Bifurcations of Relative Equilibria near
 Zero Momentum

James Montaldi

University of Manchester

Oberwolfach, July 2008

Context

Another degeneracy for RE: Reduced spaces are $\mathbf{J}^{-1}(\mu) / G_{\mu}$

Context

Another degeneracy for RE:
Reduced spaces are $\mathbf{J}^{-1}(\mu) / G_{\mu} \ldots$ depends on G_{μ}.

Context

Another degeneracy for RE:
Reduced spaces are $\mathbf{J}^{-1}(\mu) / G_{\mu} \ldots$ depends on G_{μ}.
For $\mathbf{S O}(3)$,
$\mu \neq 0 \Rightarrow G_{\mu}=S^{1}$
$\mu=0 \Rightarrow G_{\mu}=\mathbf{S O}(3)$

Context

Another degeneracy for RE:
Reduced spaces are $\mathbf{J}^{-1}(\mu) / G_{\mu} \ldots$ depends on G_{μ}.
For $\mathbf{S O}(3)$,
$\mu \neq 0 \Rightarrow G_{\mu}=S^{1}$
$\mu=0 \Rightarrow G_{\mu}=\mathbf{S O}(3)$

Consider SO(3)-symmetric Hamiltonian systems with free action ...

Context

Another degeneracy for RE:
Reduced spaces are $\mathbf{J}^{-1}(\mu) / G_{\mu} \ldots$ depends on G_{μ}.
For $\mathbf{S O}(3)$,
$\mu \neq 0 \Rightarrow G_{\mu}=S^{1}$
$\mu=0 \Rightarrow G_{\mu}=\mathbf{S O}(3)$

Consider SO(3)-symmetric Hamiltonian systems with free action ...
Two questions ...

1. generic REs

G. Patrick and M. Roberts (2000) define the notion of transverse RE, and show that for generic systems with symmetry all RE are transverse.

In particular,
for generic Hamiltonian systems with $\mathbf{S O}(3)$ symmetry, when $\mu=0$ then $\xi \neq 0$.
($\mu=$ angular momentum, $\xi=$ angular velocity)
This is not what we see in "simple mechanical systems"

2. Stability

Bifurcation diagram for 4 point vortices on the sphere:
ring + pole

2. Stability

Bifurcation diagram for 4 point vortices on the sphere:

Key:
\square Lyapounov stable
\square elliptic
\square linearly unstable

3. Reduction

Orbit reduction for a free action: write locally

$$
\mathcal{P} / G \simeq \mathcal{P}_{0} \times \mathfrak{g}^{*}
$$

Then with $s \in \mathcal{P}_{0}, \mu \in \mathfrak{g}^{*}, H(s, \mu)$ is Hamiltonian on orbit space.

3. Reduction

Orbit reduction for a free action: write locally

$$
\mathcal{P} / G \simeq \mathcal{P}_{0} \times \mathfrak{g}^{*}
$$

Then with $s \in \mathcal{P}_{0}, \mu \in \mathfrak{g}^{*}, H(s, \mu)$ is Hamiltonian on orbit space.
Theorem (JM, 1997): If $(0,0)$ is a non-degenerate RE in \mathcal{P}_{0} then there is a $\operatorname{map} \phi: \mathfrak{g}^{*} \rightarrow \mathcal{P}_{0}$ such that

$$
(s, \mu) \text { is a } \mathrm{RE} \text { of } H \Longleftrightarrow\left\{\begin{array}{l}
s=\phi(\mu) \\
d\left(h_{\mid \mathcal{O}_{\mu}}\right)(\mu)=0
\end{array}\right.
$$

where $h: \mathfrak{g}^{*} \rightarrow \mathbf{R}$ is just $h(\mu):=H(\phi(\mu), \mu)$.

3. Reduction

Orbit reduction for a free action: write locally

$$
\mathcal{P} / G \simeq \mathcal{P}_{0} \times \mathfrak{g}^{*}
$$

Then with $s \in \mathcal{P}_{0}, \mu \in \mathfrak{g}^{*}, H(s, \mu)$ is Hamiltonian on orbit space.
Theorem (JM, 1997): If $(0,0)$ is a non-degenerate RE in \mathcal{P}_{0} then there is a $\operatorname{map} \phi: \mathfrak{g}^{*} \rightarrow \mathcal{P}_{0}$ such that

$$
(s, \mu) \text { is a } \mathrm{RE} \text { of } H \Longleftrightarrow\left\{\begin{array}{l}
s=\phi(\mu) \\
d\left(h_{\mid \mathcal{O}_{\mu}}\right)(\mu)=0
\end{array}\right.
$$

where $h: \mathfrak{g}^{*} \rightarrow \mathbf{R}$ is just $h(\mu):=H(\phi(\mu), \mu)$.
Moreover at such a RE, $\xi=\mathrm{d} h$.

4. Generic case

Interested in critical points of a function h on \mathfrak{g}^{*}, when restricted to spheres (=energy-Casimir method).

Generically, $\mathrm{d} h(0) \neq 0$. In that case near 0 there is a smooth curve of REs, and at $0, \xi=\mathrm{d} h \neq 0$. (These are the transverse REs from before).

4. Generic case

Interested in critical points of a function h on \mathfrak{g}^{*}, when restricted to spheres (=energy-Casimir method).

Generically, $\mathrm{d} h(0) \neq 0$. In that case near 0 there is a smooth curve of REs, and at $0, \xi=\mathrm{d} h \neq 0$. (These are the transverse REs from before).

Indeed,
locally can choose coords so that

$$
h(x, y, z)=z
$$

then REs form the z-axis.

4. Generic case

Interested in critical points of a function h on \mathfrak{g}^{*}, when restricted to spheres (=energy-Casimir method).

Generically, $\mathrm{d} h(0) \neq 0$. In that case near 0 there is a smooth curve of REs, and at $0, \xi=\mathrm{d} h \neq 0$. (These are the transverse REs from before).

Indeed,
locally can choose coords so that

$$
h(x, y, z)=z
$$

then REs form the z-axis.

5. Stabilities

Assume $(0,0)$ is a local minimum of $H(s, 0)$ (so Lyapounov stable RE in \mathcal{P}_{0}) then with $h(x, y, z)=z$
h restricted to sphere has

- minimum at $(0,0, z)$ with $z<0$, and
- a maximum at $(0,0, z)$ with $z>0$.

Thus:

- overall Lyapounov stable RE at points $(0,0, z)$ with $z<0$
- and only elliptic at points with $z>0$ (because of coupling with \mathcal{P}_{0}).

Example revisited

Key:
\square Lyapounov stable
\square elliptic
\square linearly unstable

6. Non-generic RE

Now suppose $\mathrm{d} h(0)=0$, - eg time reversible system or simple mechanical system.
Then (Taylor series) $h(x, y, z)=a x^{2}+b y^{2}+c z^{2}+\cdots$
If a, b, c distinct, can show (Singularity Theory) that '...' are irrelevant. cf. rigid body

6. Non-generic RE

Now suppose $\mathrm{d} h(0)=0$, - eg time reversible system or simple mechanical system.
Then (Taylor series) $h(x, y, z)=a x^{2}+b y^{2}+c z^{2}+\cdots$
If a, b, c distinct, can show (Singularity Theory) that '...' are irrelevant. cf. rigid body

Suppose $a>b>c$. Then

- $(0,0, \pm z)$ is minimum (Lyapounov)
- $(0, \pm y, 0)$ is saddle (unstable)
- $(\pm x, 0,0)$ is maximum (elliptic)

6. Non-generic RE

Now suppose $\mathrm{d} h(0)=0$, - eg time reversible system or simple mechanical system.

Then (Taylor series) $h(x, y, z)=a x^{2}+b y^{2}+c z^{2}+\cdots$
If a, b, c distinct, can show (Singularity Theory) that '...' are irrelevant. cf. rigid body

Suppose $a>b>c$. Then

- $(0,0, \pm z)$ is minimum (Lyapounov)
- $(0, \pm y, 0)$ is saddle (unstable)
- $(\pm x, 0,0)$ is maximum (elliptic)

7. Unfolding

The condition $\mathrm{d} h(0)=0$ is really 3 conditions, so it's a codimension-3 singularity.

3 unfolding parameters α, β, γ :

$$
h(x, y, z)=a x^{2}+b y^{2}+c z^{2}+\alpha x+\beta y+\gamma z
$$

7. Unfolding

The condition $\mathrm{d} h(0)=0$ is really 3 conditions, so it's a codimension- 3 singularity.

3 unfolding parameters α, β, γ :

$$
h(x, y, z)=a x^{2}+b y^{2}+c z^{2}+\alpha x+\beta y+\gamma z
$$

Condition for RE is $\mathrm{d} h-\lambda \mathrm{d}\left(x^{2}+y^{2}+z^{2}\right)=0$,
or

$$
\operatorname{rank}\left[\begin{array}{ccc}
x & y & z \\
h_{x} & h_{y} & h_{z}
\end{array}\right]<2
$$

7. Unfolding

The condition $\mathrm{d} h(0)=0$ is really 3 conditions, so it's a codimension- 3 singularity.

3 unfolding parameters α, β, γ :

$$
h(x, y, z)=a x^{2}+b y^{2}+c z^{2}+\alpha x+\beta y+\gamma z
$$

Condition for RE is $\mathrm{d} h-\lambda \mathrm{d}\left(x^{2}+y^{2}+z^{2}\right)=0$,
or

$$
\operatorname{rank}\left[\begin{array}{ccc}
x & y & z \\
h_{x} & h_{y} & h_{z}
\end{array}\right]<2
$$

3 equations in 3 unknowns, but solution set is a curve!

Unfolding

Equations are (taking $a=1, b=0, c=-1$):

$$
\begin{aligned}
(x+\alpha)(y-\beta) & =-\alpha \beta \\
(y+\beta)(z-\gamma) & =-\beta \gamma \\
(2 x+\alpha)(2 z-\gamma) & =-\alpha \gamma
\end{aligned}
$$

Unfolding

Discriminant in unfolding space

Unfolding - with stabilities

(i) $\alpha=\beta=\gamma=0$
(ii) $\alpha=\beta=0$
$\gamma>0$

Key:

- Lyapounov stable elliptic
- linearly unstable
- $\mu=0$

Unfolding - with stabilities

the 3 degenerate deformations

Along the axes of the discriminant -

$$
\alpha=\beta=\gamma=0
$$

Key:

- Lyapounov stable elliptic
- linearly unstable
- $\mu=0$

$\alpha>0$

$\beta>0$

$\gamma>0$

