Reachability Analysis for Hybrid Dynamic Systems*

Olaf Stursberg

Faculty of Electrical Engineering and Information Technology
Technische Universität München

* Thanks to: Matthias Althoff, Edmund M. Clarke, Ansgar Fehnker, Bruce H.Krogh, Sven Lohmann, Tina Paschedag, Michael Theobald
Contents

- Hybrid Dynamic Systems: Motivation and Definition
- Principles of Reachability Analysis
- Abstractions in Computing Reachable Sets
- Verification based on Reachability Analysis
- Extension to Uncertain Hybrid Systems
- Reachable Sets in Controller Design
- Optimization using Abstractions
- Conclusions
Hybrid Dynamic Systems (HDS):

„Discrete event system equipped with continuous-valued dynamics“

∨ „Continuous dynamics enriched by discontinuities (switching, jumps)“

Examples:

(a) Walking humanoid robots

- x_i: joint positions, velocities, …
- z_i: ground contact situation

(b) Autonomously driving cars

- x_i: distances, velocities, …
- z_i: driving modes (gears; accelerating, braking, …)

$\mathbf{x}_i \in \mathbb{R}, \; \mathbf{z}_i \in \mathbb{N}$

[Wünsche et al., UniBW]

[Ulbrich et al., TUM]
Motivation for Modeling by Hybrid Dynamic Systems

Examples (ctd.):

(c) Manufacturing plants

- x_i: work piece positions, robot arm control, …
- z_i: processing status, resource conditions, …

(d) Chemical processing systems

- x_i: temperature, levels, concentrations, …
- z_i: production phase, actuator state, …

$\forall i \in \mathbb{N}$: $x_i \in \mathbb{R}$, $z_i \in \mathbb{N}$

hierarchical, distributed heterogenous control

[Zäh et al., TUM] [BASF]
Motivation for Modeling by Hybrid Dynamic Systems

Examples (ctd.):

(e) Air conflict resolution

- x_i: speed, orientation, ...
- z_i: flight mode, (cruise, conflict resolution)

(f) Multi robot systems

- x_i: position, speed, ...
- z_i: communication topology, formation, ...

$x_i \in IR, \ z_i \in IN$

[Tomlin et al., Stanford]

[LSR, TUM]
Hybrid Automaton: \(HA = (X, U, V, Z, \text{inv}, \Theta, g, r, f) \)

- Continuous states: \(x \in X \subseteq \mathbb{R}^{n_x} \)
- Continuous inputs: \(u \in U = [u_1^-, u_1^+] \times \ldots \times [u_{nu}^-, u_{nu}^+] \)
- Discrete inputs: \(v \in V = \{v_1, \ldots, v_{nd}\}, \quad v_j \in \mathbb{R}^{n_v} \)
- Discrete states (locations): \(Z = \{z_1, \ldots, z_{n_z}\} \)
- Invariants: \(\text{inv} : Z \rightarrow 2^X \)
- Transitions: \((z_1, z_2) \in \Theta \subseteq Z \times Z \)
- Transition guards: \(g : \Theta \rightarrow 2^X \)
- Reset functions: \(r : \Theta \times X \rightarrow X \)
- Continuous dynamics: \(f : Z \times X \times U \times V \rightarrow \mathbb{R}^{n_x}, \quad \text{such that: } \dot{x} = f(z, x, u, v) \)
Hybrid Dynamic Systems: Semantics

Set of event times: \(T = \{t_0, t_1, t_2, \ldots \} \)

Input trajectories:
\[\phi_u = (u_0, u_1, \ldots) \in \Phi_u, \]
\[\phi_v = (v_0, v_1, \ldots) \in \Phi_v \]
with inputs \(u_k, v_k \) on \(t \in [t_k, t_{k+1}[\)

Hybrid States:
\(s_k \in (z_k, x_k) \in S \) with:
\[x_k = x(t_k), z_k = z(t_k) \]

Feasible execution for given \(s_0, \phi_u, \phi_v \):
\(\phi_s = (s_0, s_1, s_2, \ldots) \) with \(s_k \) from:

(i) contin. evolution: \(\chi(0) = x_k \) and \(\chi(t) \) is unique solution of ODEs for \(t \in [0, \tau] \); \(\chi(t) \in inv(z_k) \), (optional: \(\chi(t) \not\in g((z_k, \bullet)) \) für \(t < \tau \))

(ii) transition: \((z_k, z_{k+1}) \in \Theta, \chi(\tau) \in g((z_k, z_{k+1})) \) and
\[x_{k+1} = r((z_k, z_{k+1}), \chi(\tau)) \in inv(z_{k+1}) \]
Investigations for Hybrid Dynamic Systems

- Simulation (including sliding modes)
- Abstraction and Refinement
- Reachability Analysis and Verification
- Optimal Control
- Scheduling for TA
- Controller Synthesis
- Networked Control Systems
- Design of SFC controllers with subsequent testing / verification

O. Stursberg: Reachability Analysis for Hybrid Dynamic Systems
Design Tasks for HDS using Reachability Computation

(a) Verification:
given:
• plant P of type HA
• controller C of type HA
• specification γ
 (e.g. safety: $AG \rightarrow S_{unsafe}$)
show that: $P \parallel C \models \gamma$
if false, redesign C

(b) Controller Synthesis:
given:
• plant P of type HA
• specification γ
 (goal attainment: $AF S_{target}$)
generate C such that:
$P \parallel C \models \gamma$

(c) Optimal Control:
given:
• plant P of type HA
• goal and safety spec. γ
• performance measure ψ
compute C such that:
$\min_{\phi_u, \phi_v} \psi$
subject to: $P \parallel C \models \gamma$
Reachable Set Computation for HDS

Def.: Reachable Set of \(HA \) given:

- initialization \(S_0 \subset S \),
- sets of input trajectories \(\Phi_u, \Phi_v \)

\[
R := \left\{ s \in S \mid \exists s_0 \in S_0, \phi_u \in \Phi_u, \phi_v \in \Phi_v : s \text{ is reached along any } \phi_s \in \Phi_s \right\}
\]

Assumption: \(M := P \| C \), i.e. \(M \) is autonomous (\(\Phi_u, \Phi_v \) restricted by \(C \))

Standard algorithm for computing \(R \):

\[
\begin{align*}
S_0 & := \{z_0\} \times X_0, \ k := 0 \\
D & := S_0, \ R := \emptyset \\
\text{WHILE } (D \neq \emptyset) & \quad \text{Termination?} \\
& \quad \text{step } k: \\
& \quad \quad - \text{transition} \\
& \quad \quad - \text{time step} \\
& \quad \quad \text{ } \\
& \quad \quad k := k + 1 \\
& \quad \quad R := R \cup D \\
& \quad \quad S_k := \text{Reach}(D) \\
& \quad \quad D := S_k \setminus R \\
\text{END}
\end{align*}
\]
The Challenge

Problem: scales badly in most respects!
- infinitely many executions of M must be analyzed
- reachable sets have to be represented efficiently
- set intersection, subtraction, and union must be computable

In contrast:

For finite state automata $A = (Z, z_0, \Theta)$, the reachable set:

$$R := \{z_k \in Z \mid \exists z_0 \in Z_0 : (z_0, z_1) \in \Theta, \ldots, (z_{k-1}, z_k) \in \Theta\}$$

is efficiently computable.

[Verification of $A \models \gamma$ successfully reported for systems with $|Z| \approx 10^{20}$.]

Approach:

- Use of abstractions A of HA
- Consider the specification of analysis, synthesis, or optimization for computing R → reduce use of $Reach, \cup, /$
Abstraction-Based Reachability Analysis: Principle

Objective: identify evolutions of M that potentially violate γ based on abstractions A and evaluate $\text{Reach}(D)$ only for these evolutions!

Principle:
- Generate a **discrete abstraction** A of the hybrid model M (A: state transition system)
 - Determine **counterexamples** (CEs) for A as evolutions of M that potentially violate the specification
 (CE: run of A that connects the initial and critical state)
 - (In-)**Validate** CE for M
 - if CE is invalid, add details to A (refinement)

Assumption: let γ denote a safety specification:

$$\text{given } S_{\text{unsafe}} \subset S : \neg \exists (s_0 \in S_0, \phi_s \in \Phi_s) : (z, \chi(\tau)) \in S_{\text{unsafe}}$$
Abstraction-Based Reachability Analysis: Principle

- **Generate an Initial Abstraction**
 - M, γ
 - A

- **Model Checking**
 - $A \not= \gamma$

- **Generate a Counterexample CE**
 - CE

- **Counterexample Validation**
 - CE is spurious
 - CE is not spurious

- **Refinement of A**

- **no CE exists**
 - $M \models \gamma$

[for discrete automata: Clarke et al., 2000]
Initial Abstraction

Abstract away the continuous part of M, retain the discrete dynamics:

- a state in A represents a location in M
 (exception: initial location)
- one transition in A for each transition in M

A is a simple state transition system: $A = (S^A, s^A_0, \Theta^A)$

A is an abstraction: it contains all evolutions of M
- can contain additional behaviors
Abstraction-Based Reachability Analysis: Principle

1. Generate an Initial Abstraction M, γ
2. Model Checking A
 - If $A \not\models \gamma$, Generate a Counterexample CE
 - CE Validation: If CE is spurious, Stop
 - If CE is not spurious, Refinement of A
 - If no CE exists, Stop

3. Continue with step 2 until all conditions are met.
- Standard model checking for FSA can be applied (breadth-first search for S^A starting from s^A_0)
- if γ is violated, i.e., a critical state s^A_f is reachable:

 counterexample (CE): $(s^A_0, s^A_1, ..., s^A_f)$

Question: Does a corresponding evolution exist for M?

\Rightarrow validation along the counterexample
Abstraction-Based Reachability Analysis: Principle

1. Generate an Initial Abstraction

2. Model Checking

3. Generate a Counterexample CE

4. Refinement of A

5. CE Validation

- If M, γ is not CE, then stop with M, γ.
- If M, γ is CE, then stop with M, γ.
- If M, γ is CE is not spurious, then stop with M, γ.
- If M, γ is CE is spurious, then refine A and go back to Model Checking.
- If no CE exists, then stop with M, γ.

O. Stursberg: Reachability Analysis for Hybrid Dynamic Systems
Validation of Counterexamples (1)

VM1: Intersection Check
transition of A is invalid if:
$$r_j(x) \not\in \text{inv}(z_2) \ \forall \ x \in g_j$$

VM2: Gradient Check
determine gradient on the guard boundaries
transition of A is invalid if:
$$\min (c^T \cdot f(x)) > 0 \ \forall \ x \in \partial g$$

VM3: Connectivity Check
transition of A is invalid if:
$$\min \{d\} > 0 \ \forall \ x_0 \in E$$
\[\text{s.t. dynamics of } HA \text{ in } z_1\]
Validation of Counterexamples (2)

VM4: Flowpipe Approximation

computation of $S_k = \text{Reach}(D)$:

for each segment:

(1) simulate vertices for a timestep

(2) determine an oriented hyper-rectangle
 (orientation from sample covariance matrix)

(3) enlarge hull (nonlinear optimization with embedded simulation)
Validation of Counterexamples (3)

Four methods to refute the existence of counterexamples:

VM1 VM2 VM3 VM4

accuracy (over-approximation)

computation cost

⇒ refute with the least effort possible

Application mode:

sequential:

alternating:

terminate process as soon as one transition is refuted!
Abstraction-Based Reachability Analysis: Principle

\[M, \gamma \]

Generate an Initial Abstraction

\[A \]

Model Checking

\[A \not\models \gamma \]

Generate a Counterexample CE

\[CE \]

Counterexample Validation

\[CE \text{ is not spurious} \]

\[M \models \gamma \]

Stop

\[M \not\models \gamma \]

Refinement of \(A \)

\[\text{CE is spurious} \]
Refinement of A

Refinement based on the flowpipe approximation:
If $x(\tau)$ exists, i.e. the transition $s_1^A \rightarrow s_2^A$ is validated, the automaton A is refined by splitting s_2^A:

Purging of A:
If $x(\tau)$ does not exist, the corresponding transition is removed from A, and the method proceeds with a new CE.
Example: Verification of a Cruise Controller (1)

Control objectives:
- **Mode A**: constant speed
- **Mode B**: distance control

Safety specification γ: $-(r < r_{\text{critical}})$

Discrete Dynamics:

<table>
<thead>
<tr>
<th>Mode B</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th Gear</td>
</tr>
<tr>
<td>Mode A</td>
</tr>
<tr>
<td>4th Gear</td>
</tr>
<tr>
<td>r > r_d + h</td>
</tr>
<tr>
<td>r < r_d - h</td>
</tr>
<tr>
<td>v > 29.8</td>
</tr>
<tr>
<td>v < 29.8</td>
</tr>
<tr>
<td>r > r_d + h</td>
</tr>
<tr>
<td>r < r_d - h</td>
</tr>
<tr>
<td>v > 29.8</td>
</tr>
<tr>
<td>v < 29.8</td>
</tr>
<tr>
<td>v > r_d + h</td>
</tr>
<tr>
<td>v < r_d - h</td>
</tr>
<tr>
<td>v > 14.2</td>
</tr>
<tr>
<td>v < 14.2</td>
</tr>
<tr>
<td>r > r_d + h</td>
</tr>
<tr>
<td>r < r_d - h</td>
</tr>
<tr>
<td>v > 14.2</td>
</tr>
<tr>
<td>v < 14.2</td>
</tr>
<tr>
<td>v > 6.7</td>
</tr>
<tr>
<td>v < 6.7</td>
</tr>
<tr>
<td>r > r_d + h</td>
</tr>
<tr>
<td>r < r_d - h</td>
</tr>
<tr>
<td>v > 6.7</td>
</tr>
<tr>
<td>v < 6.7</td>
</tr>
</tbody>
</table>

Continuous Dynamics:
- in "Collision": $\dot{r} = 0$, $\dot{v} = 0$
- else:
 \[\dot{r} = v_l - v \]
 \[\dot{v} = \min\left(\max\left(0, \frac{a_d + 3.5}{a_{par} + 3.5} \right), a_{par} + 3.5 \right) - 3.5 \]
 \[a_d = f(Mode, v, v_d, v_l, r), \quad a_{par} = f(gear) \]
Example: Verification of a Cruise Controller (2)

Verification for given parametrization:
- 10 counterexamples
- VM4 (reachable set computation) only applied once
- final abstract model A: 11 states
- computation time: < 10 seconds on a standard PC

Result: \(\neg(r < r_{\text{critical}}) \) does hold

Reachable sets:
- abstraction-based
- complete \(R \)-computation
Extension to Stochastic Verification

Context:
iterative online verification of driving strategies for autonomous cars

Method:
- hybrid model with uncertain dynamics: \(\dot{x} = [H]z_i \cdot x + [V]z_i \)
- reachable set computation based on zonotopes
- abstraction into Markov chains
- computation of collision probabilities

Computation time: 0.88 seconds for 3.2 seconds in real time using Matlab on a notebook processor (1.66 GHz).
Synthesis of Supervisory Controllers

Modification of HA:
- no continuous inputs u
- discrete input v changes only when a transition is taken
- if $x(t)$ enters g, the transition must be taken before g is left

Given sets (one z_i, compact in X)
- initial set: S_0
- forbidden sets: $S_{F,i}$
- goal set: S_G

Synthesis Problem:
compute $\phi_v = (v_0, v_1, v_2, \ldots)$ such that any $(z_0, x_0) \in S_0$ is driven into S_G by a feasible run of HA that never encounters any $s \in S_F = \bigcup_i S_{F,i}$
Abstraction-Based Synthesis: Principle

Principle:

- **rewrite** HA into closed system Hac by considering any $v \in V_z, z \in Z$
- **use an abstract model** to identify promising evolutions: *candidate paths* CP
- **validate** CP for the original model with lowest possible computational effort
- **if necessary**: refine the abstract model for the next iteration

\rightarrow a validated CP represents a proper control strategy
Abstraction and Candidate Paths

Abstract Model: \(A^{(0)} = (S^A, s^A_0, \Theta^A) \)
represents the discrete dynamics of \(HA^c \) (as in verification)

Candidate Path: \(CP = (s^A_0, s^A_1, ..., s^A_p) \) with \(s^A_0 \in S^A_0, s^A_p \in S^A_G \) and \(s^A_k \notin S^A_F \)
for all \(k \in \{0, ..., p\} \)
search for \(CP \): standard forward breadth-first algorithm
\[\rightarrow \text{returns one of the shortest candidate paths existing for } A^{(i)} \]
Validation (1)

Check for any pair $\left(s_k^A, s_{k+1}^A\right)$ of CP whether it realizes a feasible control action for HA^c:

$I \subset \text{inv}(z_k)$ - set of continuous states represented by S_k^A

\Rightarrow any state $x \in I$ must be transferred into $\text{inv}(z_{k+1}^c)$ by:
- (i.) continuous evolution
- (ii.) transition and reset

Validation procedure: determine with an as small effort as possible that the control action is not feasible
1) intersection check
2) search for invalidating trajectories
3) flowpipe enclosure

\textbf{stricter condition, higher computational effort}
Validation (2)

(1.) **Intersection Check:** control action is invalid, if no \(x \in g(z^c_k, z^c_{k+1}) \) is mapped into \(inv(z^c_{k+1}) \) by \(r(z^c_k, z^c_{k+1}, x) \).

(2.) **Search for invalidate trajectories:**

target set \(T \): subset of \(g(z^c_k, z^c_{k+1}) \) that is mapped into \(inv(z^c_{k+1}) \) by the reset. control action is invalid, if any \(x(t_f) \notin T \) is found during solving:

\[
\max_{x_0 \in I} \| x(t_f) - x_{cent,g} \|_2
\]

with the terminal state \(x(t_f) \) determined by numeric simulation as:

(a) \(x(t_f) \in T \)

(b) \(x(t_f) \in g(z^c_k, z^c_q) \) with \(z^c_q \neq z^c_{k+1} \)

(c) \(x(t_f) \in F \)

(d) \(x(t_f) \notin inv(z^c_k) \) and \(x(t_f^c) = inv(z^c_k) \)

(e) \(x(t) \in inv(z^c_k) \) and \(t_{max} < t < t^*_f \)

invalidating cases
(3.) Flowpipe enclosure:
over-approximation of the continuous set reachable inside of \(\text{inv}(z^c_k) \) starting from \(I \)

\[\to \text{series of oriented hyper-rectangles [Krogh et al., 2003]}: \]
each hyper-rectangle computed by numeric simulation embedded into optimization

control action is invalid, if the flowpipe does not completely lead into the set \(g((z^c_k, z^c_{k+1})) \)

\[\to \text{if a control action is invalid, refute CP!} \]
\[\to \text{if a control action is valid: continue with the next step of CP.} \]
Refinement of A

$A^{(i)}$ is refined to $A^{(i+1)}$ in the following cases:

(1) if the intersection check shows that $\left(z_k^c, z_{k+1}^c \right) \in \Theta^c$ can never be taken, the corresponding transition $\left(S_k^A, S_{k+1}^A \right)$ is removed from E.

(2) if the other two validation methods show that $\left(S_k^A, S_{k+1}^A \right)$ is invalid, it can not be removed from Θ^A immediately.

[Krogh et al., 2003: optimization-based method to show that $\left(z_k^c, z_{k+1}^c \right) \in \Theta^c$ cannot occur]

(3) if flowpipe approximation validates a control action, state splitting can be used optionally:

- new abstract state for the reachable subset of $\text{inv}(z_{k+1}^c)$
- transition set Θ^A modified according to the reachability result
- can be advantageous to (in-)validate a CP computed later
Application: Chemical Reactor

Continuous chemical liquid-phase reactor:
- exothermic reaction of two components
- state variables: x_1 (level), x_2 (temperature), x_3 (concentration)
- inputs: F_2 (flow), F_3 (flow), K (cooling), H (heating)
- 16 possible combinations of values
- hybrid automaton:
 - 12 locations (32 for HAc), 22 transitions
 - dynamics for $x_1 < 0.8$:

 for $x_1 \geq 0.8$:
 \[
 \begin{align*}
 \dot{x}_1 &= k_1 + F_2 + F_3, \\
 \dot{x}_2 &= \frac{k_2(k_3 - x_2) + F_2(k_4 - x_2)}{x_1} + k_5K(k_6 - x_2)\left(\frac{k_7}{x_1} + k_8\right), \\
 \dot{x}_3 &= \frac{k_9 - (k_{10} + F_2)x_3}{x_1}
 \end{align*}
 \]

 \[
 \dot{x}'_2 = \dot{x}_2 + k_{11}(k_{12} - x_2)(k_{13} - k_{14} / x_1)H
 \]

 \[
 \dot{x}''_2 = \dot{x}'_2 + x_3 \left(k_{18} + k_{19}x_2^2\right), \\
 \dot{x}'_3 = \dot{x}_3 + k_{20} \cdot \exp(k_{21} / x_2)
 \]

O. Stursberg: Reachability Analysis for Hybrid Dynamic Systems
Task: find ϕ_v for start-up from S_0 into nominal operation S_G
(S_0: reactor empty and cold; S_G: high level, temperature, and yield)

Control synthesis:
- 17th CP: feasible strategy
- six phases p_1 to p_6:

 $\begin{bmatrix} v_{p1} \\ v_{p6} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$

- 16 CP invalidated by the 2nd validation method
- obtained in approx. 4 minutes on a standard PC (P4-1.5GHz)
Model: \(HA \) as defined initially, but transitions are taken deterministically

Sets:
- initial states: \(s_0 \in S_0 \) with \(z_0 \in Z, x_0 \in \text{inv}(z_0) \)
- goal states: \(s_G \in S_G \) with \(z_G \in Z, x_G \in \text{inv}(z_G) \)
- unsafe states: \(S_F = \{S_{F,1},...,S_{F,p}\} \)

Performance criterion \(\psi \) with the number of event times \(n_e = |\phi_s| \):

\[
J(z,x,u,v) = \sum_{k=1}^{n_e-1} t_k \int L(x,u,v)dt + \sum_{k=1}^{n_e-2} c_{disc}(z_{k-1},z_k)
\]

Hybrid optimal control problem:

\[
\min_{\phi_u,\phi_v} J(z,x,u,v)
\]

subject to: \(\phi_u, \phi_v \) lead to a feasible run of \(HA \)

\[
s_0 \in S_0, s(t_f) \in S_G, s(t) \notin S_F \quad \forall t \in [t_0, t_f]
\]
Scheme of Abstraction-Based Optimal Control

Idea:
- simplify hybrid optimal control problem by abstraction
- use reachability analysis for updating the abstracted model and cost function

Steps:
1. define abstraction maps for HA & J_{HA}
2. solve abstracted optimization problem
3. refine to trajectories of HA by reduced optimization problem
4. evaluate trajectory in terms of original costs
5. update abstract model and cost criterion iteratively
Conclusions and Future Work

- Modeling with HA useful for a wide range of applications
- Computation of R is the core of many design techniques for HA
- Reachability analysis is computationally costly: use of abstractions can reduce the load
- Choice of abstraction (preserved property, degree of detail) is crucial
 [use of A such that it encodes discrete dynamics of HA is not always a suitable choice]

Future work:
- Extend verification to other specifications γ than safety
- Improve efficiency of computation with respect to n
- Use hierarchies of abstractions
- Include model uncertainties and robustness