Reachability Analysis for Hybrid Dynamic Systems*

Olaf Stursberg

Faculty of Electrical Engineering and Information Technology Technische Universität München

* Thanks to: Matthias Althoff, Edmund M. Clarke, Ansgar Fehnker, Bruce H.Krogh Sven Lohmann, Tina Paschedag, Michael Theobald

Contents

- Hybrid Dynamic Systems: Motivation and Definition
- Principles of Reachability Analysis
- Abstractions in Computing Reachable Sets
- Verification based on Reachability Analysis
- Extension to Uncertain Hybrid Systems
- Reachable Sets in Controller Design
- Optimization using Abstractions
- Conclusions

Motivation for Modeling by Hybrid Dynamic Systems

Hybrid Dynamic Systems (HDS):

"Discrete event system equipped with continuous-valued dynamics" v "Continuous dynamics enriched by discontinuities (switching, jumps)"

Examples:

(a) Walking humanoid robots

- *x_i*: joint positions, velocities, ...
- *z_i*: ground contact situation

(b) Autonomously driving cars

[Wünsche et al., UniBW]

- *x_i*: distances, velocities, …
- *z_i*: driving modes (gears; accelerating, braking, ...)

[Ulbrich et al., TUM]

 $x_i \in IR, \ z_i \in IN$

Motivation for Modeling by Hybrid Dynamic Systems

Examples (ctd.):

(c) Manufacturing plants

hierarchical, distributed heterogenous control

[Zäh et al., TUM]

(d) Chemical processing systems

[BASF]

- *x_i*: work piece positions, robot arm control , ...
- *z_i*: processing status, resource conditions, ...)

 $x_i \in IR, \ z_i \in IN$

- *x_i*: temperature, levels, concentrations, ...
- *z_i*: production phase, actuator state, ...)

O. Stursberg: Reachability Analysis for Hybrid Dynamic Systems

Motivation for Modeling by Hybrid Dynamic Systems

Examples (ctd.):

(e) Air conflict resolution

[Tomlin et al., Stanford]

- *x_i*: speed, orientation, ...
- *z_i*: flight mode, (cruise, conflict resolution)

(f) Multi robot systems

[LSR, TUM]

- x_i: position, speed, ...
- *z_i*: communcation topology, formation, ...

 $x_i \in IR, \ z_i \in IN$

Hybrid Dynamic Systems: Syntax

Hybrid Dynamic Systems: Semantics

Set of event times: $T = \{t_0, t_1, t_2, ...\}$ $u(t_1), v(t_1)$ $inv(z_1)$ Input trajectories: $\phi_{\mu} = (u_0, u_1, ...) \in \Phi_{\mu}$, **X**₂ $\phi_{V} = (V_{0}, V_{1}, ...) \in \Phi_{V}$ with inputs u_k , v_k on $t \in [t_k, t_{k+1}]$ $g((z_1, z_2))$ (z_1, z_2) $r((z_1, z_2), x)$ Hybrid States: $s_k \in (z_k, x_k) \in S$ with: $X_k = X(t_k), \ Z_k = Z(t_k)$ Feasible execution for given s_0 , ϕ_u , ϕ_v : inv(z₂) $\phi_{s} = (s_{0}, s_{1}, s_{2}, ...)$ with s_{k} from:

(i) contin. evolution: $\chi(0) = x_k$ and $\chi(t)$ is unique solution of ODEs for $t \in [0, \tau]$; $\chi(t) \in inv(z_k)$, (optional: $\chi(t) \notin g((z_k, \bullet))$ für $t < \tau$)

(ii) transition:

$$(z_k, z_{k+1}) \in \Theta, \chi(\tau) \in g((z_k, z_{k+1}))$$
 and
 $x_{k+1} = r((z_k, z_{k+1}), \chi(\tau)) \in inv(z_{k+1})$

X₁

Investigations for Hybrid Dynamic Systems

Design Tasks for HDS using Reachability Computation

(a) <u>Verification:</u>

	given:	 plant P of type HA]				
		 controller C of type HA 	show that: $P \parallel C \models \gamma$				
		• specification γ					
		(e.g. safety: AG ¬ S _{unsafe})	if false, redesign C				
(b)	Controller Synthesis:						
	given:	 plant P of type HA]				
		• specification γ	generate C such that:				
		(goal attainment: AF S _{target})	<i>Ρ C = γ</i>				
(C)	<u>Optima</u>	I Control:					
	given:	 plant P of type HA 	compute C such that:				
		• goal and safety spec. γ	min ψ				
Ш		• performance measure ψ	s.t.: <i>P</i> <i>C</i> =				

γ

Reachable Set Computation for HDS

Def.: Reachable Set of HA

given: • initialization
$$S_0 \subset S$$
,
• sets of input trajectories Φ_u , Φ_v
 $R := \begin{cases} s \in S \mid \exists s_0 \in S_0, \phi_u \in \Phi_u, \\ \phi_v \in \Phi_v : s \text{ is reached along} \\ any \phi_s \in \Phi_s \end{cases}$

Assumption: $M := P \parallel C$, i.e. *M* is autonomous (Φ_u , Φ_v restricted by *C*)

Standard algorithm for computing *R*:

$$S_{0} := \{z_{0}\} \times X_{0}, k := 0$$

$$D := S_{0}, R := \emptyset$$
WHILE $(D \neq \emptyset)$ Termination?
 $k := k + 1$
 $R := R \cup D$
 $S_{k} := Reach(D)$
 $D := S_{k} \setminus R$
END

Problem: scales badly in most respects!

- infinitely many executions of *M* must be analyzed
- reachable sets have to be represented efficiently
- set intersection, subtraction, and union must be computable

In contrast:

For finite state automata $A = (Z, z_0, \Theta)$, the reachable set:

 $R := \{z_k \in Z \mid \exists z_0 \in Z_0 : (z_0, z_1) \in \Theta, \dots, (z_{k-1}, z_k) \in \Theta\} \text{ is efficiently computable.}$

[Verification of $A \models \gamma$ successfully reported for systems with $|Z| \approx 10^{20}$.]

Approach:

- Use of abstractions A of HA
- Consider the specification of analysis, synthesis, or optimization for computing $R \rightarrow$ reduce use of *Reach*, \cup , /

Abstraction-Based Reachability Analysis: Principle

- **Objective**: identify evolutions of *M* that potentially violate γ based on abstractions *A* and evaluate *Reach*(*D*) only for these evolutions!
- Principle: Generate a discrete abstraction A of the hybrid model M (A: state transition system)
 - Determine counterexamples (CEs) for A as evolutions of M that potentially violate the specification (CE: run of A that connects the initial and critical state)
 - (In-)Validate CE for M
 - if CE is invalid, add details to A (refinement)

Assumption: let γ denote a safety specification:

given $S_{unsafe} \subset S$: $\neg \exists (s_0 \in S_0, \phi_s \in \Phi_s) : (z, \chi(\tau)) \in S_{unsafe}$

Abstraction-Based Reachability Analysis: Principle

[for discrete automata: Clarke et al., 2000]

Abstract away the continuous part of *M*, retain the discrete dynamics:

- a state in *A* represents a location in *M* (exception: initial location)
- one transition in A for each transition in M

- *A* is a simple state transition system: $A = (S^A, s^A_0, \Theta^A)$
- A is an *abstraction*: contains all evolutions of M
 - can contain additional behaviors

Abstraction-Based Reachability Analysis: Principle

Model Checking and Counterexamples

- Standard model checking for FSA can be applied (breadth-first search for S^A starting from s^A_0)
- if γ is violated, i.e., a critical state $s^{A_{f}}$ is reachable:

counterexample (CE): $(s^{A}_{0}, s^{A}_{1}, ..., s^{A}_{f})$

Question: Does a corresponding evolution exist for *M*?

Abstraction-Based Reachability Analysis: Principle

Validation of Counterexamples (1)

D

VM4: Flowpipe Approximation

computation of S_k = Reach(*D*):

for each segment:

- (1) simulate vertices for a timestep
- (2) determine an oriented hyper-rectangle(orientation from sample covariance matrix)
- (3) enlarge hull (nonlinear optimization with embedded simulation)

 S_k

Z₁

Validation of Counterexamples (3)

MÜNCHEN

Abstraction-Based Reachability Analysis: Principle

Refinement based on the flowpipe approximation:

If $x(\tau)$ exists, i.e. the transition $s_1^A \rightarrow s_2^A$ is validated, the automaton *A* is refined by splitting s_2^A :

Purging of **A**:

If $x(\tau)$ does not exist, the corresponding transition is removed from A, and the method proceeds with a new CE.

Example: Verification of a Cruise Controller (1)

Example: Verification of a Cruise Controller (2)

Verification for given parametrization:

- 10 counterexamples
- VM4 (reachable set computation) only applied once
- final abstract model A: 11 states
- computation time: < 10 seconds on a standard PC

Result: $\neg (r < r_{critical})$ does hold

Reachable sets:

O. Stursberg: Reachability Analysis for Hybrid Dynamic Systems

Extension to Stochastic Verification

Method:

- hybrid model with uncertain dynamics: $\dot{x} = [H]_{z_i} \cdot x + [v]_{z_i}$
- reachable set computation based on zonotopes
- abstraction into Markov chains
- computation of collision probabilities

Context:

iterative online verification of driving strategies for autonomous cars

Computation time: 0.88 seconds for 3.2 seconds in real time using Matlab on a notebook processor (1.66 GHz).

Synthesis of Supervisory Controllers

Modification of HA:

- no continuous inputs *u*
- discrete input v changes only when a transition is taken
- if x(t) enters g, the transition must be taken before g is left

Given sets (one *z_i*, compact in *X*)

- initial set: S₀
- forbidden sets: S_{Fi}
- goal set: S_G

Synthesis Problem:

compute $\phi_v = (v_0, v_1, v_2,...)$ such that any $(z_0, x_0) \in S_0$ is driven into S_G by a feasible run of *HA* that never encounters any $s \in S_F = \bigcup_i S_{F,i}$

Abstraction-Based Synthesis: Principle

Principle:

- rewrite HA into closed system Hac by considering any v ∈ V_z, z ∈ Z
- use an abstract model to identify promising evolutions: candidate paths CP
- validate *CP* for the original model with lowest possible computational effort
- if necessary: refine the abstract model for the next iteration
- → a validated CP represents a proper control strategy

Abstract Model: $A^{(0)} = (S^A, S^A_0, \Theta^A)$

represents the discrete dynamics of *HA^c* (as in verification)

Candidate Path: $CP = (s_0^A, s_1^A, \dots, s_p^A)$ with $s_0^A \in S_0^A$, $s_p^A \in S_G^A$ and $s_k^A \notin S_F^A$ for all $k \in \{0, \dots, p\}$

search for CP: standard forward breadth-first algorithm

 \rightarrow returns one of the shortest candidate paths existing for $A^{(j)}$

Check for any pair (s_k^A, s_{k+1}^A) of CP whether it realizes a feasible control action for HA^c :

- $I \subset inv(z_k)$ set of continuous states represented by s_k^A
- ⇒ any state $x \in I$ must be transferred into $inv(z_{k+1}^c)$ by:
 - (i.) continuous evolution
 - (ii.) transition and reset

Validation procedure: determine with an as small effort as possible that the control action is not feasible

- (1) intersection check
- (2) search for invalidating trajectories
- (3) flowpipe enclosure

stricter condition, higher computational effort

(1.) Intersection Check: control action is invalid, if no $x \in g((z_k^c, z_{k+1}^c))$ is mapped into $inv(z_{k+1}^c)$ by $r((z_k^c, z_{k+1}^c), x)$

(2.) Search for invalidate trajectories:

target set *T* : subset of $g((z_k^c, z_{k+1}^c))$ that is mapped into $inv(z_{k+1}^c)$ by the reset. control action is invalid, if any $x(t_f) \notin T$ is found during solving:

$$\max_{x_0 \in I} \left\| x(t_f) - x_{cent,g} \right\|_2$$

with the terminal state $x(t_f)$ determined by numeric simulation as:

(a)
$$x(t_f) \in T$$

(b) $x(t_f) \in g((z_k^c, z_q^c)))$ with $z_q^c \neq z_{k+1}^c$
(c) $x(t_f) \in F$
(d) $x(t_f) \notin inv(z_k^c)$ and $x(t_f^-) \in inv(z_k^c)$
(e) $x(t) \in inv(z_k^c)$ and $t_{max} < t(< t_f^*)$

control action is invalid, if the flowpipe does not completely lead into the set $g((z_k^c, z_{k+1}^c))$

- \rightarrow if a control action is invalid, refute *CP*!
- \rightarrow if a control action is valid: continue with the next step of *CP*.

 $A^{(j)}$ is refined to $A^{(j+1)}$ in the following cases:

(1) if the intersection check shows that $(z_k^c, z_{k+1}^c) \in \Theta^c$ can never be taken, the corresponding transition (s_k^A, s_{k+1}^A) is removed from \hat{E} .

(2) if the other two validation methods show that (s_k^A, s_{k+1}^A) is invalid, it can not be removed from Θ^A immediately. [Krogh et al., 2003: optimization-based method to show that $(z_k^c, z_{k+1}^c) \in \Theta^c$ cannot occur]

- (3) if flowpipe approximation validates a control action, state splitting can be used optionally:
 - new abstract state for the reachable subset of $inv(z_{k+1}^{c})$
 - transition set Θ^A modified according to the reachability result
 - can be advantageous to (in-)validate a CP computed later

Application: Chemical Reactor

Continuous chemical liquid-phase reactor:

- exothermic reaction of two components
- state variables: x₁ (level), x₂ (temperature),
 x₃ (concentration)
- inputs: F₂ (flow), F₃ (flow), K (cooling), H (heating)
 16 possible combinations of values
- hybrid automaton:
 - 12 locations (32 for HA^c), 22 transitions
 - dynamics for $x_1 < 0.8$:

for
$$x_1 \ge 0.8$$
:
 $\dot{x}_1 = k_1 + F_2 + F_3, \, \dot{x}_2 = \frac{k_2(k_3 - x_2) + F_2(k_4 - x_2)}{x_1} + k_5 K(k_6 - x_2) \left(\frac{k_7}{x_1} + k_8\right), \, \dot{x}_3 = (k_9 - (k_{10} + F_2)x_3)/x_1$
 $\dot{x}'_2 = \dot{x}_2 + k_{11}(k_{12} - x_2)(k_{13} - k_{14}/x_1)H$
for $(0, k_{15}, k_{16}) \cdot x \ge k_{17}$:
 $\dot{x}''_2 = \dot{x}'_2 + x_3(k_{18} + k_{19}x_2^2), \, \dot{x}'_3 = \dot{x}_3 + k_{20} \cdot \exp(k_{21}/x_2)$

Application: Chemical Reactor

Task: find ϕ_v for start-up from S_0 into nominal operation S_G (S_0 : reactor empty and cold; S_G : high level, temperature, and yield)

Control synthesis:

- 17th CP: feasible strategy
- six phases p_1 to p_6 :

V _{p1}							6
	[1	1	0	0	0	Ó]	
	0	0	1	1	1	1	
	0	0	0	0	0	1	
	0	0	1	1	0	0	

- 16 CP invalidated by the 2nd validation method
- obtained in approx. 4 minutes on a standard PC (P4-1.5GHz)

Model: HA as defined initially, but transitions are taken deterministically

- Sets: initial states: $s_0 \in S_0$ with $z_0 \in Z, x_0 \in inv(z_0)$
 - goal states: $s_G \in S_G$ with $z_G \in Z, x_G \in inv(z_G)$
 - unsafe states: $S_F = \{S_{F,1}, \dots, S_{F,p}\}$

Performance criterion ψ with the number of event times $n_e = |\phi_s|$:

$$J(z, x, u, v) = \sum_{k=1}^{n_e-1} \int_{t_{k-1}}^{t_k} L(x, u, v) dt + \sum_{k=1}^{n_e-2} c_{disc}(z_{k-1}, z_k)$$

Hybrid optimal control problem:

$$\begin{split} \min_{\phi_{u},\phi_{v}} J(z,x,u,v) \\ \text{subject to : } \phi_{u},\phi_{v} \text{ lead to a feasible run of } HA \\ s_{0} \in S_{0}, s(t_{f}) \in S_{G}, s(t) \notin S_{F} \ \forall t \in [t_{0},t_{f}] \end{split}$$

Scheme of Abstraction-Based Optimal Control

Idea:

- simplify hybrid optimal control problem by abstraction
- use reachability analysis for updating the abstracted model and cost function

Steps:

- (1) define abstraction maps for $HA \& J_{HA}$
- (2) solve abstracted optimization problem
- (3) refine to trajectories of HA by reduced optimization problem
- (4) evaluate trajectory in terms of original costs
- (5) update abstract model and cost criterion iteratively

- Modeling with *HA* useful for a wide range of applications
- Computation of R is the core of many design techniques for HA
- Reachability analysis is computationally costly: use of abstractions can reduce the load
- Choice of abstraction (preserved property, degree of detail) is crucial [use of A such that it encodes discrete dynamics of HA is not always a suitable choice]

Future work:

- Extend verification to other specifications γ than safety
- Improve efficiency of computation with respect to *n*
- Use hierarchies of abstractions
- Include model uncertainties and robustness

