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Another degeneracy for RE:
Reduced spaces are J−1(µ)/Gµ . . . depends on Gµ.

For SO(3),
µ 6= 0 ⇒ Gµ = S1

µ = 0 ⇒ Gµ = SO(3)

Consider SO(3)-symmetric Hamiltonian systems with free action . . .

Two questions . . .



1. generic REs

G. Patrick and M. Roberts (2000) define the notion of transverse RE, and
show that for generic systems with symmetry all RE are transverse.

In particular,

for generic Hamiltonian systems with SO(3) symmetry, when

µ = 0 then ξ 6= 0.

(µ =angular momentum, ξ=angular velocity)

This is not what we see in “simple mechanical systems”
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∗

Then with s ∈ P0, µ ∈ g
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Orbit reduction for a free action: write locally

P/G ≃ P0 × g
∗

Then with s ∈ P0, µ ∈ g
∗, H(s, µ) is Hamiltonian on orbit space.

Theorem (JM, 1997): If (0, 0) is a non-degenerate re in P0 then there is a

map φ : g
∗ → P0 such that

(s, µ) is a re of H ⇐⇒

{

s = φ(µ)

d(h|Oµ
)(µ) = 0,

where h : g
∗ → R is just h(µ) := H(φ(µ), µ).

Moreover at such a re, ξ = dh.
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5. Stabilities

Assume (0, 0) is a local minimum of H(s, 0)
(so Lyapounov stable re in P0) then

with h(x , y , z) = z

h restricted to sphere has
• minimum at (0, 0, z) with z < 0, and
• a maximum at (0, 0, z) with z > 0.

Thus:
• overall Lyapounov stable re at
points (0, 0, z) with z < 0
• and only elliptic at points with z > 0
(because of coupling with P0).

dh
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6. Non-generic re

Now suppose dh(0) = 0, — eg time reversible system or simple mechanical
system.

Then (Taylor series) h(x , y , z) = ax2 + by2 + cz2 + · · ·

If a, b, c distinct, can show (Singularity Theory) that ‘· · · ’ are irrelevant.

cf. rigid body
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7. Unfolding

The condition dh(0) = 0 is really 3 conditions, so it’s a codimension-3
singularity.

3 unfolding parameters α, β, γ :

h(x , y , z) = ax2 + by2 + cz2 + αx + βy + γz
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7. Unfolding

The condition dh(0) = 0 is really 3 conditions, so it’s a codimension-3
singularity.

3 unfolding parameters α, β, γ :

h(x , y , z) = ax2 + by2 + cz2 + αx + βy + γz

Condition for re is dh − λd(x2 + y2 + z2) = 0,

or

rank

[

x y z

hx hy hz

]

< 2

3 equations in 3 unknowns, but solution set is a curve!



Unfolding

Equations are (taking a = 1, b = 0, c = −1):

(x + α)(y − β) = −αβ

(y + β)(z − γ) = −βγ

(2x + α)(2z − γ) = −αγ



Unfolding
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Unfolding — with stabilities
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the 3 degenerate deformations
Along the axes of the discriminant —

b

α = β = γ = 0
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