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Motivations
Why stochastic Hamiltonian systems?

Generalization of Bismut’s “Mécanique Aléatoire” : Poisson
manifolds and semimartingales as noise.

Modeling of physical systems subjected to random
perturbations.

Modeling inaccuracy in the knowledge of physical parameters
(random dynamical systems).

Box-Jenkins: deterministic+stochastic for complex systems.

Chaotic behavior of solutions and probabilistic treatment of
dynamical evolution.

Dissipation:

microscopic collisions −→ macrosopic damping.
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Constraints:

Respect geometry

Variational principle
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How do we do it?

We replace the Hamiltonian differential equations by SDEs
inspired by Emery’s “transfer principle”.

Global formulation available:

Stratonovich integration of one-forms over semimartingales
(Meyer)
Itô integration of second order one-forms over semimartingales
(Schwartz)

Use of the associated SDEs

We will worry about the variational principle separately.
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Bismut: Mécanique Aléatoire. LNM 866. Springer.

Lázaro-Caḿı, J.-A. and Ortega, J.-P. [2007] Stochastic
Hamiltonian dynamical systems.
http://arxiv.org/abs/math/0702787. To appear in Rep. on
Math. Phys.

Lázaro-Caḿı, J.-A. and Ortega, J.-P. [2007] Reduction,
reconstruction, and skew-product decomposition of symmetric
stochastic differential equations.
http://arxiv.org/abs/0705.3156
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Hamilton’s equations in integral form

Setup: (M, ω) symplectic manifold or (M, {·, ·}) Poisson manifold.

B] : T ∗M → TM (respectively ω] : T ∗M → TM) is the vector
bundle map naturally associated to the Poisson tensor B ∈ Λ2(M)
(respectively symplectic form ω ∈ Ω2(M)) defined by

B(z)(αz , βz) = 〈αz , B](βz)〉.

Proposition

(M, ω) a symplectic manifold and h ∈ C∞(M). The smooth curve
γ : [0,T ] → M is an integral curve of the Hamiltonian vector field
Xh if and only if for any α ∈ Ω(M) and for any t ∈ [0,T ]∫

γ|[0,t]

α = −
∫ t

0
dh(ω](α)) ◦ γ(s)ds. (1)
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More generally, if M is a Poisson manifold with bracket {·, ·} then
the same result holds with (1) replaced by∫

γ|[0,t]

α = −
∫ t

0
dh(B](α)) ◦ γ(s)ds, (2)
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Reminder of the Stratonovich side

M and N finite dimensional manifolds.
(Ω,F , {Ft | t ≥ 0},P) filtered probability space.
X : R+ × Ω→ N a N-valued semimartingale.
Stratonovich operator: family {S(x , y)}x∈N,y∈M such that
S(x , y) : TxN → Ty M is a linear mapping that depends
smoothly on its two entries.
S∗(x , y) : T ∗y M → T ∗x N the adjoint of S(x , y).
A M-valued semimartingale Γ solution of the the Stratonovich
SDE

δΓ = S(X , Γ)δX

associated to X and S , if for any α ∈ Ω(M):∫
〈α, δΓ〉 =

∫
〈S∗(X , Γ)α, δX 〉.

Juan-Pablo Ortega Stochastic Hamiltonian Systems



Motivations
Hamiltonian Stochastic Differential Equations

Stochastic perturbation of an integrable system
Examples

Critical Action Principle

Integral form of Hamilton’s equations
Reminder Stratonovich SDEs
The Hamiltonian SDE
First properties
Conserved quantities and stability

We will refer to X as the noise semimartingale or the
stochastic component of the stochastic differential equation.

Existence. Uniqueness formulated through maximality of
explosion times.
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The Hamiltonian SDE

(M, {·, ·}) a Poisson manifold.
X : R+ × Ω→ V semimartingale with values on the vector
space V with X0 = 0.
h : M → V ∗ a smooth function.
{ε1, . . . , εr} basis of V ∗ and h =

∑r
i=1 hiε

i .
The Hamilton equations with stochastic component X , and
Hamiltonian function h are the Stratonovich stochastic
differential equation

δΓh = H(X , Γ)δX ,

defined by the Stratonovich operator H(v , z) : Tv V → TzM
given by

H(v , z)(u) :=
r∑

j=1

〈εj , u〉Xhj
(z).
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Integral form and solutions

f : M →W . Define df : TM →W as df = p2 ◦ Tf , where
Tf : TM → TW = W ×W is the tangent map of f and
p2 : W ×W →W is the projection onto the second factor. If
f =

∑n
i=1 f iei , then df =

∑n
i=1 df i ⊗ ei .

The dual Stratonovich operator H∗(v , z) : T ∗z M → T ∗v V of
H(v , z) is given by

H∗(v , z)(αz) = −dh(z) · B](z)(αz).
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Integral form and solutions

For any F0 measurable random variable Γ0,there exists a unique
semimartingale Γh such that Γh

0 = Γ0 and a maximal stopping time
ζh such that for any α ∈ Ω(M),∫

〈α, δΓh〉 = −
∫
〈dh(B](α))(Γh), δX 〉.

We will refer to Γh as the Hamiltonian semimartingale
associated to h with initial condition Γ0.
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In Darboux-Weinstein coordinates

qi (Γh
τ )− qi (Γh

0) =
r∑

j=1

∫ τ

0

∂hj

∂pi
(Γ)δX j ,

pi (Γh
τ )− pi (Γh

0) = −
r∑

j=1

∫ τ

0

∂hj

∂qi
(Γ)δX j ,

zi (Γh
τ )− zi (Γh

0) =
r∑

j=1

∫ τ

0
{zi , hj}T (Γ)δX j .
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Why Stratonovich?

Respects geometry; Malliavin principle (only valid to a certain
extent, as we will see with the variational principle)

Mathematically more economical. The formulation of an Itô
SDE via the Emery’s transfer principle requires the choice of a
connection to construct the Schwartz operator.
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Time evolution of the observables

f ∈ C∞(M) a function on phase space

Stratonovich:

f (Γh
τ )− f (Γh

0) =
r∑

j=1

∫ τ

0
{f , hj}(Γh)δX j

Itô:

f
(

Γh
τ

)
− f

(
Γh

0

)
=

r∑
j=1

∫ τ

0
{f , hj}

(
Γh
)

dX j

+
1

2

r∑
j ,i=1

∫ τ

0
{{f , hj} , hi}

(
Γh
)

d
[
X j ,X i

]
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First properties

Energy is not automatically preserved. Resemblance with
double bracket dissipation.

Local preservation of symplectic leaves (up to a stopping
time). Gobal preservation of their closure.

Liouville’s theorem.
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Liouville’s theorem

Let ζ : M × Ω→ [0,∞] be the map such that, for any z ∈ M,
ζ (z) is the maximal stopping time associated to the solution of the
stochastic Hamilton equations with initial condition Γ0 = z a.s..
Let F be the flow such that for any z ∈ M,

F (z) : [0, ζ (z)]→ M

is the solution semimartingale with initial condition z . The map
z ∈ M 7−→ Ft(z , ω) ∈ M is a local diffeomorphism of M, for each
t ≥ 0 and almost all ω ∈ Ω in which this map is defined. Then, for
any z ∈ M and any (t, η) ∈ [0, ζ (z)],

F ∗t (z , η)ω = ω.
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The importance of conservation laws

They make easier the integration of the systems that have
them. Sometimes associated to symmetries. Reduction.

Provide qualitative information about the dynamics. Invariant
manifolds.

Help in concluding the nonlinear stability of certain
equilibrium solutions using Dirichlet type criteria.

Definition

A function f ∈ C∞ (M) is said to be a strongly (respectively,
weakly) conserved quantity of the stochastic Hamiltonian system
associated to h : M → V ∗ if for any solution Γh of the stochastic
Hamilton equations we have that f

(
Γh
)

= f
(
Γh

0

)
(respectively,

E [f
(
Γh
τ

)
] = E [f

(
Γh

0

)
], for any stopping time τ).
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Strongly conserved quantities are obviously weakly conserved.

The two definitions coincide for deterministic systems with the
standard definition of conserved quantity.
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Conservation laws and Poisson involution

Proposition

(M, {·, ·}) a Poisson manifold, X : R+ × Ω → V a semimartingale
such that X0 = 0, and h : M → V ∗ and f ∈ C∞(M) two smooth
functions. If {f , hj} = 0 for every component hj of h then f is a
strongly conserved quantity of the stochastic Hamilton equations.
Conversely, suppose that the semimartingale X =

∑r
j=1 X jεj is such

that
[
X i ,X j

]
= 0 if i 6= j . If f is a strongly conserved quantity then

{f , hj} = 0, for any j ∈ {1, ..., r} such that
[
X j ,X j

]
is an strictly

increasing process at 0. The last condition means that there exists
A ∈ F and δ > 0 with P(A) > 0 such that for any t < δ and ω ∈ A
we have [X j ,X j ]t(ω) > [X j ,X j ]0(ω), for all j ∈ {1, ..., r}.
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Lyapunov stability

Definition

Given x ∈ M and s ∈ R, denote by Γs,x the unique solution of a
given SDE such that Γs,x

s (ω) = x , for all ω ∈ Ω. A point z0 ∈ M is
an equilibrium of the SDE if the constant process Γt(ω) := z0 is a
solution, for all t ∈ R and ω ∈ Ω. We say that the equilibrium z0 is

(i) Almost surely (Lyapunov) stable when for any
open neighborhood U of z0 there exists another
neighborhood V ⊂ U of z0 such that for any z ∈ V
we have Γ0,z ⊂ U, a.s.

(ii) Stable in probability. For any s ≥ 0 and ε > 0

lim
x→z0

P

{
sup
t>s

d
(
Γs,x

t , z0

)
> ε

}
= 0,

where d : M ×M → R is any distance function that
generates the manifold topology of M.
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Theorem

In the setup of the previous definition, assume that there exists a
function f ∈ C∞(M) such that df (z0) = 0 and that the quadratic
form d2f (z0) is (positive or negative) definite. If f is a strongly
(respectively, weakly) conserved quantity then the equilibrium z0 is
almost surely stable (respectively, stable in probability).
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Lyapunov functions

Definition

Let U be an open neighborhood of the equilibrium z0 and let
V : U → R be a continuous function. V is a Lyapunov function
for the equilibrium z0 if V (z0) = 0, V (z) > 0 for any z ∈ U \ {z0},
and

E [V (Γτ )] ≤ E [V (Γ0)], (3)

for any stopping time τ and any solution Γ of the SDE.
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This definition generalizes to the stochastic context the standard
notion of Lyapunov function that one encounters in dynamical
systems theory. If the stochastic differential equation in question is
associated to an Itô diffusion and the Lyapunov function is twice
differentiable, the inequality (3) can be ensured by requiring that
A[V ](z) ≤ 0, for any z ∈ U \ {z0}, where A is the infinitesimal
generator of the diffusion, and by using Dynkin’s formula.
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Stochastic Lyapunov’s Theorem

Theorem

Let z0 ∈ M be an equilibrium solution of the stochastic differential
equation and let V : U → R be a continuous Lyapunov function
for z0. Then z0 is stable in probability.
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Stochastic perturbation of an integrable system

Consider the system in action-angle variables (I1, . . . , In, θ1, . . . , θn)

dΓ = Xh0 ◦ dt + ε

n∑
i=1

Xhi
◦ dB i , ε > 0

h0(I) = 〈I,AI〉, with A a regular n × n matrix.

Xhi
= ∂

∂Ii
, locally Hamiltonian vector field.

Since ∂2h0
∂Ii∂Ij

= Aij and the frequency map A : Rn → Rn is a

diffeomorphism (det A 6= 0), KAM theorem applies to
Hamiltonian deterministic perturbations of Xh0 .

We study the solution semimartingale Γ with the support
theorems and Hörmander’s condition.
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The support theorems and Hörmander’s condition

The support theorems (Stroock-Varadhan-Kunita...) study the
support of the law of Γ in terms of the controllability of the system
of ordinary controlled differential equations

dx(t)

dt
= Xh0(x(t)) + ε

n∑
i=1

Xhi
(x(t))ui (t).

Complete controllability translates into having a non-zero
probability of finding the system in any given region at some
time in the future (classical support theorem).

Strong complete controllability translates into having a
non-zero probability of finding the system in any given region
at any GIVEN time in the future (Kunita).
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Total destruction of tori

Strong complete controllability implies the total destruction of
invariant tori at arbitrarily small time t > 0. And that is what we
have!!!

Consider three Lie algebras B ⊂ I ⊂ L.

B = Lie{Xh1 , . . . ,Xhn}.
L = Lie{Xh0 ,Xh1 , . . . ,Xhn}.
I is the ideal in L generated by {Xh1 , . . . ,Xhn}.
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Kunita’s Theorem

We have strong complete controllability provided that:

(i) dim I(x) = 2n, for any x (Hörmander’s condition).

(ii) [B, I](x) ⊂ B(x), for any x .

(iii) B is locally finitely generated.
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In our case

Note that [Xhi
,Xhj

] = 0, i , j ∈ {1, . . . , n},
[Xh0 ,Xhi

] =
∑n

j=1 Aij
∂
∂θj

, and [[Xh0 ,Xhi
],Xhj

] = 0, hence

B = span{Xh1 , . . . ,Xhn}
I = span{Xh1 , . . . ,Xhn , [Xh0 ,Xh1 ], . . . , [Xh0 ,Xhn ]}
L = span{Xh0 ,Xh1 , . . . ,Xhn , [Xh0 ,Xh1 ], . . . , [Xh0 ,Xhn ]}

Since A is invertible it is clear that I(x) = TxM, B is obviously
finitely generated, and as [B, I] = 0, point (ii) is also satisfied.
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Bismut’s Hamiltonian diffusions

(M, {·, ·}) a Poisson manifold.
hj ∈ C∞ (M), j = 0, ..., r , smooth functions.
h : M −→ Rr+1, the Hamiltonian function
m 7−→ (h0 (m) , . . . , hr (m)).
Semimartingale X : R+ × Ω→ Rr+1 given by:

(t, ω) 7−→
(
t,B1

t (ω) , . . . ,B r
t (ω)

)
,

where B j , j = 1, ..., r , are r -independent Brownian motions.
In this setup, for any f ∈ C∞ (M)

f
(

Γh
τ

)
− f

(
Γh

0

)
=

∫ τ

0
{f , h0}

(
Γh
)

dt

+
r∑

j=1

∫ τ

0
{f , hj}

(
Γh
)

dB j +

∫ τ

0
{{f , hj} , hj}

(
Γh
)

dt.
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This equation may be interpreted as a stochastic perturbation of
the classical Hamilton equations associated to h0, that is,

d(f ◦ γ)

dt
(t) = {f , h0} (γ (t)) .

by the r Brownian motions B j . These equations have been studied
by Bismut when the Poisson manifold (M, {·, ·}) is just the
symplectic Euclidean space R2n with the canonical symplectic
form. He refers to these processes as Hamiltonian diffusions.

Notice that the classical energy does not need to be conserved.
Taking averages:

d

dt

∣∣∣∣
t=s

E [h0(Γh
t )] =

1

2

r∑
i=1

E [{{h0, hi}, hi}(Γh
s )].
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Langevin equation and damping

m dq̇(t) = −λq̇(t)dt + bdBt

λ > 0 damping coefficient and Bt is a Brownian motion.

Physical interpretation: the Brownian motion models random
instantaneous bursts of momentum that are added to the
particle by collision with lighter particles, while the mean
effect of the collisions is the slowing down of the particle.
This fact is mathematically described by noting that the
expected value qe := E [q] satisfies the ODE q̈e = −λq̇e .
This description is accurate but does not provide any
information about the mechanism that links the presence of
the Brownian perturbation to the emergence of damping:

λ should be 0 when b = 0!!!
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The motion of a particle of mass m in one dimension subjected to
viscous damping and to a harmonic potential with Hooke constant
k satisfies the same differential equation as the expected value of
the solution semimartingale of a natural stochastic Hamiltonian
system, which provides a mathematical mechanism by which the
stochastic perturbations in the system generate an average
damping.
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Consider the stochastic Hamiltonian system:

R2 with its canonical symplectic two-form.

X : R+ × Ω→ R given by Xt(ω) := t + νBt(ω), where ν ∈ R
and Bt a Brownian motion.

h ∈ C∞(M) is the energy of the harmonic oscillator

h =
1

2m
p2 +

1

2
kq2.

Writing qe := E [q(Γh
t )] it holds that

mq̈e(t) = −ν2kq̇e(t)− K

(
ν4k

4m
+ 1

)
qe(t).

If ν = 0 the damping vanishes and we get a free harmonic
oscillator.
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Integrable stochastic Hamiltonian systems

(M, ω), 2n-dimensional manifold, X : R+ × Ω→ V a
semimartingale, and h : M → V ∗ such that h =

∑r
i=1 hiε

i , with{
ε1, ..., εr

}
a basis of V ∗. H is the associated Stratonovich

operator.
Suppose that there exists a family of functions
{fr+1, . . . , fn} ⊂ C∞ (M) such that the n-functions
{f1 := h1, ..., fr := hr , fr+1, ..., fn} ⊂ C∞ (M) are in Poisson
involution, that is, {fi , fj} = 0, for any i , j ∈ {1, ..., n}.
Assume also that F := (f1, ..., fn) satisfies the hypotheses of the
Liouville-Arnold Theorem: F has compact and connected fibers
and its components are independent. In this setup, we say that the
stochastic Hamiltonian dynamical system associated to H is
integrable.
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As it is the case for standard (Liouville-Arnold) integrable systems,
there is a symplectomorphism that takes (M, ω) to(
Tn × Rn,

∑n
i=1 dθi ∧ dIi

)
and for which F ≡ F (I1, ..., In). In

particular, in the action-angle coordinates
(
I1, ..., In, θ

1, ..., θn
)
,

hj ≡ hj (I1, ..., In) with j ∈ {1, ..., r}. For any random variable Γ0

and any i ∈ {1, ..., n}

Ii (Γ)− Ii (Γ0) =
r∑

j=1

∫
{Ii , hj (I)} (Γ) δX j = 0

θi (Γ)− θi (Γ0) =
r∑

j=1

∫ {
θi , hj (I)

}
(Γ) δX j =

r∑
j=1

∫
∂hj

∂Ii
(Γ) δX j .

Juan-Pablo Ortega Stochastic Hamiltonian Systems



Motivations
Hamiltonian Stochastic Differential Equations

Stochastic perturbation of an integrable system
Examples

Critical Action Principle

Bismut’s Hamiltonian diffusions
Langevin equation and damping
Integrable stochastic Hamiltonian systems
Brownian motions on manifolds as Hamiltonian semimartingales
Geometric Brownian motion

The tori I = constant are left invariant by the stochastic flow. In
particular, as the paths of the solutions are contained in compact
sets, the stochastic flow is defined for any time and the flow is
complete. Moreover, the restriction of this stochastic differential
equation to the torus given by say, I0, yields the solution

θi (Γ)− θi (Γ0) =
r∑

j=1

ωj (I0) X j , (4)

where ωj (I0) :=
∂hj

∂Ii
(I0) (X0 = 0).

The Haar measure dθ1 ∧ ... ∧ dθn on each invariant torus is left
invariant by the stochastic flow. If we can ensure that there exists
a unique invariant measure µ (for instance, if (4) defines a
non-degenerate diffusion on Tn (see Ikeda-Watanabe)) then µ
coincides necessarily with the Haar measure.
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Brownian motion on manifolds as Hamiltonian
semimartingales

A M-valued process Γ is a Brownian motion on (M, g), with g a
Riemannian metric M when Γ is continuous and adapted and for
every f ∈ C∞(M)

f (Γ)− f (Γ0)− 1

2

∫
∆M f (Γ)dt

is a local martingale.
Recall that the Laplacian ∆M (f ) is defined as

∆M (f ) = Tr (Hess f ) ,

for any f ∈ C∞ (M), where Hess f := ∇(∇f ), with

∇ : X(M)× X(M)→ X(M),

the Levi-Civita connection of g .
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The parallelizable case

Suppose that (M, g) is parallelizable (like any Lie group) and let
{Y1, ...,Yn} be an orthonormal parallelization. We construct a
stochastic Hamiltonian system on the cotangent bundle T ∗M of
M, endowed with its canonical symplectic structure, such that the
projection of the solution semimartingales of this system onto M
are M-valued Brownian motions.

Noise semimartingale: X : R+ × Ω→ Rn+1 given by
X (t, ω) := (t,B1

t (ω), . . . ,Bn
t (ω)), with B j , j = 1, ..., n, are

n-independent Brownian motions.
Hamiltonian function h = (h0, h1, . . . , hn) : T ∗M → Rn+1 the
function whose components are given by

h0 : T ∗M −→ R
αm 7−→ − 1

2

∑n
j=1〈αm,

(
∇Yj Yj

)
(m)〉,

hj : T ∗M −→ R
αm 7−→ 〈αm,Yj(m)〉.
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It can be checked that for any function of the type f ◦ π with
π : T ∗M → M and f ∈ C∞(M)

f ◦ π
(

Γh
)
− f ◦ π

(
Γh

0

)
− 1

2

∫
∆M(f )

(
π ◦ Γh

)
dt

=
n∑

j=1

∫
g
(
grad f ,Yj

) (
π ◦ Γh

)
dB j

s . (5)

Since
∑n

i=1

∫
g
(
grad f ,Yj

)
(Γ

h
)dB i is a local martingale, π(Γh) is

a Brownian motion.
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Brownian motions on Lie groups

G a Lie group with Lie algebra g and assume that G admits a
bi-invariant metric g (for example when G is Abelian or compact).
This metric induces a pairing in g invariant with respect to the
adjoint representation of G on g. Let {ξ1, . . . , ξn} be an
orthonormal basis of g with respect to this invariant pairing and let
{ν1, . . . , νn} be the corresponding dual basis of g∗. The
infinitesimal generator vector fields {ξ1G , . . . , ξnG}

ξiG (h) = TeLh · ξ,

are an orthonormal parallelization of G , that is g(ξiG , ξjG ) := δij .
Since g is bi-invariant then

∇X Y =
1

2
[X ,Y ], X ,Y ∈ X(G )
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hence ∇ξiG ξiG = 0 and h0 ≡ 0 we can therefore take
hG = (h1, ..., hn) and XG =

(
B1

t , ...,B
n
t

)
when we consider the

Hamilton equations of the Brownian motion with respect to g .

Brownian motion on a circle: S1 = {e iθ | θ ∈ R}. The
stochastic Hamiltonian differential equation for the semimartingale
Γh associated to X : R+ × Ω→ R, given by Xt(ω) := Bt(ω), and
the Hamiltonian function h : TS1 ' S1 × R→ R given by
h(e iθ, λ) := λ, is simply obtained by writing (5) down for the
functions f1(e iθ) := cos θ and f2(e iθ) := sin θ which provide us with
the equations for the projections X h and Y h of Γh onto the OX
and OY axes, respectively. A straightforward computation yields

dX h = −Y hdB − 1

2
X hdt and dY h = X hdB − 1

2
Y hdt.

A solution is (X h
t ,Y

h
t ) = (cos Bt , sin Bt), that is, Γh

t = e iBt .
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Brownian motions on arbitrary manifolds

Let (M, g) be a not necessarily parallelizable Riemannian manifold.
We will replace the cotangent bundle of the manifold by the
cotangent bundle of its orthonormal frame bundle

O (M) =
⋃

x∈M

Ox (M)

which is a smooth manifold of dimension n (n + 1)/ 2 such that
Ox (M) is the set of orthonormal frames for TxM.
A curve γ : (−ε, ε) ⊂ R→ O (M) is called horizontal if γt is the
parallel transport of γ0 along the projection π (γt). The set of
tangent vectors of horizontal curves that contain a point
u ∈ O (M) defines the horizontal subspace HuO (M) ⊂ TuO (M) ,
with dimension n. The projection π : O (M)→ M induces an
isomorphism Tuπ : HuO (M)→ Tπ(u)M.
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On the orthonormal frame bundle, we have n horizontal vector
fields Yi , i = 1, ..., n, defined as follows: for each u ∈ O (M), let
Yi (u) be the unique horizontal vector in HuO (M) with
Tuπ (Yi ) = ui , where ui is the ith unit vector of the orthonormal
frame u.
Introduce the functions hi : T ∗O (M)→ R, given by
hi (α) = 〈α,Yi 〉. Recall that T ∗O (M) being a cotangent bundle it
has a canonical symplectic structure. It can be seen that the
Hamiltonian semimartingale Γh associated to h = (h1, ..., hn) and
to the Hamiltonian equations on T ∗O(M) with stochastic
component X =

(
B1

t , ...,B
n
t

)
is such that Uh = πT∗O(M)

(
Γh
)

is a
solution of the stochastic differential equation given
Eells-Elworthy-Malliavin to characterize the Brownian motion.
Hence, X h = π

(
Uh
)

is a Brownian motion on M.
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Geometric Brownian motion

B1, . . . ,Bn be n-independent Brownian motions. The
n-dimensional geometric Brownian motion is the SDE

dqi = µiqidt + qi

n∑
j=1

σijdBj , i = 1, . . . , n. (6)

Of much importance in mathematical finance: it models the
behavior of n-stocks in an arbitrage-free and complete market in
the context of the Black and Scholes formula.

h(q,p) =

 α1q1p1 σ11q1p1 · · · σ1nq1p1

...
...

. . .
...

αnqnpn σn1qnpn · · · σnnqnpn

 and Xt =

 t B1 · · · Bn

...
...

. . .
...

t B1 · · · Bn

 ,

where αi = µi − 1
2

(
σ2

i1 + · · ·+ σ2
in

)
, i = 1, . . . , n.
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The stochastic action

The stochastic Hamilton equations satisfy a variational principle
that generalizes the classical deterministic one. We shall consider
an exact symplectic manifold (M, ω), that is, ω = −dΘ (the
cotangent bundle T ∗Q of any manifold Q, with Θ the Liouville
one-form).

S (M) and S (R) the M and real-valued semimartingales.

Stochastic action associated to h: S : S(M)→ S(R) given
by

S (Γ) =

∫
〈Θ, δΓ〉 −

∫ 〈
ĥ (Γ) , δX

〉
,

where ĥ (Γ) : R+ × Ω→ V × V ∗ is

ĥ (Γ) (t, ω) := (Xt(ω), h(Γt(ω))).
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Directional derivative

Let F : S (M)→ S (R) a map, and Γ ∈ S (M). We say that F is
differentiable at Γ in the direction of a local one parameter group
of diffeomorphisms ϕs : (−ε, ε)×M → M, if for any sequence
{sn}n∈N ⊂ R, such that sn −→

n→∞
0, the family

Xn =
1

sn
(F (ϕsn (Γ))− F (Γ))

converges uniformly on compacts in probability (ucp) to a process
that we will denote by d

ds

∣∣
s=0

F (ϕs (Γ)) and that is referred to as
the directional derivative of F at Γ in the direction of ϕs .
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Characterization of the directional derivative

F : S (M)→ S (R) the map defined by F (Γ) :=
∫
〈α, δΓ〉. Then F

is differentiable in all directions and

d

ds

∣∣∣∣
s=0

F (ϕs (Γ)) =

∫
〈LYα, δΓ〉 .

For the action:

d

ds

∣∣∣∣
s=0

S (ϕs (Γ))

= −
∫
〈α, δΓ〉−

∫ 〈
dh
(
ω# (α)

)
(Γ) , δX

〉
+iY Θ (Γ)−iY Θ (Γ0) .

Noether’s theorem If the action is invariant by ϕs , that is,
S (ϕs (Γ)) = S (Γ) , then the function iY Θ is a conserved quantity
of the stochastic Hamiltonian system associated to h : M → V ∗.
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Adapted vector fields and variations

M a manifold and D a set. A local one parameter group of
diffeomorphisms ϕ : (−ε, ε)×M → M is adapted to D if
ϕs (y) = y for any y ∈ D and any s ∈ (−ε, ε). The corresponding
vector field satisfies that Y |D = 0 and is also called adapted to D.
Let Γ : R+ × Ω→ M be a M-valued continuous and adapted
stochastic process. We will denote by

τD = inf {t > 0 | Γt (ω) /∈ D}

the first exit time of Γ with respect to D. τD is a stopping time if
D is measurable.
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Critical Action Principle (Weak version)

(M, ω = −dΘ) exact symplectic manifold, X : R+ × Ω→ V a
semimartingale such that X0 = 0, and h : M → V ∗ a Hamiltonian
function. Let m0 ∈ M be a point in M and Γ : R+ × Ω→ M a
continuous semimartingale defined on [0, ζΓ) such that Γ0 = m0.
Suppose that there exist a measurable set U containing m0 such
that τU < ζΓ a.s.. If the semimartingale Γ satisfies the stochastic
Hamilton equations (with initial condition Γ0 = m0) on the interval
[0, τU ] then for any local one parameter group of diffeomorphisms
ϕ : (−ε, ε)×M → M adapted to {m0} ∪ ∂U we have

1{τU<∞}

[
d

ds

∣∣∣∣
s=0

S (ϕs (Γ))

]
τU

= 0 a.s..

Important: This critical action principle does not admit a
converse. We need more general variations.
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Pathwise variations

Γ a M-valued semimartingale. Let s0 > 0; we say that the map
Σ : (−s0, s0)× R+ × Ω→ M is a pathwise variation of Γ
whenever Σ0

t = Γt for any t ∈ R+ a.s.. The pathwise variation Σ
of Γ converges uniformly to Γ whenever:

(i) For any f ∈ C∞ (M), f (Σs)→ f (Γ) in ucp as
s → 0.

(ii) There exists a process Y : R+ × Ω→ TM over Γ
such that, for any f ∈ C∞ (M), the Stratonovich
integral

∫
Y [f ] δX exists for any X (for instance if Y

is a semimartingale) and the increments
(f (Σs)− f (Γ))/ s converge in ucp to Y [f ] as
s → 0. We will call such a Y the infinitesimal
generator of Σ.
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Critical Action Principle

(M, ω = −dθ) exact symplectic manifold, X : R+ × Ω→ V , and
h : M → V ∗ a Hamiltonian function. Let m0 be a point in M and
Γ : R+ × Ω→ M a continuous adapted semimartingale defined on
[0, ζΓ) such that Γ0 = m0. K ⊆ M a compact set that contains m0

and τK the first exit time of Γ from K . Suppose that τK <∞ a.s..

(i) For any bounded pathwise variation Σ with bounded
infinitesimal generator Y which converges uniformly
to ΓτK uniformly, the action has a directional
derivative that equals

d

ds

∣∣∣∣
s=0

S (Σs) :=

∫
〈iY dθ, δΓτK 〉 −

∫ 〈
Ŷ [h](ΓτK ), δX

〉
+ 〈θ (ΓτK ) ,Y 〉 − 〈θ (ΓτK ) ,Y 〉t=0
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(ii) The semimartingale Γ satisfies the stochastic Hamiltonian
equations with initial condition Γ0 = m0 up to time τK if and only
if, for any bounded pathwise variation
Σ : (−s0, s0)× R+ × Ω→ M with bounded infinitesimal generator
which converges uniformly to ΓτK and such that Σs

0 = m0 and
Σs
τK

= ΓτK a.s. for any s ∈ (−s0, s0),[
d

ds

∣∣∣∣
s=0

S (Σs)

]
τK

= 0 a.s..
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Part II

Symmetries, reduction, and reconstruction in
SDEs
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Symmetries and degeneracies

Let X : R+ × Ω→ N be a N-valued semimartingale and let
S : TN ×M → TM be a Stratonovich operator. Let φ : M → M
be a diffeomorphism. We say that φ is a symmetry of the
stochastic differential equation

δΓ = S(X , Γ)δX

if for any x ∈ N and y ∈ M

S (x , φ (y)) = Tyφ ◦ S (x , y) .
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As in the standard deterministic context, the symmetries of a
stochastic differential equation imply degeneracies at the level of
its solutions:
Proposition

Let X : R+×Ω→ N be a N-valued semimartingale, S : TN×M →
TM a Stratonovich operator, and let φ : M → M be a symmetry
of the corresponding stochastic differential equation. If Γ is solution
then so is φ (Γ).

The symmetries that we are mostly interested in are induced by the
action of a Lie group G on the manifold M via the map
Φ : G ×M → M. We will usually write g · z := Φ (g , z). Also

Φz : G −→ M
g 7−→ g · z ,

Φg : M −→ M
z 7−→ g · z .

g is the Lie algebra of G and g ·m := Tm(G ·m).
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Definition

We will say that the stochastic differential equationis G -invariant
if, for any g ∈ G , the diffeomorphism Φg : M → M is a symmetry
in the sense of the previous definition.

Given a solution Γ of a G -invariant stochastic differential equation,
the previous proposition provides an entire orbit of solutions since
for any g ∈ G , the semimartingale Φg (Γ) is also a solution.
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Degeneracies of the probability law

Γ : {0 ≤ t < ζ} → M solution of the G -invariant system
(M, S ,X ,N) defined up to the explosion time ζ (maybe finite if M
is not compact). In such case consider Γ as a process that takes
values in the Alexandroff one-point compactification
M̂ := M ∪ {∞} of M and it is hence defined in the whole space
R+ × Ω. In this picture, the process Γ is continuous and such that
Γt (ω) = {∞}, for any (t, ω) ∈ R+ × Ω such that t ≥ ζ (ω).
Let Ŵ (M) be the path space defined by

Ŵ (M) = {w : [0,∞]→ M̂ continuous such that w (0) ∈ M and

if w(t) = {∞} then w(t ′) = {∞} for any t ′ ≥ t}.
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Let {Pz | z ∈ M} be the family of probability measures on Ŵ (M)
defined by the solutions of (M, S ,X ,N), that is, Pz is the law of
the random variable Γz : Ω→ Ŵ (M), where Γz is the solution of
(M, S ,X ,N) with initial condition Γz

t=0 = z a.s.. The action
Φ : G ×M → M may be extended to M̂ setting Φg ({∞}) = {∞}
for any g ∈ G . It is easy to check that

Pg ·z = Φ∗g Pz ,

that is, for any measurable set A ⊂ Ŵ (M), Pg ·z(A) = Pz (Φg (A)).
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Invariant submanifolds

The presence of symmetry in a stochastic differential equation is
also associated with the occurrence of conserved quantities and,
more generally, with the appearance of invariant submanifolds.

Definition

Γ a solution of the stochastic differential equation δΓ = S(X , Γ)δX
and L an injectively immersed submanifold of M. Let ζ be the
maximal stopping time of Γ and suppose that Γ0(ω) = Z0, where
Z0 is a random variable such that Z0(ω) ∈ L, for all ω ∈ Ω. We say
that L is an invariant submanifold of the stochastic differential
equation if for any stopping time τ < ζ we have that Γτ ∈ L.
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Proposition

Let X : R+ × Ω → N be a N-valued semimartingale and let
S : TN ×M → TM be a Stratonovich operator. Let L be an injec-
tively immersed submanifold of M and suppose that the Stratonovich
operator S is such that

Im (S(x , y)) ⊂ Ty L, for any y ∈ L and any x ∈ N.

Then, the closure of L is an invariant subset of the associated
stochastic differential equation.
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Corollary

Law of conservation of the isotropy X : R+ × Ω → N semi-
martingale and S : TN ×M → TM a Stratonovich operator that is
invariant with respect to a proper action of the Lie group G on M.
Then, for any isotropy subgroup I ⊂ G , the isotropy type submani-
folds MI := {z ∈ M | Gz = I} are locally invariant submanifolds of
the associated stochastic differential equation.
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Symmetry reduction

Theorem

X : R+ × Ω→ N semimartingale and S : TN ×M → TM a
G-invariant Stratonovich operator (proper action). I ⊂ G an
isotropy subgroup, MI the isotropy type submanifold, and
LI := N(I )/I . The orbit space MI/LI is a regular quotient
manifold. There is a well defined Stratonovich operator
SMI /LI

: TN ×MI/LI → T (MI/LI ) given by

SMI /LI
(x , πI (z)) = TzπI (S(x , z)) , for any x ∈ N and z ∈ MI .

If Γ is a solution of the SDE with initial condition Γ0 ⊂ MI , then
so is ΓMI /LI

:= πI (Γ) with respect to SMI /LI
and X , with initial

condition πI (Γ0). SMI /LI
is the reduced Stratonovich operator

and ΓMI /LI
the reduced solution.
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Reconstruction

We now carry out the reverse procedure: given an isotropy
subgroup I ⊂ G and a solution semimartingale ΓMI /LI

of the
reduced stochastic differential equation with Stratonovich operator
SMI /LI

we will reconstruct a solution Γ of the initial stochastic
differential equation with Stratonovich operator S .
Simplification: assume, without loss of generality, that the action
is free. The general case can be obtained by replacing in the
following paragraphs M by the isotropy type manifolds MI , and G
by the groups LI .
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Goal: Given any solution ΓM/G of the reduced system, write a
corresponding solution Γ of the original system as Γ = ΦgΞ (d)
where d : R+ × Ω→ M is a semimartingale such that
π (d) = ΓM/G and g Ξ : R+ ×Ω→ G is a G -valued semimartingale
which satisfies a suitable stochastic differential equation on the
group G .

Main tool: A ∈ Ω1 (M; g) an auxiliary principal connection on the
left principal G -bundle π : M → M/G .

TM = Hor⊕Ver T ∗M = Hor∗ ⊕Ver∗,

where, by definition, Hor∗z := (Verz)◦ and Ver∗z := (Horz)◦. Any
one form α ∈ Ω (M) may be uniquely written as

α = αH + αV

with αH ∈ Hor∗ and αV ∈ Ver∗.
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Horizontal lift of the reduced semimartingale

ΓM/G ⊂ MM/G a solution of the reduced stochastic differential
equation associated to SM/G , with stochastic component
X : R+ × Ω→ V .
A horizontal lift of ΓM/G (see Shigekawa, Catuogno) is a
M-valued semimartingale d : R+ × Ω→ M such that d0 = Γ0,
π (d) = ΓM/G and that satisfies∫

〈A, δd〉 = 0, (7)

where (7) is a g-valued integral. More specifically, let {ξ1, ..., ξm}
be a basis of the Lie algebra g and let A (z) =

∑m
i=1 Ai (z) ξi . Then∫

〈A, δd〉 :=
m∑

i=1

∫ 〈
Ai , δd

〉
ξi . (8)
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Construction of the phase

It is easy to see that

ker
(
T ∗g Φz

)
= (Tg ·z (G · z))◦ = (Verg ·z)◦ = Hor∗g ·z . (9)

Therefore, the map

T̃ ∗g Φz := T ∗g Φz

∣∣
Ver∗g·z

: T ∗g ·zM ∩Ver∗g ·z −→ T ∗g G (10)

is an isomorphism. Let

ρ (g , z) : T ∗g G −→ T ∗g ·zM ∩Ver∗g ·z ⊂ T ∗g ·zM

αg 7−→
(

T̃ ∗g Φz

)−1
(αg )

and define ψ∗ (x , z , g) : T ∗g G → T ∗x N by

ψ∗ (x , z , g) = S∗ (x , g · z) ◦ ρ (g , z) .
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We define a dual Stratonovich operator between the manifolds G
and M × N as

K ∗ ((z , x) , g) : T ∗g G −→ T ∗z M × T ∗x N
αg 7−→ (0, ψ∗ (x , z , g) (αg )) .

(11)
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The reconstruction theorem

Theorem

X : R+ × Ω → N a N-valued semimartingale and S : TN ×M →
TM a Stratonovich operator invariant with respect to a free and
proper action of G . ΓM/G a solution semimartingale of the reduced

stochastic differential equation then Γ = g Ξ · d is a solution of the
original stochastic differential equation such that π(Γ) = ΓM/G .

d : R+ × Ω→ M is the horizontal lift of ΓM/G .

g Ξ : R+ × Ω→ G is the semimartingale solution of the SDE
δg Ξ = K (Ξ, g) δΞ with initial condition g Ξ

0 = e, K the
Stratonovich operator introduced in (11), and stochastic
component Ξ = (d ,X ).

d is the horizontal lift of ΓM/G and Γ = g Ξ the stochastic phase
of the reconstructed solution.
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Skew-products

The skew-product decomposition of second order differential
operators is a factorization technique that has been used in
the stochastic processes literature in order to split the
semielliptic and, in particular, the diffusion operators,
associated to certain SDEs.

This splitting has important consequences as to the properties
of the solutions of these equations, like certain factorization
properties of their probability laws and of the associated
stochastic flows.

Symmetries are a natural way to obtain this kind of
decompositions.
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Skew-products

Definition

N, M1, and M2 three smooth manifolds and

S (x ,m) : TxN → Tm (M1 ×M2) , x ∈ N m = (m1,m2) ∈ M1×M2,

a Stratonovich operator from N to the manifold M1 ×M2.
S admits a skew-product decomposition if there exists a
Stratonovich operator S2 (x ,m2) : TxN −→ Tm2M2 from N to M2

and a M2-dependent Stratonovich operator
S1 (x ,m1,m2) : TxN → Tm1M1 such that

S (x ,m) = (S1 (x ,m1,m2) , S2 (x ,m2)) ∈ L (TxN,Tm1M1 × Tm2M2)

for any m = (m1,m2) ∈ M1 ×M2. The operators S1 and S2 will be
called the factors of S .
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Skew product of a second order differential operator

Given a second order differential operator L ∈ X2 (M1 ×M2) on
M1 ×M2. A skew-product decomposition of L are two smooth
maps L1 : M2 → X2 (M1) and L2 ∈ X2 (M2) such that for any
f ∈ C∞ (M1 ×M2)

L [f ] (m1,m2) = (L1 (m2) [f (·,m2)]) (m1) + (L2 [f (m1, ·)]) (m2) .

If a Stratonovich operator associated to a semielliptic diffusion
admits a skew-product decomposition then the corresponding
Schwartz operator admits a skew-product decomposition, which in
turn implies the availability of a skew-product decomposition of its
infinitesimal generator.
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Skew-products

The tangent-normal decomposition for ODEs

G acting properly on M via Φ : G ×M → M and X a
G -equivariant vector field defined on a G -invariant open subset of
M. Let m be a point in the domain of X and S a slice at m. Then
there exist two vector fields XT and XN such that:
(i) XT ∈ X(G · S)G and XT (z) = (ξ(z))M (z), z ∈ G · S , where
ξ : G · S → g is a smooth G -equivariant map such that
ξ(z) ∈ Lie N(Gz) · z , for all z ∈ G · S . Moreover, the flow Ft of XT

is given by Ft(z) = exp tξ(z) · z .
(ii) XN ∈ X(S)Gm .
(iii) If z = g · s ∈ G · S with g ∈ G and s ∈ S , then

X (z) = XT (z) + TsΦg · XN(s) = TsΦg · (XT (s) + XN(s)).
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Skew-products

(iv) If Gt is the flow of XN , then the integral curve of X through
the point g · s ∈ G · S is

Ft(g · s) = g(t) · Gt(s)

where g(t) is the solution of the first order differential equation

ġ(t) = TeLg(t) · ξ (Gt(s)) , g(0) = g .

Juan-Pablo Ortega Stochastic Hamiltonian Systems



Symmetries and conservation laws of symmetric SDEs
Reduction and reconstruction

Symmetries and skew-product decompositions
The Hamiltonian case

Skew-products

The tangent-normal decomposition for SDEs

Let X : R+ × Ω→ N be a N-valued semimartingale,
Φ : G ×M → M a proper Lie group action, and
S : TN ×M → TM a G -invariant Stratonovich operator. Let
m ∈ M and W a slice at m. Then, there exist two Stratonovich
operators SN : TN ×W → TW and ST : TN ×G ·W → T (G ·W )
such that the following statements hold:
(i) The Stratonovich operator ST is G -invariant and
ST (x , z) ∈ L (TxN, Lie (N(Gz)) · z) for any x ∈ N and any
z ∈ G ·W . There exists an adjoint G -equivariant map
ξ : TN × G ·W → g, (ξ (x , g · z) = Adg ◦ξ (x , z)) such that
ST (x , z) = TeΦz ◦ ξ (x , z).
(ii) The Stratonovich operator SN : TN ×W → TW is
Gm-invariant.
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(iii) If z = g · w ∈ G ·W , with g ∈ G and w ∈W , then

S (x , z) = ST (x , z)+Tw Φg◦SN (x ,w) = Tw Φg◦(ST (x ,w) + SN (x ,w)) .

This is the tangent-normal decomposition of S .
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Skew-products

(iv) Let ϕ be the flow of the stochastic system (W ,SN ,X ,N) so
that ϕ (w) denotes the solution of

δΓ = SN(X , Γ)δX (12)

with initial condition Γt=0 = w a.s.. Let
Sg×W : TN × (g×W )→ T (g×W ) be the Stratonovich operator
Sg×W (x , (η,w)) = ξ (x ,w)× SN (x ,w) ∈ L (TxN, g× Tw W ) and
(ηw , Γw ) be the solution semimartingale of the stochastic system
(g×W ,Sg×W ,X ,N) with initial condition (0,w) ∈ g×W .
Finally, let g̃ : {0 ≤ t < τϕ} → G be the solution of the stochastic
system (G , L, ηw , g) with initial condition g ∈ G and where
L : Tg× G → TG is such that L (η, g) (ν) = TeLg (ν). Then, the
semimartingale

Γt = g̃t · ϕt (w)

is a solution up to time τϕ of the stochastic system (M, S ,X ,N)
with initial condition z = g · w ∈ G ·W .
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Skew-products

(v) Suppose that Gw = Gz , for any w ∈W . Then S admits a
local skew-product decomposition. More specifically, for any point
m ∈ M, there exists an open neighborhood V ⊆ G/Gm of Gm, a
diffeomorphism F : V ×W → U ⊆ M, and a skew-product split
Stratonovich operator SV×W : TN × (V ×W )→ T (V ×W )
such that F establishes a bijection between semimartingales Γ
starting on U which are solution of the stochastic system
(U,S ,X ,N) and semimartingales on V ×W solution of the
stochastic system (V ×W , SV×W ,X ,N). Moreover,

SV×W (x , (gGm,w)) = TgπGm ◦ TeLg (ξ (x ,w))× SN (x ,w)

for any x ∈ N, gGm ∈ V ⊂ G/Gm, and any g ∈ G such that
πGm (g) = gGm.
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Skew-products

The last shows that proper symmetries of Stratonovich operators
imply the availability of skew-products decompositions around
most points in the manifold where the solutions take place. Indeed,
the Principal Orbit Type Theorem shows that there exists an
isotropy subgroup H whose associated isotropy type manifold
M(H) := {z ∈ M | Gz = kHk−1, k ∈ G} is open and dense in M.
Hence, for any point m ∈ M(H) there exist slice coordinates around
the orbit G ·m in which the manifold M looks locally like
G ×H W = G ×H WH ' G/H ×WH . This local trivialization of
the manifold M into two factors and the results in part (v) of the
theorem can be used to split the Stratonovich operator S , in order
to obtain a locally defined skew-product around all the points in
the open dense subset M(H) of M.
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Hamiltonian case: conservation laws

Proposition

Let (M, h,X ,V ) Hamiltonian system acted properly and canonically
upon by a Lie group G . h : M → V ∗ is a G -invariant function.

(i) Law of conservation of the isotropy: The isotropy
type submanifolds MI are locally invariant
submanifolds, for any isotropy subgroup I ⊂ G .

(ii) Noether’s Theorem: If the G -action on (M, {·, ·})
has a momentum map associated J : M → g∗ then
its level sets are left invariant.

(iii) Optimal Noether’s Theorem: The level sets of the
optimal momentum map J : M → M/DG are locally
invariant.
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Reduction and reconstruction

(M, {·, ·}, h : M → V ∗,X ) invariant with respect to the canonical,
free , and proper G -action Φ : G ×M → M.
(i) Poisson reduction: The projection hM/G of h onto M/G ,
determined by hM/G ◦ π = h, with π : M → M/G the orbit
projection, induces a Hamiltonian system on (M/G , {·, ·}M/G )
with stochastic component X and whose Stratonovich operator
HM/G : TV ×M/G → T (M/G ) is

HM/G (v , π(z))(u) = Tzπ (H(v , z)(u)) =
r∑

i=1

〈εi , u〉X
h

M/G
i

(π(z))

The functions h
M/G
i ∈ C∞(M/G ) are the projections of

hi ∈ C∞(M)G . Moreover, if Γ is a solution associated to H with
initial condition Γ0, then so is ΓM/G := π (Γ) with respect to
HM/G , with initial condition π(Γ0).
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(ii) Symplectic reduction: Suppose that M is symplectic and
that the action has a coadjoint equivariant momentum map
J : M → g∗ associated. Then for any µ ∈ g∗, the function
hµ : Mµ := J−1(µ)/Gµ → V ∗ uniquely determined by the equality
hµ ◦ πµ = h ◦ iµ , induces a Hamiltonian system on the reduced
space (Mµ := J−1(µ)/Gµ, ωµ) whose Stratonovich operator
Hµ : TV ×Mµ → TMµ is given by

Hµ(v , πµ(z))(u) = Tzπµ (H(v , iµ(z))(u)) =
r∑

i=1

〈εi , u〉Xhµi
(πµ(z)).

The functions hµi ∈ C∞(J−1(µ)/Gµ) are the coefficient functions
in the linear combination hµ =

∑r
i=1 hµi ε

i and are related to the
components hi ∈ C∞(M)G of h via the relation hµi ◦ πµ = hi ◦ iµ.
Moreover, if Γ is a solution semimartingale of the Hamiltonian
system associated to H with initial condition Γ0 ⊂ J−1(µ), then so
is Γµ := πµ (Γ) with respect to Hµ, with initial condition πµ(Γ0).
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Stochastic collective Hamiltonian motion

This is a situation in which symplectic reduction not only cuts
down dimension; it also makes the system deterministic. From the
point of view of obtaining the solutions of the system, the
procedures previously introduced allow in this case the splitting of
the problem into two parts: first, the solution of a standard
ordinary differential equation for the reduced system and second,
the solution of a stochastic differential equation in the group at the
time of the reconstruction.
A function of the form f ◦ J ∈ C∞(M), for some f ∈ C∞(g∗), is
called collective. By the Collective Hamiltonian Theorem

Xf ◦J(z) =

(
δf

δµ

)
M

(z), z ∈ M, µ = J(z),

where δf
δµ ∈ g is such that for any ν ∈ g∗, Df (µ) · ν = 〈ν, δfδµ〉.
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A consequence of this equality is that G -invariant functions
commute with the collective functions. Indeed, if h ∈ C∞(M)G ,
then for any z ∈ M,

{h, f ◦ J}(z) = dh(z) · Xf ◦J(z) = dh(z) ·
(
δf

δµ

)
M

(z) = 0.

Let Y : R+ × Ω→ Rr be a Rr -valued continuous semimartingale,
{f1, ..., fr} ⊂ C∞ (g∗) a finite family of Ad∗G -invariant functions on
g∗, and h0 ∈ C∞(M)G . Consider the following G -invariant
Hamiltonian

h : M −→ R× Rr

m 7−→ (h0 (m) , (f1 (J (m)) , ..., fr (J (m)))) .

Let X be the continuous semimartingale

X : R+ × Ω −→ R+ × Rr

(t, ω) 7−→ (t,Yt (ω)) .
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Consider the G -invariant stochastic Hamiltonian system
(M, ω, h,X ). Noether’s theorem guarantees that the level sets of J
are left invariant. The reduced stochastic Hamiltonian system
(Mµ, ωµ, hµ,X ) is such that

hµ ◦ πµ = h0 ◦ iµ,

since J, and hence the functions fi ◦ J, are constant on the level
sets J−1 (µ), for any i = 1, ..., r . Consequently, the reduced system
(Mµ, ωµ, hµ,X ) is equivalent to the deterministic Hamiltonian
system (Mµ, ωµ, hµ). In other words, the reduced system obtained
from (M, ω, h,X ) coincides with the one obtained in deterministic
mechanics by symplectic reduction of (M, h0, t,R+). Thus, we
have perturbed stochastically a symmetric mechanical system
preserving its symmetries and without changing the deterministic
behavior of its corresponding reduced system.
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Stochastic mechanics on Lie groups

G a Lie group, X : R+ × Ω→ V a noise semimartingale, and
h : T ∗G → V ∗ invariant under the lifted left translations of G on
T ∗G . If we use body coordinates and we visualize T ∗G as the
product G × g∗, the invariance of h : G × g∗ → V ∗ allows us to
write it as h =

∑r
i=1 hiε

i , h1, . . . , hr ∈ C∞(g∗). In body
coordinates

δΓh =
r∑

i=1

(
TeLΓG

(
δhi

δΓg∗

)
, ad∗δhi

δΓg∗
Γg∗
)
δX i

where ΓG and Γg∗ are the G and g∗ components of Γh,
respectively, that is, Γh :=

(
ΓG , Γg∗

)
.
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In the left trivialized representation, the reduced Poisson and
symplectic Hamiltonians are simply the restrictions hg∗ and hOµ of
h to g∗ and to the coadjoint orbits Oµ ⊂ g∗, respectively.
Additionally, the reduced stochastic Hamilton equations on g∗ and
Oµ are given by

δΓg∗ =
r∑

i=1

ad∗
δh

g∗
i

δΓg∗

Γg∗δX i and δΓOµ =
r∑

i=1

ad∗
δh
Oµ
i

δΓOµ

ΓOµδX i

(13)

where hg∗ =
∑r

i=1 hg∗

i ε
i and hOµ =

∑r
i=1 h

Oµ
i εi .
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In this setup, the dynamical reconstruction of reduced solutions is
particularly simple to write down. Indeed, suppose that we are
given a solution Γg∗ of, say, the Poisson reduced system. In order
to obtain the solution Γh of the original system such that
Γh

0 = (ΓG
0 , Γ

g∗

0 ) and π(Γh) = Γg∗ it suffices to solve the stochastic
differential equation in G

δΓG =
r∑

i=1

TeLΓG

(
δhi

δΓg∗

)
δX i , (14)

with the initial condition ΓG
0 . The reconstructed solution that we

are looking for is then Γh =
(
ΓG , Γg∗

)
.
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Stochastic perturbations of the free rigid body

The free rigid body, also referred to as Euler top, is a particular
case of systems introduced in the previous section where the group
G is SO(3,R). We call it free because the energy of the system is
purely kinetic and there is no potential term. Let (·, ·) be a left
invariant Riemannian metric on G ; the kinetic energy E associated
to (·, ·) is E (v) = 1

2 (v , v), v ∈ TG . Then, using the left
invariance of the metric, we can write in body coordinates

E (g , ξ) =
1

2
(ξ, ξ)e =

1

2
〈I (ξ) , ξ〉 ,

for any (g , ξ) ∈ G × g, where 〈·, ·〉 is the natural pairing between
elements of g∗ and g, and I : g→ g∗ is the map given by
ξ 7−→ (ξ, ·)e and usually known as the inertia tensor associated to
the metric (·, ·).
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The Legendre transformation associated to E can be used to
define a Hamiltonian function h : T ∗G → R that, in body
coordinates, can be written as

h (g , µ) =
1

2
〈µ,Λ (µ)〉 , (15)

where Λ = I−1. Notice that as the kinetic energy is left invariant
(invariant with respect to the lifted G -action to T ∗G of the action
of G on itself by left translations), then the components of JL are
conserved quantities of the corresponding Hamiltonian system. Let
f ∈ C∞ (g∗) be the function f : g∗ → R given by µ 7→ 1

2 〈µ,Λ (µ)〉.
The Hamiltonian function h may be expressed as h = f ◦ JR .
Therefore h is collective with respect to JR .
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Back to the free rigid body case, that is, G = SO (3,R). The Lie
algebra so (3,R) is the vector space of three dimensional
skew-symmetric real matrices whose bracket is just the
commutator of two matrices. As a Lie algebra, (so (3) , [·, ·]) is
naturally isomorphic to

(
R3,×

)
, where × denotes the cross

product of vectors in R3. Under this isomorphism, the adjoint
representation of SO (3,R) on its Lie algebra is simply the action
of matrices on vectors of R3 and the Lie-Poisson structure on
so(3)∗ ' R3 is given by

{f , g}(v) = −v · (∇f ×∇g) ,

for any f , g ∈ C∞(R3), where ∇ is the usual Euclidean gradient.
Given a free rigid body with inertia tensor I : R3 → R3, since
δhB/δµ = Λ(µ), for any µ ∈ R3, the left-trivialized equations of
motion of the system are

(Ȧ, µ̇) =
(

A · Λ̂(µ), µ× Λ(µ)
)
, (16)

where the dot in the right hand side of (16) stands for matrix

multiplication and Λ̂(µ) is the skew-symmetric matrix associated to
Λ(µ) ∈ R3 via the mapping that implements the Lie algebra
isomorphism between (so (3) , [·, ·]) and

(
R3,×

)
.
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In the context of the free rigid body motion the momentum map
JL (respectively, JR) is called patial angular momentum
(respectively, body angular momentum). The second component
of (16), that is,

µ̇ = µ× Λ(µ) (17)

are the well-known Euler equations for the free rigid body.

Random perturbations of the body angular momentum Let
V = R× so(3) ' R+ × R3 and let h be the Hamiltonian function
h : T ∗SO(3)→ V ∗ = R× so(3)∗ defined as h = (h0, JR), where
h0 is the Hamiltonian function of the free (deterministic) rigid
body. Observe that h is a left-invariant function because so is JR .
Let Y : R+ × Ω→ g be a continuous semimartingale which we
may suppose, for the sake of simplicity, is a g-valued Brownian
motion and let X : R+ × Ω→ R∗ × g be the semimartingale
defined as Xt (ω) = (t,Yt (ω)) for any (t, ω) ∈ R× Ω. Consider
the stochastic Hamiltonian system on T ∗G associated to h and X .
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Since h is left invariant, the momentum map JL is preserved by the
solution semimartingales of this system and moreover, we can
apply the reduction scheme introduced in the previous sections. If
we carry out Poisson reduction we have a reduced Hamiltonian
function hg∗ : g∗ → V ∗ given by hg∗(µ) =

(
1
2 〈µ,Λ (µ)〉 , µ

)
. Let

{ξ1, ξ2, ξ3} a basis of the Lie algebra g and
{
ε1, ε2, ε3

}
⊂ g∗ its

dual basis. Observe that if we write JR (µ) =
∑3

i=1 〈µ, ξi 〉 εi and
Y =

∑3
i=1 Y iξi , then the reduced stochastic Lie-Poisson equations

can be expressed as

δµt = µt × Λ (µt) δt +
3∑

i=1

(µt × ξi ) δY i
t . (18)
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Regarding the reconstruction of the reduced dynamics, one has to
solve the stochastic differential equation on the rotations group
SO(3) given by

δAt = At · Λ̂ (µt)δt +
3∑

i=1

At · ξ̂iδY i
t . (19)

A physical model whose description fits well in a stochastic
Hamiltonian differential equation like the one associated to h and
X is that of a free rigid body subjected to small random impacts.
Each impact causes a small and instantaneous change in the body
angular momenta µt at time t that justifies the extra term in (18),
when compared to the Euler equations (17).
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Not so rigid rigid bodies; random perturbation of the
inertia tensor

In this example we want to write the equations that describe a
rigid body some of whose parts are slightly loose, that is, the body
is not a true rigid body and hence its mass distribution is
constantly changing in a random way. This will be modelled by
stochastically perturbing the tensor of inertia.
For the sake of simplicity, we will write G = SO (3,R) and
g = so(3). Let L (g∗, g) be the vector space of linear maps from g∗

to g. As we know (so (3) , [·, ·]) '
(
R3,×

)
. Furthermore, we can

establish an isomorphism R3 '
(
R3
)∗

using the Euclidean inner
product and hence we can write g ' g∗. Let
V = LS (g∗, g) = {A ∈ L (g∗, g) | A∗ = A} be the vector space of
selfadjoint linear maps from g∗ to g.
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Define the Hamiltonian h : T ∗G → V ∗ in body coordinates as

h : T ∗G ' G × g∗ −→ V ∗

(g , µ) 7−→ µ̄,

where µ̄ is such that

µ̄ : LS (g∗, g) −→ R
A 7−→ 1

2 〈µ,A (µ)〉 .

Observe that in body coordinates the Hamiltonian h does not
depend on G , so the Hamiltonian is G -invariant by the action Φ̄L

on T ∗G . On the other hand, consider some filtered probability
space

(
Ω,F , {Ft}t∈R ,P

)
and introduce a stochastic component

X : R+ × Ω→ V in the following way:

X : R+ × Ω −→ LS (g∗, g)
(t, ω) 7−→ Λt + εAt (ω) .
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Λ ∈ LS (g∗, g) plays the role of the inverse of the tensor of inertia
given by the deterministic (rigid) description of the body, ε is a
small parameter, and A is an arbitrary LS (g∗, g)-valued
semimartingale. In order to show how the stochastic Hamiltonian
system on T ∗G associated to h and X models a free rigid body
whose inertia tensor undergoes random perturbations, we write
down the associated stochastic reduced Lie-Poisson equations in
Stratonovich form

δµt = µt × Λ (µt) δt + εµt × δAt (µt) .

Thus we see that these Lie-Poisson equations consist in changing
Λ (µt) dt in the Euler equations (17) by Λ (µt) δt + εδAt (µt),
which accounts for the stochastic perturbation of the inertia tensor.
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