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Example: free shear layer

• Challenge: find a low-dimensional model of a temporally evolving 
free shear layer

• Navier-Stokes equations in a domain periodic in x, infinite in y

• Phenomena: exponential growth, nonlinear saturation, pairing, 
decay to self-similar solution
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Exact self-similar solution

• Exact solution well known
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• Seek an analogous change of coordinates that simplifies the 
solution for more complex dynamics

Main idea

5

0 1000 2000 3000 40001

2

3

4

5

6

T
hi

ck
ne

ss

Time

Self-similar solution



• Seek an analogous change of coordinates that simplifies the 
solution for more complex dynamics

Main idea

5

0 1000 2000 3000 40001

2

3

4

5

6

T
hi

ck
ne

ss

Time

Self-similar solution

η = y

(
Re

4(t− t0)

)1/2



• Seek an analogous change of coordinates that simplifies the 
solution for more complex dynamics

Main idea

5

0 1000 2000 3000 40001

2

3

4

5

6

T
hi

ck
ne

ss

Time

Complex solution

Time

Self-similar solution

η = y

(
Re

4(t− t0)

)1/2



• Seek an analogous change of coordinates that simplifies the 
solution for more complex dynamics

Main idea
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Outline

• Model reduction

• Galerkin projection

• Proper Orthogonal Decomposition

• Balanced truncation

• Example: linearized channel flow

• Symmetry reduction using template fitting

• Representing the quotient space using slices

• Dynamics on the slice

• Reconstruction equation

• Example: free shear layer
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Galerkin projection

• Dynamics evolve on a high-dimensional space (or infinite-dim’l)

• Project dynamics onto a low-dimensional subspace S

• Define dynamics on the subspace by

• Two choices:

• choice of subspace

• choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)
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• Obtain “optimal” basis for the subspace, from data

• Gather data, as “snapshots” u(x,t) from simulations or experiments

• Determine orthonormal basis functions that optimally span the 
data:

• Minimize 

• Solution: SVD of the matrix of snapshots

• Limitations

• Optimal for capturing a given dataset, not necessarily dynamics

• Low-energy modes may be important to the dynamics

Proper Orthogonal Decomposition (POD)
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POD modes

ϕj ∈ VPnu(x, t) =
n∑

j=1

aj(t)ϕj(x)

∫ T

0
‖u(t)− Pnu(t)‖2 dt S = span{ϕj}



Energy-based inner products

• Reduced-order models can behave unpredictably

• Can even change stability type of equilibria
     [Rempfer, Thoret. CFD 2000]

• Simple example: consider the system:

• Sink at the origin

• Projection onto x1 axis is

• Can at least fix this simple problem by changing the inner product 
used for the projection

• Cute result: If an orthogonal projection is used with an “energy-
based” inner product, this will ensure stability of the origin

• Note: does not guarantee stability preserved for other 
equilibrium points, periodic orbits, etc.
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d
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=
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1 −1
3 −2
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x2

)

ẋ1 = x1 unstable

[Rowley, T Colonius, RM Murray, Phys D 2004]



Energy-based inner products

• Consider a system with a stable equilibrium point at the origin:

• Consider an inner product whose induced norm is a Liapunov 
function (“energy-based”):

• Reduced-order dynamics given by orthogonal projection

• Then V is a Liapunov function for the reduced-order system:

• So: if an energy-based inner product is used, the origin is stable for 
the reduced-order system, regardless of the subspace used for the 
projection
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ẋ = f(x) f(0) = 0 x ∈ Rn

〈x, y〉 = xT Qy, Q > 0
V (x) = xT Qx is a Liapunov function
V̇ (x) = 2xT f(x) ≤ 0, ∀x ∈ U

r = Px

ṙ = Pf(r)
P 2 = P

〈x, Py〉 = 〈Px, y〉 QP = PT Q

V̇ (r) = 2rT QPf(r) = 2rT PT Qf(r) = 2(Pr)T Qf(r)

= 2rT Qf(r) ≤ 0



Balanced truncation

• Linear time-invariant input-output system

• Compute controllability and observability Gramians

• Find coordinates in which Wc and Wo are equal and diagonal

• Truncate states that are least controllable/observable

• Get a priori error bounds on the reduced order model, close to 
the best possible from any model reduction method

• Can show that balanced truncation is equivalent to POD of 
impulse-state response data, using the observability Gramian as an 
inner product
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ẋ = Ax + Bu

y = Cx + Du

Moore (1981)

Wc =
∫ ∞

0
eAtBBT eAT t dt Wo =

∫ ∞

0
eAT tCT CeAt dt

effect of input u on the state x effect of state x on future outputs y

CWR, Int J Bif Chaos (2005)



Example: linearized channel flow

• Linearized channel flow

• Periodic boundary conditions in x and z

• Linearize Navier-Stokes about a steady laminar solution

• Very well-studied system:

• Non-normality, large transient growth
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Trefethen et al [Science, 1993]
Farrell & Ioannou [96,96,01]
Schmid & Henningson [01]
Bamieh & Jovanovic [01,03]

 Orr-Sommerfeld/Squire system
∂

∂t

[
−∆ 0
0 I

] [
v
η

]
=

[
LOS 0
−U ′∂z LSQ

] [
v
η

]

LOS = U∂x∆− U ′′∂x −
1

Re
∆2

LSQ = −U∂x +
1

Re
∆

v = wall-normal velocity
η = wall-normal vorticity

U(y) = 1− y2

v(±1) = vy(±1) = 0
η(±1) = 0
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POD models of channel flow

• First 5 modes contain over 
99.7% of energy

• First 10 modes contain over 
99.9% of energy
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POD model performance
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Some low-energy POD modes are very 
important for the system dynamics.

 Can’t naively use just the most energetic ones



Balanced truncation model performance

• Three-mode balanced truncation model excellent at capturing 
the energy growth

• Rank 8 balanced truncation sufficient to correctly capture the 
dynamics of the first five POD modes, compared to at least 23 
POD modes 
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Outline

• Model reduction

• Galerkin projection

• Proper Orthogonal Decomposition

• Balanced truncation
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• Dynamics on the slice

• Reconstruction equation
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Model reduction for self-similar problems

• Naive projection onto modes works poorly

• Need many modes even to capture simple phenomena such as 
pure self-similar evolution

• Better to let the modes scale:

• Other examples: traveling waves

• Do this in a systematic, general way
17

Pnu(x, t) =
n∑

j=1

aj(t)ϕj(x)

Pnu(x, t) =
n∑

j=1

aj(t)ϕj(c(t)x)

Pnu(x, t) =
n∑

j=1

aj(t)ϕj(x + c(t))

Models need to specify ċ



Setting

• Dynamics on M

• Group G acts on M (action is free and proper)

• Symmetry: equivariance of f

• Get well-defined dynamics on the quotient space M/G

• Question: for general M, G, how to parameterize M/G?

• Here, use slices and template fitting
18

ẋ = f(x)

Φg : M →M

x ∈ M

g ∈ G

M = TG

T ∗G/G ∼= g∗
TG/G ∼= g

M = T ∗G

Euler-Poincare

Lie-Poisson

Euler-Poincare

Lie-Poisson

f ◦ Φg = TΦg ◦ f



Self-similar dynamics

• Dynamics on M

• Modified equivariance of f

• write

• equations become

• Key idea: define    such that r evolves in a subspace that is locally 
isomorphic to M/G (a slice)
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ẋ = f(x) x ∈ M

m(g)f ◦ Φg = TΦg ◦ f
m(g1g2) = m(g1)m(g2)

m : G→ R is a homomorphism

x(t) = g(τ) · r(τ) dt = m(g)dτ

rτ = f(r)− ξM (r) ξ = g−1ġ ∈ g

ξ

r ∈ M

CWR, Kevrekidis, Marsden, Lust, Nonlinearity (2003)



Slices and template fitting

• Slices

• Consider the set of functions
           that are (locally) 
aligned with a template 
function

• Letting 
this becomes

• the slice at r0 is defined as

20

r ∈ M

r0 ∈ M

d

ds

∣∣∣∣
s=0

‖r − g(s) · r0‖2 = 0, g(0) = e

ξ = ġ(0) ∈ g

−2
〈〈

r − r0, ξM (r0)
〉〉

= 0

and contains all functions (locally) aligned with r0

Sr0 =
{

r ∈ M
∣∣∣
〈〈

r − r0, ξM (r0)
〉〉

= 0, for all ξ ∈ g
}



• Dynamics in the scaled frame:

• Solve for 

• Substitute into dynamics for r

Dynamics on the slice
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x(t) = g(τ) · r(τ)rτ = f(r)− ξM (r)
ẋ = f(x)

ξ

P projection onto g · r0

PξM (r) = Pf(r)

r0
r1

g · r0g · r1

f(r1)

fr0(r1)

r(τ)

Pf(r1) = PξM (r1)ξM (r1)

rτ = fr0(r) := f(r)− ξM (r)



• Evolution history of thickness for temporal shear 
layer (spatially periodic):

• Model initial linear growth, saturation, pairing, and 
eventual viscous diffusion

Modeling free shear layers

22

linear growth

saturation
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saturation

viscous diffusion

Time



Methodology

• Scale POD modes dynamically in y direction to account 
for shear layer spreading

• Scaling invariants: 

• divergence of velocity field

• inner product

• Key idea: template fitting

• Main result: an equation for the shear layer spreading rate:

• as usual, also get equations for time coefficients of POD modes
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Scaling basis functions

• Write solution in scaled reference frame

• Choose                             : 

• Expand scaled variable    in terms of POD modes

• Advantage of the scaling: capture similar-looking 
structures as shear layer spreads

• Advantage of divergence-invariant mapping: auto-
satisfy continuity equation; simplify pressure term

q(x, y, t) = G(g)q̃(x, g(t)y, t)

q = (u, v)

G(g) =
[

1 0
0 1/g

]
div q = div q̃

q̃

q̃(x, y, t) = u0(y) +
n∑

j=1

aj(t)ϕj(x, y)
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• How do we choose the scaling g(t)?

• Choose g(t) so that              lines up best with a 
preselected template (here, the base flow):

• This means the scaled solution              satisfies

• Geometrically, the set of all “properly scaled” functions    is 
an affine space through     and orthogonal to

• This enables one to write dynamics for how the thickness g
(t) evolves 

Template fitting

q̃(x, y, t)

d

ds

∣∣∣∣
s=0

‖q̃(x, y, t)− u0(x, h(s)y)‖2 = 0

q̃(x, y, t)
〈

y
∂u0

∂y
, q̃− u0

〉
= 0

q̃
u0 y∂yu0

ġ

g
=

〈
f1

g (ũ), y∂yu0

〉

〈y∂yũ, y∂yu0〉

25

for any curve h(s) > 0 with h(0) = 1



Equation for evolution of the thickness

• How does g(t) evolve in time?

• We have a constraint (              lines up best with template     ):

• Differentiate:

• Use equations of motion

• This gives an equation for g:

ġ

g
=

〈
f1

g (ũ), y∂yu0

〉

〈y∂yũ, y∂yu0〉

〈
y
∂u0

∂y
, q̃− u0

〉
= 0

〈
y
∂u0

∂y
,
∂q̃
∂t

〉
= 0

∂q̃
∂t

= fg(q̃)− ġ

g
y
∂q̃
∂y
−G(1/g)Ġ(g, ġ)q̃(x, y, t)

26

q̃(x, y, t) u0



Galerkin equations for the shear layer

• Equation for the POD mode coefficients:

• retain only modes k=1, n=1 and 2:

• Equation for the scaling g:

• Retaining modes k=1 and 2, n=1 and 2 also 
tractable, but messy

• Use inner product that is preserved under scaling:

ȧ1,2 =
g2c21g + c21

g2n2g + n2
a1,1 +

g2c22g + c22

g2n2g + n2
a1,2 +

1
Re

[
−(

2π

L
)2 +

g2d2g + d2

g2n2g + n2
g2

]
a1,2

+
g2e2g + e2

g2n2g + n2

ġ

g
a1,2,

ȧ1,1 =
g2c11g + c11

g2n1g + n1
a1,1 +

g2c12g + c12

g2n1g + n1
a1,2 +

1
Re

[
−(

2π

L
)2 +

g2d1g + d1

g2n1g + n1
g2

]
a1,1

+
g2e1g + e1

g2n1g + n1

ġ

g
a1,1,

ġ =
c01

n0
a1,1a

∗
1,1g +

c02

n0
a1,2a

∗
1,2g +

c03

n0
a1,1a

∗
1,2g +

c04

n0
a1,2a

∗
1,1g +

1
Re

d0

n0
g3

〈q̃1, q̃2〉g =
∫

Ω
(
1
g
ũ1ũ2 +

1
g3

ṽ1ṽ2)dxdy
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• Base flow with small perturbation

• Base flow: 

• Perturbation is along the unstable eigenfunction of the linearized 
problem

• Consider three separate cases

• No perturbation: viscous growth

• Initial perturbation with k=1: vortex roll-up

• Initial perturbation with k=2:

• vortex roll-up

• pairing

• k=1 mode arises through pairing

Results

28

u0 =
1
2

erfc(−y)



Model results: k=0

• Only one equation left for g:

• Recovers exact theoretical growth rate for Stokes 
problem:
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29Time

ġ = − 2
Re

g3

g(t) =
(

Re
4t + Re

)1/2

g(0) = 1



Movie of DNS

• Initial condition with k=1 (Re = 200)
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Movie of DNS

• Initial condition with k=2 (Re = 200)
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POD modes

• Energy contained in modes (k=1 initial condition)

• Zero mode contains very little energy - scaling was effective at 
removing the mean spreading

(k,n) lambda Energy (%)

(1,1) 130.3 91.0

(1, 2) 6.8 4.8

(2, 1) 4.5 3.1

all k=0 0.4
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POD modes

• Initial condition with k=1
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POD modes

• Energy contained in modes (k=2 initial condition)

• Scaling still effective at removing the mean spreading (zero mode 
has small energy)

(k,n) lambda Energy (%)
(1,1) 27.5 40.1
(2,1) 37.9 55.2
(1,2) 0.9 1.3
(2,2) 1.6 2.3

all k=0 0.6
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• Initial condition with k=2
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Full simulation vs. projection onto POD modes

• Comparison of direct numerical simulation, and projection 
onto four complex POD modes
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Full simulation



Full simulation vs. reduced-order model

• Comparison of direct numerical simulation, and reduced-
order model using four complex POD modes
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Full simulation



• Thickness and amplitude of 
POD modes for k=1 initial 
condition: projection of full 
simulation

Model results: k=1
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• Thickness and amplitude of 
POD modes for k=1 initial 
condition: low-dimensional 
model
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Phase shift phenomenon: Modes 1 and 2 are out of 
phase during linear growth, in phase after saturation



• Phase delay between the 
first 2 POD modes: 
projection of full simulation

Model results: k=1

• Phase delay between the 
first 2 Pod modes: low-
dimensional model
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• Thickness and amplitude of 
POD modes for k=2 initial 
condition: projection of full 
simulation

Model results: k=2
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• Thickness and amplitude of 
POD modes for k=2 initial 
condition: low-dimensional 
model
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Example: control of Kuramoto-Sivashinsky equation

• Do the same procedure with a control input

• Assume control action is equivariant

• Stabilize relative equilibria

• Example: Kuramoto-Sivashinsky equation

• Stabilize family of fixed points

• Stabilize a traveling wave solution

• See poster by Sunil Ahuja
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ẋ = f(x) + g(x)u

g(Φg(x)) ◦ Ψg = TxΦg ◦ g(x)

ut = −uux − uxx − νuxxxx, x ∈ [0, 2π)



K-S equation: stabilize a fixed point
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KS equation: stabilize a traveling wave
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Summary

• Model reduction

• Main idea: project dynamics onto a smaller-dimensional subspace

• Two choices: subspace itself, and the direction of projection (i.e., 
the inner product)

• Proper orthogonal decomposition is one method of determining a 
subspace

• Balanced truncation (linear systems) determines an inner product 
as well, and usually works much better than POD

• Dynamically scaled modes

• Symmetry reduction scales self-similar solutions appropriately

• Dynamic scaling decreases number of modes required

• Temporal shear layer dynamics modeled with 4 complex modes, 
including linear growth, saturation, pairing, and viscous diffusion
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