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The problem of integrable discretization. Hamiltonian
approach (Birkhäuser, 2003)

Consider a completely integrable flow

ẋ = f (x) = {H, x} (1)

with a Hamilton function H on a Poisson manifold P with a
Poisson bracket {·, ·}. Thus, the flow (1) possesses many
functionally independent integrals Ik (x) in involution.

The problem of integrable discretization: find a family of
diffeomorphisms P → P,

x̃ = Φ(x ; ε), (2)

depending smoothly on a small parameter ε > 0, with the
following properties:
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1. The maps (2) approximate the flow (1):

Φ(x ; ε) = x + εf (x) + O(ε2).

2. The maps (2) are Poisson w. r. t. the bracket {·, ·} or some
its deformation {·, ·}ε = {·, ·}+ O(ε).

3. The maps (2) are integrable, i.e. possess the necessary
number of independent integrals in involution,
Ik (x ; ε) = Ik (x) + O(ε).
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Missing in the book: Hirota-Kimura discretizations

I R.Hirota, K.Kimura. Discretization of the Euler top. J. Phys.
Soc. Japan 69 (2000) 627–630,

I K.Kimura, R.Hirota. Discretization of the Lagrange top. J.
Phys. Soc. Japan 69 (2000) 3193–3199.

Reasons for this omission: discretization of the Euler top
seemed to be an isolated curiosity; discretization of the
Lagrange top seemed to be completely incomprehensible, if not
even wrong.
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Hirota-Kimura’s discrete time Euler top


ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

 


x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

Features:
I Equations are linear w.r.t. x̃ = (x̃1, x̃2, x̃3)

T, result in an
explicit (rational) map: x̃ = f (x , ε) = A−1(x , ε)x ,

A(x , ε) =

 1 −εα1x3 −εα1x2
−εα2x3 1 −εα2x1
−εα3x2 −εα3x1 1

 .

I The map is reversible (therefore birational):

f−1(x , ε) = f (x ,−ε).
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I Explicit formulas rather messy:

x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x2

1 + α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x2

1 − α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x2

1 + α3α1x2
2 − α1α2x2

3 )

∆(x , ε)
,

where

∆(x , ε) = det A(x , ε) = 1− ε2(α2α3x2
1 + α3α1x2

2 + α1α2x2
3 )

−2ε3α1α2α3x1x2x3.

(Try to see reversibility directly from these formulas!)
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I Two independent integrals:

I1(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2
, I2(x , ε) =

1− ε2α3α1x2
2

1− ε2α1α2x2
3
.

I Invariant volume measure and bi-Hamiltonian structure
found in: M.Petrera, Yu.Suris. On the Hamiltonian structure
of the Hirota-Kimura discretization of the Euler top. Math.
Nachr. 2008 (to appear).
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Hirota-Kimura or Kahan?

I W. Kahan. Unconventional numerical methods for
trajectory calculations (Unpublished lecture notes, 1993).

ẋ = Q(x) + Bx  (x̃ − x)/ε = Q(x , x̃) + B(x + x̃),

where B ∈ Rn×n, Q : Rn → Rn is a quadratic function, and

Q(x , x̃) = Q(x + x̃)−Q(x)−Q(x̃)

is the corresponding symmetric bilinear function.

Note: equations for x̃ always linear, x̃ = f (x , ε) = A−1(x , ε)x ,
the map is always reversible and birational, f−1(x , ε) = f (x ,−ε).
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Illustration: Lotka-Volterra system

Kahan’s integrator for the Lotka-Volterra system:{
ẋ = x(1− y),

ẏ = y(x − 1),
 

{
x̃ − x = ε(x̃ + x)− ε(x̃y + xỹ),

ỹ − y = ε(x̃y + xỹ)− ε(ỹ + y).

Explicitly: 
x̃ = x

(1 + ε)2 − ε(1 + ε)x − ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

,

ỹ = y
(1− ε)2 + ε(1 + ε)x + ε(1− ε)y
1− ε2 − ε(1− ε)x + ε(1 + ε)y

.
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Left: three orbits of Kahan’s discretization with ε = 0.1,
right: one orbit of the explicit Euler with ε = 0.01.

I J.M.Sanz-Serna. An unconventional symplectic integrator
of W.Kahan. Applied Numer. Math. 16 (1994) 245–250.

A sort of an explanation of a non-spiralling behavior: Kahan’s
integrator for the Lotka-Volterra system in Poisson.
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Hirota-Kimura’s discrete time Lagrange top



ω̇1 = (1− α)ω2ω3 + z0γ2,
ω̇2 = −(1− α)ω3ω1 − z0γ1,
ω̇3 = 0,
γ̇1 = ω3γ2 − ω2γ3,
γ̇2 = ω1γ3 − ω3γ1,
γ̇3 = ω2γ1 − ω1γ2,

 

 



ω̃1 − ω1 = ε(1− α)(ω̃2ω3 + ω2ω̃3) + εz0(γ̃2 + γ2),
ω̃2 − ω2 = −ε(1− α)(ω̃3ω1 + ω3ω̃1)− εz0(γ̃1 + γ1),
ω̃3 − ω3 = 0,
γ̃1 − γ1 = ε(ω̃3γ2 + ω3γ̃2)− ε(ω̃2γ3 + ω2γ̃3),
γ̃2 − γ2 = ε(ω̃1γ3 + ω1γ̃3)− ε(ω̃3γ1 + ω3γ̃1),
γ̃3 − γ3 = ε(ω̃2γ1 + ω2γ̃1)− ε(ω̃1γ2 + ω1γ̃2),

which gives a birational map (ω̃, γ̃) = f (ω, γ, ε).
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Hirota-Kimura’s “method” for finding integrals

Consider A = ω2
1 + ω2

2 − Bγ3 − Cγ2
3 ,

D = ω1γ1 + ω2γ2 − Eγ3 − Fγ2
3 , K = γ2

1 + γ2
2 − Lγ3 −Mγ2

3 .

Determine A, . . . , M by requiring that they are conserved
quantities. For instance, for A, B, C, solve the system of three
equations for these three unknowns:

A + Bγ̃3 + Cγ̃2
3 = ω̃2

1 + ω̃2
2,

A + Bγ3 + Cγ2
3 = ω2

1 + ω2
2,

A + B γ˜3 + C γ˜2
3 = ω˜2

1 + ω˜2
2

with (ω̃, γ̃) = f (ω, γ, ε) and (ω˜ , γ˜) = f−1(ω, γ, ε). Then check
that A, B, C = A, B, C(ω, γ, ε) are conserved quantities, indeed.
Does this make any sense for you???
Nevertheless, this turns out to be not only true but also
remarkably deep (as everything by R. Hirota...).
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Clebsch system

Clebsch system describes the motion of a rigid body in an ideal
fluid:

ṁ1 = (ω3 − ω2)p2p3,

ṁ2 = (ω1 − ω3)p3p1,

ṁ3 = (ω2 − ω1)p1p2,

ṗ1 = m3p2 −m2p3,

ṗ2 = m1p3 −m3p1,

ṗ3 = m2p1 −m1p2.

It is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), has four
functionally independent integrals in involution:

Ii = p2
i +

m2
j

ωk − ωi
+

m2
k

ωj − ωi
, (i , j , k) = c.p.(1, 2, 3),

and H4 = m1p1 + m2p2 + m3p3.
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Hirota-Kimura discretization of the Clebsch system

Hirota-Kimura-type discretization (proposed by T. Ratiu on
Oberwolfach Meeting “Geometric Integration”, March 2006):

m̃1 −m1 = ε(ω3 − ω2)(p̃2p3 + p2p̃3),

m̃2 −m2 = ε(ω1 − ω3)(p̃3p1 + p3p̃1),

m̃3 −m3 = ε(ω2 − ω1)(p̃1p2 + p1p̃2),

p̃1 − p1 = ε(m̃3p2 + m3p̃2)− ε(m̃2p3 + m2p̃3),

p̃2 − p2 = ε(m̃1p3 + m1p̃3)− ε(m̃3p1 + m3p̃1),

p̃3 − p3 = ε(m̃2p1 + m2p̃1)− ε(m̃1p2 + m1p̃2).

What follows is based on a joint work with Matteo Petrera
(Rome) and Andreas Pfadler (München).
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A birational map(
m̃
p̃

)
= f (m, p, ε) = M−1(m, p, ε)

(
m
p

)
,

M(m, p, ε) =



1 0 0 0 εω23p3 εω23p2
0 1 0 εω31p3 0 εω31p1
0 0 1 εω12p2 εω12p1 0
0 εp3 −εp2 1 −εm3 εm2

−εp3 0 εp1 εm3 1 −εm1
εp2 −εp1 0 −εm2 εm1 1

 ,

with ωij = ωi − ωj . The usual reversibility:

f−1(m, p, ε) = f (m, p,−ε).

Numerators and denominators of components of m̃, p̃ are
polynomials of degree 6, the numerators of p̃i consist of 31
monomials, the numerators of m̃i consist of 41 monomials, the
common denominator consists of 28 monomials.
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Phase portraits
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An orbit of the discrete Clebsch system with ω1 = 0.1, ω2 = 0.2,
ω3 = 0.3 and ε = 1; projections to (m1, m2, m3) and to
(p1, p2, p3); initial point (m0, p0) = (1, 1, 1, 1, 1, 1).
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An orbit of the discrete Clebsch system with ω1 = 1, ω2 = 0.2,
ω3 = 30 and ε = 1; projections to (m1, m2, m3) and to
(p1, p2, p3); initial point (m0, p0) = (1, 1, 1, 1, 1, 1).
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Hirota-Kimura bases

Definition. For a given birational map f : Rn → Rn, a set of
functions Φ = (ϕ1, . . . , ϕl), linearly independent over R, is
called a HK-basis, if for every x0 ∈ Rn there exists a vector
c = (c1, . . . , cl) 6= 0 such that

c1ϕ1(f i(x0)) + . . . + clϕl(f i(x0)) = 0 ∀i ∈ Z.

For a given x0 ∈ Rn, the set of all vectors c ∈ Rl with this
property will be denoted by KΦ(x0) and called the null-space of
the basis Φ (at the point x0). This set clearly is a vector space.

Note: we cannot claim that h = c1ϕ1 + ... + clϕl is an integral of
motion, since vectors c ∈ KΦ(x0) vary from one initial point x0 to
another.
However: existence of a HK-basis Φ with dim KΦ(x0) = d
confines the orbits of f to (n − d)-dimensional invariant sets.
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From HK-bases to integrals

Proposition. If Φ is a HK-basis for a map f , then
KΦ(f (x0)) = KΦ(x0).

Thus, the d-dimensional null-space KΦ(x0) is a Gr(d , l)-valued
integral. Its Plücker coordinates are real-valued integrals:

Corollary. Let Φ be a HK-basis for f with dim KΦ(x0) = d for all
x0 ∈ Rn. Take a basis of KΦ(x0) consisting of d vectors c(i) ∈ Rl

and put them into the columns of a l × d matrix C(x0). For any
d-index α = (α1, . . . , αd) ⊂ {1, 2, . . . , n} let Cα = Cα1...αd

denote the d × d minor of the matrix C built from the rows
α1, . . . , αd . Then for any two d-indices α, β the function Cα/Cβ

is an integral of f .
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Especially simple is the situation when the null-space of a
HK-basis has dimension d = 1.

Corollary. Let Φ be a HK-basis for f with dim KΦ(x0) = 1 for all
x0 ∈ Rn. Let KΦ(x0) = [c1(x0) : . . . : cl(x0)] ∈ RPl−1. Then the
functions cj/ck are integrals of motion for f .

In other words, normalizing cl(x0) = 1 (say), we find that all
other cj (j = 1, . . . , l − 1) are integrals of motion. It is not clear
whether one can say something general about the number of
functionally independent integrals among them. It varies in
examples (sometimes just = 1 and sometimes > 1).
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Finding HK-bases

Theorem. Let, for all x0 ∈ Rn, the dimension of the solution
space of the homogeneous system for c1, . . . , cl ,

c1ϕ1(f i(x0)) + . . . + clϕl(f i(x0)) = 0, i = 0, . . . , s − 1,

be equal to l − s for 1 ≤ s ≤ l − d and to d for s = l − d + 1.
Then KΦ(x0) coincides with the solution space for s = l − d,
and, in particular, dim KΦ(x0) = d.
Numerical algorithm:
(N) For several randomly chosen initial points x0 ∈ Rn,

compute the dimension of the solution space of the above
system for 1 ≤ s ≤ l . If for every x0 the dimension fails to
drop after s = l − d with one and the same d ≥ 1, then Φ is
likely to be a HK-basis for f , with dim KΦ(x0) = d .

Especially important case: d = 1.
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To prove that some Φ is a HK-basis, have to check the
conditions of the theorem symbolically. Some possible tricks
(for d = 1):
(A) Consider the non-homogeneous system of l − 1 equations

c1ϕ1(f i(x0)) + . . . + cl−1ϕl−1(f i(x0)) = ϕl(f i(x0))

for two different but overlapping ranges i ∈ [i0, i0 + l − 2]
and i ∈ [i1, i1 + l − 2]. If the solutions coincide, then Φ is a
HK-basis with d = 1.

(B) Consider the above system for the index range
i ∈ [i0, i0 + l − 2] which contains 0 but is non-symmetric. If
the solution functions c1(x0, ε), . . . , cl−1(x0, ε) are even
w.r.t. ε, then Φ is a HK-basis with d = 1.
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Results for the discrete Clebsch system

Theorem. a) The set of functions

Φ = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, m1p1, m2p2, m3p3, 1)

is a HK-basis for f , with dim KΦ(m, p) = 4. Thus, any orbit of f
lies on an intersection of four quadrics in R6.
b) The following four sets of functions are HK-bases for f with
one-dimensional null-spaces:

Φ0 = (p2
1, p2

2, p2
3, 1),

Φ1 = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, m1p1),

Φ2 = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, m2p2),

Φ3 = (p2
1, p2

2, p2
3, m2

1, m2
2, m2

3, m3p3).

There holds: KΦ = KΦ0 ⊕ KΦ1 ⊕ KΦ2 ⊕ KΦ3 .
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Complexity issues

The claims in part b) of the above theorem refer to the solutions
of the following systems:

(c1p2
1 + c2p2

2 + c3p2
3) ◦ f i = 1,

(α1p2
1 + α2p2

2 + α3p2
3 + α4m2

1 + α5m2
2 + α6m2

3) ◦ f i = m1p1 ◦ f i ,

(β1p2
1 + β2p2

2 + β3p2
3 + β4m2

1 + β5m2
2 + β6m2

3) ◦ f i = m2p2 ◦ f i ,

(γ1p2
1 + γ2p2

2 + γ3p2
3 + γ4m2

1 + γ5m2
2 + γ6m2

3) ◦ f i = m3p3 ◦ f i .

The first one has to be solved for one non-symmetric range of
l − 1 = 3 values of i , or for two different such ranges. The last
three systems have to be solved for a non-symmetric range of
l − 1 = 6 values of i . This can be done numerically (in rational
arithmetic) without any difficulties, but becomes (nearly)
impossible for a symbolic computation, due to complexity of f 2.
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Complexity of f 2

Degrees of numerators and denominators of f 2:

deg degp1
degp2

degp3
degm1

degm2
degm3

Denom. of f 2 27 24 24 24 12 12 12
Num. of p1 ◦ f 2 27 25 24 24 12 12 12
Num. of p2 ◦ f 2 27 24 25 24 12 12 12
Num. of p3 ◦ f 2 27 24 24 25 12 12 12
Num. of m1 ◦ f 2 33 28 28 28 15 14 14
Num. of m2 ◦ f 2 33 28 28 28 14 15 14
Num. of m3 ◦ f 2 33 28 28 28 14 14 15

The numerator of the p1-component of f 2(m, p), as a
polynomial of mk , pk , contains 64 056 monomials; as a
polynomial of mk , pk , and ωk , it contains 1 647 595 terms.

Need new ideas! The main one: find (observe numerically)
linear relations between the components of KΦ(x0), and then
use them to replace the dynamical relations.
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HK-basis Φ0

Theorem. At each point (m, p) ∈ R6 there holds:

KΦ0(m, p) =

[
1
J0

+ ε2ω1 :
1
J0

+ ε2ω2 :
1
J0

+ ε2ω3 : −1
]

,

where

J0(m, p, ε) =
p2

1 + p2
2 + p2

3

1− ε2(ω1p2
1 + ω2p2

2 + ω3p2
3)

.

This function is an integral of motion of the map f .
This is the only “simple” integral of f !
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Komp. 1,2,3

Plot of solutions (c1, c2, c3) of

(c1p2
1+c2p2

2+c3p2
3)◦f i = 1, i = 0, 1, 2.

Straight line (two linear relations)!
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Additional HK-basis Ψ = (p2
1, p2

2, p2
3, m1p1, m2p2, m3p3)

Important (numerical) observation: the homogeneous system

(d1p2
1 + d2p2

2 + d3p2
3 + d7m1p1 + d8m2p2 + d9m3p3) ◦ f i = 0

has a 1-dim space of solutions with d1 = d2 = d3. Normalizing
this to −1, consider the non-homogeneous system

(d7m1p1+d8m2p2+d9m3p3)◦f i = (p2
1 +p2

2 +p2
3)◦f i , i = 0, 1, 2.

−1.36 −1.34 −1.32 −1.3 −1.28 −1.26 −1.24

−1.04

−1.02

−1

−0.98

−0.96

−0.7

−0.695

−0.69

−0.685

−0.68

−0.675

Komp. 4,5,6

−1.36
−1.34

−1.32
−1.3

−1.28
−1.26

−1.03

−1.02

−1.01

−1

−0.99

−0.98

−0.97

−0.7

−0.68

−0.66

Komp. 4,5,6
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HK-basis Ψ (continued)

Solutions (d7, d8, d9) lie (visually) on a plane in R3. Equation of
this plane can be determined (numerically) with the PSLQ
algorithm:

(ω2 − ω3)d7 + (ω3 − ω1)d8 + (ω1 − ω2)d9 = 0.

This equation replaces the one with i = 2 in the above system.
The resulting system can be solved symbolically, with solutions
(d7, d8, d9) being even functions in ε (each of them takes 3
pages of MAPLE output). This proves the next theorem.
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HK-basis Ψ (continued)

Theorem. At each point (m, p) ∈ R6 there holds:

KΨ(m, p) = [−1 : −1 : −1 : d7 : d8 : d9],

with

dk =
(p2

1 + p2
2 + p2

3)(1 + ε2d (2)
k + ε4d (4)

k + ε6d (6)
k )

∆
, k = 7, 8, 9,

∆ = m1p1 + m2p2 + m3p3 + ε2∆(4) + ε4∆(6) + ε6∆(8),

where d (2q)
k and ∆(2q) are homogeneous polynomials of degree

2q in phase variables. The functions d7, d8, d9 are integrals of
the map f . Any two of them together with J0 are functionally
independent.
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HK-bases Φ1, Φ2, Φ3

Theorem. At each point (m, p) ∈ R6 there holds:

KΦ1(m, p) = [α1 : α2 : α3 : α4 : α5 : α6 : −1],

KΦ2(m, p) = [β1 : β2 : β3 : β4 : β5 : β6 : −1],

KΦ3(m, p) = [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : −1],

where αj ,βj , and γj are rational functions of (m, p), even with
respect to ε. They are integrals of motion of the map f . For
j = 1, 2, 3 they are of the form

h =
h(2) + ε2h(4) + ε4h(6) + ε6h(8) + ε8h(10) + ε10h(12)

2ε2(p2
1 + p2

2 + p2
3)∆

,

where h stands for any of the functions αj , βj , γj , j = 1, 2, 3, and
the corresponding h(2q) are homogeneous polynomials in
phase variables of degree 2q. For instance,
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HK-bases Φ1, Φ2, Φ3 (continued)

α
(2)
1 = H3 − I1, α

(2)
2 = −I1, α

(2)
3 = −I1,

β
(2)
1 = −I2, β

(2)
2 = H3 − I2, β

(2)
3 = −I2,

γ
(2)
1 = −I3, γ

(2)
2 = −I3, γ

(2)
3 = H3 − I3,

where H3 = p2
1 + p2

2 + p2
3. The four integrals J0, α1, β1 and γ1

are functionally independent.
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Concluding remarks

We established the integrability of the Hirota-Kimura
discretization of the Clebsch system, in the sense of

I existence, for every initial point (m, p) ∈ R6, of a
four-dimensional pencil of quadrics containing the orbit of
this point;

I existence of four functionally independent integrals of
motion (conserved quantities).

This remains true also for an arbitrary flow of the Clebsch
system (with one “simple” and three very big integrals).

Our proofs are computer assisted. We did not find a general
structure, which would provide us with less computational
proofs and with more insight. In particular, nothing like a Lax
representation has been found. Nothing is known about the
existence of an invariant Poisson structure for these maps.
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Conjecture

Conjecture. For any algebraically completely integrable system
with a quadratic vector field, its Hirota-Kimura discretization
remains algebraically completely integrable.

Supported by the previous discussion and preliminary results
on:

- Zhukovsky-Volterra gyrostat;
- so(4) Euler top and its commuting flows;
- Volterra lattice;
- Toda lattice;
- classical Gaudin magnet;
- Suslov system (see posting by Dragovic and Gajic on arXiv

from July 18).
If true, this statement could be related to addition theorems for
multi-dimensional theta-functions.
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