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Example: free shear layer

¢ Challenge: find a low-dimensional model of a temporally evolving
free shear layer

® Navier-Stokes equations in a domain periodic in X, infinite in y

® Phenomena: exponential growth, nonlinear saturation, pairing,
decay to self-similar solution
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Exact solution well known
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Seek an analogous change of coordinates that simplifies the
solution for more complex dynamics

Self-similar solution
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Seek an analogous change of coordinates that simplifies the
solution for more complex dynamics

Self-similar solution
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Seek an analogous change of coordinates that simplifies the
solution for more complex dynamics

Self-similar solution Complex solution
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Seek an analogous change of coordinates that simplifies the
solution for more complex dynamics

Self-similar solution Complex solution

%]
(7]
o)
c
4
2
=
F

a1
1000

2000

Time

[ R
3000

)

[
4000

Find g(t) using symmetry reduction




Model reduction

Galerkin projection

T

Proper Orthogonal Decomposition iL

Balanced truncation
Example: linearized channel flow

Symmetry reduction using template fitting

Representing the quotient space using slices
Dynamics on the slice

Reconstruction equation

Example: free shear layer




Dynamics evolve on a high-dimensional space (or infinite-dim’l)
Project dynamics onto a low-dimensional subspace S

Define dynamics on the subspace by

r=Psf(r) Ps:V — S isa projection

Two choices:
choice of subspace

choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)
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Dynamics evolve on a high-dimensional space (or infinite-dim’l)
Project dynamics onto a low-dimensional subspace S

ker PS

Define dynamics on the subspace by

r=Psf(r) Ps:V — S isa projection

Two choices:
choice of subspace

choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)




Obtain “optimal” basis for the subspace, from data

Gather data, as “snapshots” u(x,t) from simulations or experiments

Determine orthonormal basis functions that optimally span the
data:

n

Pou(z,t) =Y a;j(t)p;(x) pj €V
J=1 POD modes

/0 lu(t) — Pyu(t)||” dt S = span{yp, }

Minimize

Solution: SVD of the matrix of snapshots

Limitations

Optimal for capturing a given dataset, not necessarily dynamics
Low-energy modes may be important to the dynamics




Reduced-order models can behave unpredictably

Can even change stability type of equilibria
[Rempfer, Thoret. CFD 2000]

Simple example: consider the system:

O-C A6
dt \ T 3 —2) \xo M

Sink at the origin

Projection onto x; axis is

T1 = 1
Can at least fix this simple problem by changing the inner product
used for the projection

Cute result: If an orthogonal projection is used with an “energy-
based” inner product, this will ensure stability of the origin

Note: does not guarantee stability preserved for other
equilibrium points, periodic orbits, etc.

[Rowley, T Colonius, RM Murray, Phys D 2004]




Consider a system with a stable equilibrium point at the origin:
T = f(x) f(0)=0 r e R"
Consider an inner product whose induced norm is a Liapunov

function (“energy-based”):
V(z) = 2’ Qz is a Liapunov function
T
— 0 .
Ty =e Qy, Q>0 oy 0Ty <0, VeeU
Reduced-order dynamics given by orthogonal projection
r = Px pP:=p
= Pf(r) (z, Py) = (Pz,y) QP =P"Q

ThenV is a Liapunov function for the reduced-order system:
V(r) = 2T QPS(r) = 2T PTQS(r) = 2(Pr) QS (1)
=2r'Qf(r) <0
So:if an energy-based inner product is used, the origin is stable for

the reduced-order system, regardless of the subspace used for the
projection




Moore (1981)

Linear time-invariant input-output system
r = Ax + Bu
y = Cx + Du

Compute controllability and observability Gramians

WC:/ eABBT A"t gt W0:/ eATtC’TC'eAt dt
0 0

effect of input u on the state x effect of state x on future outputs y

Find coordinates in which W. and W, are equal and diagonal
Truncate states that are least controllable/observable

Get a priori error bounds on the reduced order model, close to
the best possible from any model reduction method

Can show that balanced truncation is equivalent to POD of
impulse-state response data, using the observability Gramian as an

inner product CWR, Int | Bif Chaos (2005)




Linearized channel flow

Periodic boundary conditions in x and z

yI
a’;
Z

Linearize Navier-Stokes about a steady laminar solution U(y) =1—y

Orr-Sommerfeld/Squire system

Q—AO vl LOS 0 (%
ot| 0 I||n|l |-U0. Lsol| |n

Los=Ud,A—-U"9, — LAQ
Re

1
5 + Re

v = wall-normal velocity

n = wall-normal vorticity

Very well-studied system:
Non-normality, large transient growth

v(£l) =v,(£1) =0
n(+1) =0

Trefethen et al [Science, 1993]
Farrell & loannou [96,96,01]
Schmid & Henningson [01]
Bamieh & Jovanovic [01,03]




First 5 modes contain over
99.7% of energy

First |0 modes contain over
99.9% of energy

POD eigenvalues

OP5, 99.72%
OP10, 99.9% |

KE growth
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POD model performance

POD modes 1-3

Energy growth
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POD modes 1-3

KE growth
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POD modes 1-3
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POD modes 1-3

KE growth

POD model performance
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POD model performance

POD modes 1-3

Energy growth
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Some low-energy POD modes are very
important for the system dynamics.
Can’t naively use just the most energetic ones

POD modes 4-5




Energy growth Error 2-norms
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Three-mode balanced truncation model excellent at capturing
the energy growth

Rank 8 balanced truncation sufficient to correctly capture the

dynamics of the first five POD modes, compared to at least 23
POD modes




Outline

® Model reduction

Galerkin projection

T

Proper Orthogonal Decomposition ‘ﬁ_’

Balanced truncation
Example: linearized channel flow

® Symmetry reduction using template fitting

Representing the quotient space using slices
Dynamics on the slice

Reconstruction equation

Example: free shear layer




Naive projection onto modes works poorly

Need many modes even to capture simple phenomena such as
pure self-similar evolution

10

n

PnU(I, t) — Z a; (t)QOJ (x) } j ////
71=1 2t

Better to let the modes scale:

1 1 1 1 1
2 0 0.2z 04 0.6 0.8 1 12

n Yelocity u

Pou(z,t) = ) a;(t)p;(c(t)z)

j=1 o
Other examples: traveling waves Models need to specity ¢
n

Pau(e,t) = 3 a;(t);(w + e(t)
j=1
Do this in a systematic, general way




Dynamics on M

T = f(.CC) xre M Euler-Poincare V] = T'(G

Lie-Poisson N[ = T*(}

Group G acts on M (action is free and proper)
¢, M —-M gEc &
Symmetry: equivariance of f
Jo®,=T®,0f
Get well-defined dynamics on the quotient space M/G

Euler-Poincare TG/G it g
Lie-Poisson T G/G s g*

Question: for general M, G, how to parameterize M/G!?
Here, use slices and template fitting




Dynamics on M

T = f(x) re M

Modified equivariance of f

m(g)fo®, =TP,0 f

m : G — R is a homomorphism
m(g192) = m(g1)m(gz2)

write
x(t) = g(7) - r(7) dt = m(g)dr

re M

equations become
rr = f(r) = & () =9 g€g

Key idea: define £ such that r evolves in a subspace that is locally
isomorphic to M/G (a slice)

CWR, Kevrekidis, Marsden, Lust, Nonlinearity (2003)



Slices

Consider the set of functions
r € M that are (locally)
aligned with a template
function 70 € M

a
ds

Ir—g(s) - rol* =0, 9(0) =
s=0

Letting £ = g(0) € g
this becomes

—2((r —ro,&m(ro))) =0

the slice at ro is defined as
Sy = {7“ c M ‘ <<r — ro,fM(ro)» — 0, for all £ g}

and contains all functions (locally) aligned with ro




Dynamics in the scaled frame:

rr = f(’l") T gM(T)

Solve for &

P&y (r) =P f(r)

[P projection onto g - rg

Substitute into dynamics for r

rr = fro(r) := f(r) = & (r)




Evolution history of thickness for temporal shear
layer (spatially periodic):

Time
Model initial linear growth, saturation, pairing, and
eventual viscous diffusion




Scale POD modes dynamically in y direction to account
for shear layer spreading

Scaling invariants:

divergence of velocity field
inner product

Key idea: template fitting

Main result: an equation for the shear layer spreading rate:

as usual, also get equations for time coefficients of POD modes




Write solution in scaled reference frame
q = (u7 U)
qa(z,y,t) = G(g)a(z, g(t)y,t)

Choose G(g) = { L0 } . div q = div q

0 1/g
Expand scaled variable g in terms of POD modes

Q($ y,t) = +Za3 %03 L y

Advantage of the scallng. capture similar-looking
structures as shear layer spreads

Advantage of divergence-invariant mapping: auto-
satisfy continuity equation; simplify pressure term




How do we choose the scaling g(t)?

Choose g(t) so that q(«x,y, t) lines up best with a
preselected template (here, the base flow):

d

d_ HQ(xayat) — 11()(213, h(S)y)H2 =0
S| s=0

for any curve A(s) > 0 with A(0) =1

This means the scaled solution q(z, y, t) satisfies

% q—ug ) =20

Geometrically, the set of all “properly scaled” functions q is
an affine space through ug and orthogonal to y0,uy

This enables one to write dynamics for how the thickness g
(t) evolves g <fgl(il),y(9yuo>
<y8yﬂ7 yayu0>




How does g(t) evolve in time!?

We have a constraint (q(z,y,t) lines up best with template ug):

Differentiate:

Use equations of motion

Jq . g 0q L
oq _ 904
g = 1@~ g — G1/9)G(g, 9z y,1

This gives an equation for g:

<fgl (ﬂ)v yé‘yu()}
YOy, yOyuo)

J
g




Equation for the POD mode coefficients:

retain only modes k=1, n=1 and 2:

2 2
g“ciig + c11 . g“ciag + C12 1
1,1
9277/19 + M

1,1 =

1,2+ =
g°n1g +n Re

2 2
g-Ca1g + C21 4 g©Ca2g + C22
1,1
g°nag + no g°nag + no

1,2 —

Equation for the scaling g:

. Co1 ) Co2 ) Co3 ) Co4 ) 1 do 3
= —a1.1a —=aq 20 - — —

g —— 1,19 T — 1,29 T - a1,1a; 99 + o a1,2a1 19 + Ro nog
Retaining modes k=1 and 2,n=1I and 2 also

tractable, but messy

Use inner product that is preserved under scaling:

1 1
(d1,Q2) =/(—a1a2+—@1@2)da;dy
I Q9 g°




Base flow with small perturbation

B flow: 1
ase flow " — ierfc(—y)

Perturbation is along the unstable eigenfunction of the linearized
problem

Consider three separate cases

No perturbation: viscous growth
Initial perturbation with k=1: vortex roll-up
Initial perturbation with k=2:

vortex roll-up

pairing

k=1 mode arises through pairing




Only one equation left for g:

2

.2 3 Re 1/2

g g

Re g(t) = ( )
4

Recovers exact theoretical growth rate for Stokes
problem:
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Movie of DNS

® [nitial condition with k=1 (Re = 200)

k = 1 simulation

Viscous
diffusic

Saturation

rowth
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Movie of DNS
® [nitial condition with k=2 (Re = 200)

k=2 simulation

Viscous
diffusion

Saturation

Pairing & growth
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Energy contained in modes (k=1 initial condition)

(k,n)

lambda

Energy (%)

(1,1)

130.3

21.0

(1,2)

6.8

4.8

(2, 1)

4.5

3.1

all k=0

0.4

Zero mode contains very little energy - scaling was effective at
removing the mean spreading




Initial condition with k=1
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Energy contained in modes (k=2 initial condition)

(k,n)

lambda

Energy (%)

(1, 1)

27.5

40. 1

2,1)

37.9

55.2

(1,2)

0.9

|.3

(2,2)

1.6

2.3

all k=0

0.6

Scaling still effective at removing the mean spreading (zero mode
has small energy)




Initial condition with k=2
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Initial condition with k=2
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Full simulation vs. projection onto POD modes

® Comparison of direct numerical simulation, and projection
onto four complex POD modes

Full simulation




Full simulation vs. reduced-order model

® Comparison of direct numerical simulation, and reduced-
order model using four complex POD modes

Full simulation




Thickness and amplitude of Thickness and amplitude of
POD modes for k=1 initial POD modes for k=1 initial

condition: projection of full condition: low-dimensional
simulation model
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Phase shift phenomenon: Modes | and 2 are out of
phase during linear growth, in phase after saturation




Phase delay between the Phase delay between the
first 2 POD modes: first 2 Pod modes: low-
projection of full simulation dimensional model
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Model results: k=2

® Thickness and amplitude of ® Thickness and amplitude of
POD modes for k=2 initial POD modes for k=2 initial

condition: projection of full condition: low-dimensional
simulation model
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Do the same procedure with a control input

z = f(z)+ g(z)u
Assume control action is equivariant

g(Py(z)) oWy =T, P40 g(x)

Stabilize relative equilibria
Example: Kuramoto-Sivashinsky equation

Stabilize family of fixed points
Stabilize a traveling wave solution
See poster by Sunil Ahuja




K-S equation: stabilize a fixed point




KS equation: stabilize a traveling wave




Model reduction

Main idea: project dynamics onto a smaller-dimensional subspace

Two choices: subspace itself, and the direction of projection (i.e.,
the inner product)

Proper orthogonal decomposition is one method of determining a
subspace

Balanced truncation (linear systems) determines an inner product
as well, and usually works much better than POD

Dynamically scaled modes

Symmetry reduction scales self-similar solutions appropriately
Dynamic scaling decreases number of modes required

Temporal shear layer dynamics modeled with 4 complex modes,
including linear growth, saturation, pairing, and viscous diffusion




