*Q$

• Given the canonical Dirac structure D on T^*Q , one can define a Dirac structure \overline{D} on $\widetilde{Q}^* \times \mathfrak{g}^*$, in view of $T^*Q \cong \widetilde{Q}^* \times \mathfrak{g}^*$, which is given by

$$\begin{split} \bar{D}(x,g,y,\rho) &= \{ ((\dot{x},\dot{g},\dot{y},\dot{\rho}),(\kappa,\nu,v,\eta)) \mid \\ \langle \kappa,\delta x \rangle + \langle \nu,\delta g \rangle + \langle \delta y,v \rangle + \langle \delta \rho,\eta \rangle \\ &= \Omega(x,g,y,\rho)((\dot{x},\dot{g},\dot{y},\dot{\rho}),(\delta x,\delta g,\delta y,\delta \rho)) \\ \text{for all } (\delta x,\delta g,\delta y,\delta \rho) \in T_{(x,g,y,\rho)}(\widetilde{Q}^* \times \mathfrak{g}^*) \}. \end{split}$$

Dirac Structures on $\widetilde{Q}^* \times \mathfrak{g}^* \cong T^*Q$

• Given the canonical Dirac structure D on T^*Q , one can define a Dirac structure \overline{D} on $\widetilde{Q}^* \times \mathfrak{g}^*$, in view of $T^*Q \cong \widetilde{Q}^* \times \mathfrak{g}^*$, which is given by

$$\begin{split} \bar{D}(x,g,y,\rho) &= \{ ((\dot{x},\dot{g},\dot{y},\dot{\rho}),(\kappa,\nu,v,\eta)) \mid \\ \langle \kappa,\delta x \rangle + \langle \nu,\delta g \rangle + \langle \delta y,v \rangle + \langle \delta \rho,\eta \rangle \\ &= \Omega(x,g,y,\rho)((\dot{x},\dot{g},\dot{y},\dot{\rho}),(\delta x,\delta g,\delta y,\delta \rho)) \\ \text{for all } (\delta x,\delta g,\delta y,\delta \rho) \in T_{(x,g,y,\rho)}(\widetilde{Q}^* \times \mathfrak{g}^*) \}. \end{split}$$

• In the above, we have

$$\Omega = \gamma^* \Omega_{T^*(Q/G)} - \tilde{\pi}_Q^* B_\rho + \omega$$

is a symplectic form on $\widetilde{Q}^* \times \mathfrak{g}^*$.

Invariance of Dirac Structures

• The Dirac structure \overline{D} on $\widetilde{Q}^* \times \mathfrak{g}^*$ is G-invariant as $(\Phi_{h^*}X, (\Phi_h^*)^{-1}\alpha) \in \overline{D}$ for all $(X, \alpha) \in \overline{D}$,

which follows

$$\bar{D}(e,g^{-1}g,y,g^{-1}\rho)=\bar{D}(x,g,y,\rho).$$

Invariance of Dirac Structures

• The Dirac structure \overline{D} on $\widetilde{Q}^* \times \mathfrak{g}^*$ is G-invariant as $(\Phi_{h^*}X, (\Phi_h^*)^{-1}\alpha) \in \overline{D}$ for all $(X, \alpha) \in \overline{D}$,

which follows

$$\bar{D}(e, g^{-1}g, y, g^{-1}\rho) = \bar{D}(x, g, y, \rho).$$

• By *taking quotients* by *G*, it leads to a *reduced Dirac structure* on the bundle

$$TT^*Q/G \cong \tilde{\mathfrak{g}}^* \times (TT^*(Q/G) \oplus \widetilde{V})$$

over $T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$ as

 $[\overline{D}]_G \subset \tilde{\mathfrak{g}}^* \times (TT^*(Q/G) \oplus \widetilde{V} \oplus T^*T^*(Q/G) \oplus \widetilde{V}^*)$ $\cong (TT^*Q/G) \oplus (T^*T^*Q/G).$

Gauged Dirac Structures

• The *reduced Dirac structure* $[\bar{D}]_G$ is given by, for each $(x, y, \bar{\mu}) \in T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$.

 $[\bar{D}]_G(x, y, \bar{\mu}) = [\bar{D}]_G^{\mathrm{Hor}}(x, y) \oplus [\bar{D}]_G^{\mathrm{Ver}}(\bar{\mu}),$

where we shall call $[\bar{D}]_G = [\bar{D}]_G^{\text{Hor}} \oplus [\bar{D}]_G^{\text{Ver}}$ a **gauged Dirac** structure.

Gauged Dirac Structures

• The *reduced Dirac structure* $[\overline{D}]_G$ is given by, for each $(x, y, \overline{\mu}) \in T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$.

 $[\bar{D}]_G(x, y, \bar{\mu}) = [\bar{D}]_G^{\mathrm{Hor}}(x, y) \oplus [\bar{D}]_G^{\mathrm{Ver}}(\bar{\mu}),$

where we shall call $[\bar{D}]_G = [\bar{D}]_G^{\text{Hor}} \oplus [\bar{D}]_G^{\text{Ver}}$ a **gauged Dirac** structure.

• In the above, $[D]_G^{\text{Hor}}$ is a **horizontal Dirac structure** on the bundle $\tilde{\mathfrak{g}}^* \times TT^*(Q/G)$ over $T^*(Q/G)$, which is given by

$$[\bar{D}]^{\mathrm{Hor}}_{G}(x,y) = \left\{ ((\dot{x},\dot{y}),(\beta,\dot{x})) \mid \dot{y} + \beta = -\widetilde{B}_{\bar{\mu}}(\dot{x},\cdot) \right\},$$

while $[D]_G^{\text{Ver}}$ is a *vertical Dirac structure* on the bundle $\tilde{\mathfrak{g}}^* \times \tilde{V}$ over $\tilde{\mathfrak{g}}^*$ given by

$$[\bar{D}]_G^{\operatorname{Ver}}(\bar{\mu}) = \left\{ \left((\bar{\xi}, \dot{\bar{\mu}}), (\bar{\nu}, \bar{\xi}) \right) \mid \dot{\bar{\mu}} + \bar{\nu} = \operatorname{ad}_{\xi}^* \bar{\mu} \right\}.$$

Differential of the Generalized Energy

• Associated with the *generalized energy* on $TQ \oplus T^*Q$ $E(q, v, p) = \langle p, v \rangle - L(q, v),$ the *quotient* of $\mathbf{d}\overline{E}$ is given by $[\mathbf{d}\overline{E}]_G : T(Q/G) \oplus T^*(Q/G) \oplus \widetilde{V}$ $\rightarrow \tilde{\mathfrak{g}}^* \times (T^*T(Q/G) \oplus \widetilde{V} \oplus T^*T^*(Q/G) \oplus \widetilde{V}^*).$
Differential of the Generalized Energy

• Associated with the *generalized energy* on $TQ \oplus T^*Q$ $E(q, v, p) = \langle p, v \rangle - L(q, v),$ the *quotient* of dE is given by $[\mathbf{d}\overline{E}]_G: T(Q/G) \oplus T^*(Q/G) \oplus \widetilde{V}$ $\rightarrow \tilde{\mathfrak{g}}^* \times (T^*T(Q/G) \oplus \tilde{V} \oplus T^*T^*(Q/G) \oplus \tilde{V}^*).$ • The *restriction* to $\tilde{\mathfrak{g}}^* \times (TT^*(Q/G) \oplus \widetilde{V})$ is given as $[\mathbf{d}\bar{E}]_G|_{\tilde{\mathfrak{g}}^*\times(TT^*(Q/G)\oplus\widetilde{V})} = [\mathbf{d}\bar{E}]_G^{\mathrm{Hor}}|_{\tilde{\mathfrak{g}}^*\times TT^*(Q/G)} \oplus [\mathbf{d}\bar{E}]_G|_{\tilde{\mathfrak{g}}^*\times\widetilde{V}},$ where 21/

$$[\mathbf{d}\bar{E}]_G^{\mathrm{Hor}}|_{\tilde{\mathfrak{g}}^*\times TT^*(Q/G)} = \left(x, y, -\frac{\partial l}{\partial x}, u\right),$$

and

$$\left[\mathbf{d}\bar{E}\right]_{G}|_{\tilde{\mathfrak{g}}^{*}\times\widetilde{V}}=\left(\bar{\mu},0,\bar{\eta}\right).$$

The Reduced Legendre Transform

• The *reduced Legendre transform* may be decomposed as

 $\mathbb{F}l = \mathbb{F}l^{\mathrm{Hor}} \oplus \mathbb{F}l^{\mathrm{Ver}} : T(Q/G) \oplus \tilde{\mathfrak{g}} \to T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*.$

The Reduced Legendre Transform

• The *reduced Legendre transform* may be decomposed as

 $\mathbb{F}l = \mathbb{F}l^{\mathrm{Hor}} \oplus \mathbb{F}l^{\mathrm{Ver}} : T(Q/G) \oplus \tilde{\mathfrak{g}} \to T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*.$

• In the above, the *horizontal Legendre transformation*

$$\mathbb{F}l^{\mathrm{Hor}}: T(Q/G) \to T^*(Q/G)$$

is given by

$$(x,u)\mapsto \left(x,y=\frac{\partial l}{\partial u}
ight),$$

while the *vertical Legendre transformation* $\mathbb{F}l^{\operatorname{Ver}}: \tilde{\mathfrak{g}} \to \tilde{\mathfrak{g}}^*,$

is given by

$$\bar{\eta} \mapsto \bar{\mu} = \frac{\partial l}{\partial \bar{\eta}} \in \tilde{\mathfrak{g}}^*.$$

Reduction of the Partial Vector Field

• Let \bar{X} be the **trivialized partial vector field** associated to $X : TQ \oplus T^*Q \to TT^*Q$. Then, the reduced partial vector field $[\bar{X}]_G$ can be represented by

 $[\bar{X}]_G(x, u, y, \bar{\eta}, \bar{\mu}) = [\bar{X}]_G^{\mathrm{Hor}}(x, u, y) \oplus [\bar{X}]_G^{\mathrm{Ver}}(\bar{\eta}, \bar{\mu}).$

Reduction of the Partial Vector Field

• Let \bar{X} be the *trivialized partial vector field* associated to $X : TQ \oplus T^*Q \to TT^*Q$. Then, the reduced partial vector field $[\bar{X}]_G$ can be represented by

 $[\bar{X}]_G(x, u, y, \bar{\eta}, \bar{\mu}) = [\bar{X}]_G^{\mathrm{Hor}}(x, u, y) \oplus [\bar{X}]_G^{\mathrm{Ver}}(\bar{\eta}, \bar{\mu}).$

• In the above, the *horizontal partial vector field*

 $[\bar{X}]_G^{\mathrm{Hor}}: T(Q/G) \oplus T^*(Q/G) \to \tilde{\mathfrak{g}}^* \times TT^*(Q/G)$ is given by

$$[\bar{X}]_G^{\operatorname{Hor}}(x,u,y) = (x,y,\dot{x},\dot{y})$$

and the *vertical partial vector field*

$$[\bar{X}]_G^{\operatorname{Ver}}: \widetilde{V} \to \widetilde{\mathfrak{g}}^* \times \widetilde{V}$$

is given by

$$[\bar{X}]_G^{\operatorname{Ver}}(\bar{\eta},\bar{\mu}) = (\bar{\mu},\bar{\xi},\dot{\bar{\mu}}) \in \tilde{\mathfrak{g}}^* \times \widetilde{V}.$$

Lagrange-Poincaré-Dirac Reduction

• The reduction of a standard implicit Lagrangian system (L, D, X) that satisfies

 $(X, \mathbf{d}E|_{TT^*Q}) \in D$

is given by a triple

 $(l, [\bar{D}]_G, [\bar{X}]_G)$

that satisfies

 $\left([\bar{X}]_G, [\mathbf{d}\bar{E}]_G |_{\tilde{\mathfrak{g}}^* \times (TT^*(Q/G) \oplus \widetilde{V})} \right) \in [\bar{D}]_G.$

Lagrange-Poincaré-Dirac Reduction

• The reduction of a standard implicit Lagrangian system (L, D, X) that satisfies

 $(X, \mathbf{d}E|_{TT^*Q}) \in D$

is given by a triple

 $(l, [\bar{D}]_G, [\bar{X}]_G)$

that satisfies

$$\left([\bar{X}]_G, [\mathbf{d}\bar{E}]_G|_{\tilde{\mathfrak{g}}^* \times (TT^*(Q/G) \oplus \widetilde{V})}\right) \in [\bar{D}]_G.$$

• The reduced implicit Lagrangian system can be decomposed into the *horizontal and vertical* parts such that

 $(l, [\bar{D}]_G, [\bar{X}]_G) = (l, [\bar{D}]_G^{\text{Hor}}, [\bar{X}]_G^{\text{Hor}}) \oplus (l, [\bar{D}]_G^{\text{Ver}}, [\bar{X}]_G^{\text{Ver}}).$

Horizontal Implicit Lagrange-Poincaré Equations

• The *horizontal implicit Lagrangian system* is a triple $(l, [\bar{D}]_G^{\text{Hor}}, [\bar{X}]_G^{\text{Hor}})$

that satisfies

$$([\bar{X}]_G^{\mathrm{Hor}}, [\mathbf{d}\bar{E}]_{G|_{\tilde{\mathfrak{g}}^* \times TT^*(Q/G)}}^{\mathrm{Hor}}) \in [\bar{D}]_G^{\mathrm{Hor}}$$

together with the horizontal Legendre transformation $\mathbb{F}l^{\mathrm{Hor}}: T(Q/G) \to T^*(Q/G).$

Horizontal Implicit Lagrange-Poincaré Equations

• The *horizontal implicit Lagrangian system* is a triple $(l, [\bar{D}]_G^{\text{Hor}}, [\bar{X}]_G^{\text{Hor}})$

that satisfies

$$([\bar{X}]_{G}^{\operatorname{Hor}}, [\mathbf{d}\bar{E}]_{G|_{\tilde{\mathfrak{g}}^{*}\times TT^{*}(Q/G)}}^{\operatorname{Hor}}) \in [\bar{D}]_{G}^{\operatorname{Hor}}$$

together with the horizontal Legendre transformation $\mathbb{F}l^{\mathrm{Hor}}: T(Q/G) \to T^*(Q/G).$

• This induces *horizontal implicit Lagrange-Poincaré equations*:

$$\frac{Dy}{Dt} = \frac{\partial l}{\partial x} - \left\langle \bar{\mu}, \tilde{B}(\dot{x}, \cdot) \right\rangle, \quad \frac{dx}{dt} = u, \quad y = \frac{\partial l}{\partial u}.$$

Vertical Implicit Lagrange-Poincaré Equations

• The vertical implicit Lagrangian system is a triple $(l, [\bar{D}]_G^{\rm Ver}, [\bar{X}]_G^{\rm Ver})$

that satisfies

$$([\bar{X}]_G^{\operatorname{Ver}}, [\mathbf{d}\bar{E}]_G^{\operatorname{Ver}}|_{\tilde{\mathfrak{g}}^* \times \widetilde{V}}) \in [\bar{D}]_G^{\operatorname{Ver}}$$

together with the vertical Legendre transformation $\mathbb{F}l^{\mathrm{Ver}}:\tilde{\mathfrak{g}}\to\tilde{\mathfrak{g}}^*.$

Vertical Implicit Lagrange-Poincaré Equations

• The vertical implicit Lagrangian system is a triple $(l, [\bar{D}]_G^{\rm Ver}, [\bar{X}]_G^{\rm Ver})$

that satisfies

$$([\bar{X}]_G^{\operatorname{Ver}}, [\mathbf{d}\bar{E}]_G^{\operatorname{Ver}}|_{\tilde{\mathfrak{g}}^*\times \widetilde{V}}) \in [\bar{D}]_G^{\operatorname{Ver}}$$

together with the vertical Legendre transformation

 $\mathbb{F}l^{\mathrm{Ver}}: \widetilde{\mathfrak{g}} \to \widetilde{\mathfrak{g}}^*.$

• This induces the *vertical implicit Lagrange-Poincaré equations*:

$$\frac{D\bar{\mu}}{Dt} = \operatorname{ad}_{\bar{\xi}}^* \bar{\mu}, \quad \bar{\xi} = \bar{\eta}, \quad \bar{\mu} = \frac{\partial l}{\partial \bar{\eta}}.$$

Hamilton-Poincaré-Dirac Reduction

• Let (H, D, X) be a standard implicit Hamiltonian system and let $h: T^*(Q/G) \oplus \tilde{\mathfrak{g}}^* \to \mathbb{R}$ be the reduced Hamiltonian. Then, the **reduced implicit Hamiltonian system** of (H, D, X)is a triple

$$(h, [\bar{D}]_G, [\bar{X}]_G)$$

that satisfies the condition, for each $(x, y, \bar{\mu}) \in T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$,

 $\left([\bar{X}]_G(x,y,\bar{\mu}), [\mathbf{d}\bar{H}]_G(x,y,\bar{\mu})\in [\bar{D}]_G(x,y,\bar{\mu}).\right.$

Hamilton-Poincaré-Dirac Reduction

• Let (H, D, X) be a standard implicit Hamiltonian system and let $h: T^*(Q/G) \oplus \tilde{\mathfrak{g}}^* \to \mathbb{R}$ be the reduced Hamiltonian. Then, the **reduced implicit Hamiltonian system** of (H, D, X)is a triple

$$(h, [\bar{D}]_G, [\bar{X}]_G)$$

that satisfies the condition, for each $(x, y, \bar{\mu}) \in T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$, $([\bar{X}]_G(x, y, \bar{\mu}), [\mathbf{d}\bar{H}]_G(x, y, \bar{\mu}) \in [\bar{D}]_G(x, y, \bar{\mu}).$

• The reduced implicit Hamiltonian system is decomposed into the two parts, namely, *horizontal* and *vertical implicit Hamiltonian systems* such that

 $(h, [\bar{D}]_G, [\bar{X}]_G) = (h, [\bar{D}]_G^{\text{Hor}}, [\bar{X}]_G^{\text{Hor}}) \oplus (h, [\bar{D}]_G^{\text{Ver}}, [\bar{X}]_G^{\text{Ver}}).$

• In the above, $(h, [\bar{D}]_G^{\text{Hor}}, [\bar{X}]_G^{\text{Hor}})$ is the horizontal implicit Hamiltonian system that satisfies, for $(x, y) \in T^*(Q/G)$,

 $\left([\bar{X}]_{G}^{\operatorname{Hor}}(x,y), [\mathbf{d}\bar{H}]_{G}^{\operatorname{Hor}}(x,y) \right) \in [\bar{D}]_{G}^{\operatorname{Hor}}(x,y),$

which induces *horizontal implicit Hamilton-Poincaré equations*:

$$\frac{Dy}{Dt} = -\frac{\partial h}{\delta x} - \left\langle \bar{\mu}, \tilde{B}(\dot{x}, \cdot) \right\rangle, \quad \frac{dx}{dt} = \frac{\partial h}{\partial y}$$

• In the above, $(h, [\bar{D}]_G^{\text{Hor}}, [\bar{X}]_G^{\text{Hor}})$ is the horizontal implicit Hamiltonian system that satisfies, for $(x, y) \in T^*(Q/G)$,

 $\left([\bar{X}]^{\mathrm{Hor}}_{G}\left(x,y\right), [\mathbf{d}\bar{H}]^{\mathrm{Hor}}_{G}(x,y)\right) \in [\bar{D}]^{\mathrm{Hor}}_{G}(x,y),$

which induces *horizontal implicit Hamilton-Poincaré equations*:

$$\frac{Dy}{Dt} = -\frac{\partial h}{\delta x} - \left\langle \bar{\mu}, \tilde{B}(\dot{x}, \cdot) \right\rangle, \quad \frac{dx}{dt} = \frac{\partial h}{\partial y}$$

• On the other hand, $(h, [\bar{D}]_G^{\text{Ver}}, [\bar{X}]_G^{\text{Ver}})$ is the vertical implicit Hamiltonian system that satisfies, for $\bar{\mu} \in \tilde{\mathfrak{g}}^*$,

 $\left([\bar{X}]_{G}^{\operatorname{Ver}}(\bar{\mu}), [\mathbf{d}\bar{H}]_{G}^{\operatorname{Ver}}(\bar{\mu}) \in [\bar{D}]_{G}^{\operatorname{Ver}}(\bar{\mu}), \right.$

which induces *vertical implicit Hamilton-Poincaré equations*:

$$\frac{D\bar{\mu}}{Dt} = \operatorname{ad}_{\bar{\xi}}^* \bar{\mu}, \quad \xi = \frac{\partial h}{\partial \bar{\mu}}.$$

Summary

- We have shown a reduction procedure for the Hamilton-Pontryagin principle, which yields *horizontal* and *vertical implicit Lagrange-Poincaré equations* as the reduced implicit Euler-Lagrange equations.
- Using a chosen principal connection, we have developed a reduction procedure for the canonical Dirac structure on the cotangent bundle, which we call *Dirac cotangent bundle reduction*. It induces a *gauged Dirac structure*, which is the direct sum of horizontal and vertical Dirac structures.
- We have constructed *Lagrange-Poincaré-Dirac reduction* that induces horizontal and vertical implicit Lagrange-Poincaré equations as well as *Hamilton-Poincaré-Dirac reduction* that yields horizontal and vertical implicit Hamilton-Poincaré equations.

Current and Future Works

- A general class of *Dirac anchored vector bundles* and its associated reduction (with Cendra, Marsden and Tudor).
- Dirac cotangent bundle reduction for *nonholonomic mechanical systems with symmetry* together with variational structures.
- Construction of *Dirac structures for Field theory*; to bridge with multisymplectic structures and Stokes-Dirac structures.
- Construction of Dirac structures and implicit Lagrangian systems for *time dependent systems*, which might include the stochastic systems.
- Reduction for *Implicit Controlled Lagrangian systems*
- *Dirac integrators* for constrained mechanical systems.