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1. Hyrostatic and semi-geostrophic approximation

Euler’s equations for a rotating fluid in Cartesian geometry are
given by

Du

Dt
+ fk× u +

1

ρ
∇p+ gk = 0,

ρt +∇ · (ρu) = 0,

θt + u · ∇θ = 0,

where u ∈ R3 is the velocity (wind) field, θ is the potential tem-
perature, k = (0,0,1)T , f = 2Ωsinφ0 is the Coriolis parameter,
g is the gravitational constant, the ideal gas law becomes

θ = T (p0/p)
R/cp,

and material time derivative is
df

dt
:= ft + u · ∇f.





A good model for large scale circulations is provided by the hy-

drostatic and semi-geostrophic (SG) model:

Dug

Dt
+ fk× u +

1

ρ
∇p+ gk = 0,

ρt +∇ · (ρu) = 0,

θt + u · ∇θ = 0,

with the geostrophic wind approximation

ug =
[
ug vg 0

]T
and

fug = −
1

ρ

∂p

∂y
, fvg = +

1

ρ

∂p

∂x
.

In northern hemisphere: Stand with your back to the wind, pres-

sure increases to the right.



2. The shallow water equations

A single layer approximation is provided by the shallow water

equations (SWE):

Du

Dt
− fv = −g

∂

∂x
(hs + η),

Dv

Dt
+ fu = −g

∂

∂y
(hs + η),

ηt = −
(
∂(ηu)

∂x
+
∂(ηv)

∂y

)
with material time derivative

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

Here η is the layer depth, hS is the surface orography, g is the

gravitational constant, and f is twice the Earth’s angular velocity.



3. Scaling limits and SG approximation

We non-dimensionalize the equations by using scaled variables
(denoted with a dash) as follows

(x, y) = L(x′, y′), t =
(
L

U

)
t′, (u, v) = U(u′, v′), η = Hη′.

Upon introducing u′ = (u′, v′)T , J2 =

(
0 1
−1 0

)
,

Ro =
U

fL
(Rossby number), F r =

U
√
gH

(Froude number),

we obtain the scaled shallow water equations (hs = 0)

Du′

Dt′
= Ro−1J2u

′ − Fr−2∇η′,

∂η′

∂t′
= −∇ · (η′u′).



The semi-geostrophic (SG) scaling regime is

ε = Fr2 = Ro→ 0.

This regime is observed for global atmospheric flow patterns.

It follows that

ε
Du′

Dt′
= J2u

′ −∇η′

and approximate geostrophic wind balance

J2u
′ ≈ ∇η′

follows for ε→ 0 and bounded time-derivatives, i.e., ‖Du′/Dt′‖ ≤
M . Defining u′g = −J2∇η′, we obtain the SG equations

ε
Du′g
Dt

= J2u
′ −∇η′, η′ = −∇ · (η′u′).



Historical comments:

A first mathematical use of the geostrophic wind approxima-
tion goes back to Charney (quasi-geostrophic approximation)
and Eliasen (semi-geostrophic (SG) approximation) 1947-1949.

The importance of SG to frontogenesis was discovered by Hoskins
(1972) who also formulated a simplifying coordinate transforma-
tion.

Its link to geometric PDEs such as the Monge-Ampere equations
was pointed out by Cullen & Purser (1987).

Alternatively, Salmon (1985) has studied asymptotic expansions
and coordinate transformations on the level of the Lagrangian
variational principle.

Lorenz studied the existence and non-existence of slow manifolds
(1992) with implications to data assimilation and initialization.



4. The single fluid-particle picture

Instead of investigating the full SWEs, we consider the following

simpler model problem (Gottwald & Oliver, Cotter & Reich).

We assume that the layer depth µ(εt, x, y) is a given function

of time t and space x = (x, y)T . We may then investigate the

motion of a single fluid parcel with coordinates q = (qx, qy)T ∈ R2.

The corresponding Newtonian equations of motion are given by

ε
d2qx

dt2
= +

dqy

dt
− µqx(εt, qx, qy),

ε
d2qy

dt2
= −

dqx

dt
− µqy(εt, qx, qy),



We next rescale time and introduce the new time-scale τ = ε t.

We denote time derivatives with respect to τ by overdot, e.g.,

dqx/dτ = q̇x. We also introducue the momentum p = (px, py)T ∈
R2 and obtain

ṗx = +py − ε µqx(τ, qx, qy),

ṗy = −px − ε µqy(τ, qx, qy),

q̇x = px,

q̇y = py.

These equations may be expressed in a more compact form:

ṗ = J2p− ε∇µ(τ,q), J2 =

(
0 1
−1 0

)
,

q̇ = p.



The associated SG equations are given by

ṗg = J2p− ε∇µ(τ,q),

q̇ = p,

with geostrophic “wind” pg = −εJ2∇µ(τ,q). For time-independent
µ (which we assume from now on), the energy

E =
1

2
‖ug‖2 + εµ(q)

is preserved.

The Hoskins’ transform

qε = q + ε∇µ(q) = q + J2pg

leads to the following equation in the transformed variable qε:

q̇ε = −εJ2∇µ(q).



An important observation is that one may view Hoskins’ trans-

formation as an energy minimization problem in q for given qε:

Eqε(q) =
1

2
‖qε − q‖2 + εµ(q).

The SG model in transformed variables can be derived from the

Lagrangian functional

L =
∫ [

1

2
‖qε − q‖2 + εµ(q) +

1

2
q̇Tε J2qε

]
.



Let us reconsider the energy minimization problem and denote

the induced map by q = s(qε) with inverse t = s−1. Hence∫
R2
Et(q)(q) dA(q) =

∫
R2

1

2
‖t(q)− q‖2dA(q) + C

=
∫
R2

1

2
‖qε − s(qε)‖2 ν dA(qε) + C

with ν = |s′| and C = ε
∫
R2 µ(q)dA(q).

This is an optimal transport/coupling problem of a measure

dµ1 = ν dA(qε) into the Lebesgue measure dµ2 = dA(x) on R2 in

the Wasserstein metric

W2(µ1, µ2) = inf
λ∈Γ(µ1,µ2)

∫
R2×R2

‖x− y‖2dλ(x,y).



5. Lagrangian and Hamiltonian framework

Hamiltonian picture. We introduce the non-canonical symplec-

tic structure operator

J =

(
J2 −I2
I2 02

)
∈ R4×4,

so that the equations become

ż = J∇H0(z),

with Hamiltonian

H0(z) = K(p) + εV (q), K(p) :=
1

2
pTp, V (q) := µ(q),

and phase space variable z = (pT ,qT )T ∈ R4.



Lagrangian picture. Another approach is to rewrite the system

of first-order equations as a second-order equation

q̈− J2q̇ + ε∇µ(q) = 0.

This is the Euler-Lagrange equation for the Lagrangian func-

tional

L =
∫
dτ

[
1

2
‖q̇‖2 +

1

2
qTJ2q̇− εµ(q)

]
.

One may alternatively work with the degenerate Lagrangian

L =
∫
dτ

[(
p−

1

2
J2q

)T
q̇−H0(q,p)

]
.



6. The variational approach to semi-geostrophy

Rick Salmon’s derivation of semi-geostrophic models starts from
the assumption that we may replace p by the geostrophically
balanced

pg = −εJ2∇µ(q)

in the degenerate Lagrangian formulation.

Under this assumption, we may formally collect terms of equal
order in ε and rewrite the Lagrangian functional as

L =
∫
dτ
[
εL0 + ε2L1

]
,

for suitably chosen Lagrangian densities L0 and L1. We then
ignore the O(ε2) term.



To improve this approximation, we introduce transformed coor-

dinates qε via

q = ψε(qε) = qε + εF1(qε) +O(ε2).

Following Rick Salmon’s and Marcel Oliver’s work, we set

F1(qε) = −
1

2
∇µ(qε) + λ∇µ(qε).

Upon dropping O(ε3) terms, we obtain the Lagrangian

Lε =
∫
dτ

{
1

2
qTε J2q̇ε − εµ(qε) +

ε

[
1

2
+ λ

]
∇µ(qε)TJ2q̇ε − ε2λ‖∇µ(qε)‖2

}
.



One can set λ = 0, but the choice λ = −1/2 is of particular inter-

est as it is close (but not identical) to Hoskins’ transformation

and to Rick Salmon’s large-scale semi-geostrophic approxima-

tion. The associated reduced equations of motion

J2q̇ε = ε∇
{
µ(qε)−

ε

2
‖∇µ(qε)‖2

}
can be derived from the Lagrangian functional

Llsg =
∫
dτ

[
1

2
qTε J2q̇ε − εµ(qε) +

ε2

2
‖∇µ(qε)‖2

]
.

These equations look like a “Taylor expanded” version of Hoskin’s

SG equation

J2q̇ε = ε∇µ(q), qε = q + ε∇µ(q).



7. The normal form approach to semi-geostrophy

A more complete picture of the dynamics can be obtained from

the Hamiltonian side of things and normal form theory. (Cotter

& Reich, 2006)

Our aim is to find a canonical near-identity change of coordinates

Ψn so that

Hn = H0 ◦Ψn = K + εGn + εn+1Rn, (1)

where

{Gn,K} = 0, (2)

with {·, ·} being the Poisson bracket obtained from J.



A few key results from Cotter and Reich, 2006.

Corollary. Let us assume that the momentum p = q̇ satisfies

p(0) = −εJ2∇µ(q(0)) +O(ε2)

at initial time τ = 0, then

p(τ) = −εJ2∇µ(q(τ)) +O(ε2)

for all |τ | < ec/2ε provided the potential V = µ is real-analytic.

This means that provided the system is within O(ε2) of the

geostrophically balanced state initially, it will stay there for ex-

ponentially long time intervals.



If pε(0) = 0, (i.e., we start on the “slow manifold”) then we get

the “slow equation” given in the following corollary:

Corollary. If pε(0) = 0 then

J2q̇ε = ε∇qG(0,qε) +O(e−c/2ε),

for all |τ | < ec/2ε.

Corollary. To leading order the symplectic change of coordinates

reduces on the slow manifold to Hoskins/Salmon tranformation

(i.e., λ = −1/2 in Salmon’s formula).



8. A step towards the continuum limit

So far we have assumed that the fluid depth µ is a given function
of space and time and derived equations of motion for a single
‘fluid parcel’.

Now we consider a numerical approximation for µ of the form

µ(t,x) =
N∑
i=1

miψ(‖x− qi(t)‖)

in terms of N moving ‘fluid parcels’, where qi(t) ∈ R2 denotes
the location of the ith fluid parcel at time t with mass mi and
shape function ψ(r) ≥ 0.

The above layer-depth approximation provides the starting point
for smoothed particle hydrodynamics (SPH).



Each ‘fluid parcel’ moves under the Newtonian equations of mo-

tion

d

dt
pi = Ro−1J2pi − Fr−2∇x µ(t,x)|x=qi,

d

dt
qi = pi

After setting Fr2 = Ro = ε and a rescaling of time, these equa-

tions become

ṗi = J2pi − ε∇x µ(x, t)|x=qi,

q̇i = pi.



Without restriction of generality, we may also assume that all

‘fluid parcels’ carry a constant mass mi = m. Then the equations

posses the Hamiltonian function

Hsph(z) = K(p) + εV (q) =
N∑
i=1

1

2
‖pi‖2 +

εm

2

N∑
i,j

ψ(‖qi − qj‖),

Note that a finite fluid depth µ implies that the particle masse m

approach zero as the number of particles N →∞. More precisely,

mN = const. as N →∞.

For a given basis function ψ, the SPH method converges for

N → ∞ to solutions of a regularized set of SWEs (Oelschläger,

1991; Di Lisio et al, 1998). Global existence and uniqueness of

solutions follows.



Main findings (Cotter & Reich):

1. The single particle theory goes through for fixed N and ε→ 0
as well.

2. The estimates do not deteriorate for fixed ψ with increasing
N since there is (i) only a single fast frequency determined by
f = constant and (ii) mN = constant as N →∞ (conservation
of total mass).

3. Normal form theory implies that there is hardly any tranfer
between potential and kinetic energy. Particles may however
exchange their kinetic energy contributions.

4. The analysis collapses however in case the basis functions ψ
approach a Dirac delta function as N →∞. But it is perhaps
feasible for sufficiently regular initial conditions.



Exchange of kinetic energy between two particles:



A particle simulation of barotropic instability:



9. Summary

The semi-geostrophic approximation is one of the most useful
theoretical tools in large-scale meteorology (e.g., frontogenesis).

A lot of theory has been developed around the SG equations
and interesting links to various fields have been made. We have
explained some of the main points in terms of a simple single
particle model.

Hamiltonian normal form theory allows for arbitrarily accurate
SG models in terms of a regularized set of fluid equations and is
applicable to numerical particle methods.

Frontogenesis is still rather poorly approximated by todays NWP
codes (Cullen). Can better methods be devised using SG explic-
itly (Cullen) or implicitly (moving mesh methods (Budd); particle
methods)?


