Bifurcations of Relative Equilibria near Zero Momentum

James Montaldi

University of Manchester

Oberwolfach, July 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Another degeneracy for RE: Reduced spaces are $\mathbf{J}^{-1}(\mu)/G_{\mu}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Another degeneracy for RE: Reduced spaces are $\mathbf{J}^{-1}(\mu)/G_{\mu}$... depends on G_{μ} .

(日)

Another degeneracy for RE: Reduced spaces are $\mathbf{J}^{-1}(\mu)/G_{\mu}$... depends on G_{μ} . For $\mathbf{SO}(3)$, $\mu \neq 0 \Rightarrow G_{\mu} = S^{1}$ $\mu = 0 \Rightarrow G_{\mu} = \mathbf{SO}(3)$

Another degeneracy for RE: Reduced spaces are $\mathbf{J}^{-1}(\mu)/G_{\mu}$... depends on G_{μ} . For $\mathbf{SO}(3)$, $\mu \neq 0 \Rightarrow G_{\mu} = S^{1}$ $\mu = 0 \Rightarrow G_{\mu} = \mathbf{SO}(3)$

Consider SO(3)-symmetric Hamiltonian systems with free action

(日)

Another degeneracy for RE: Reduced spaces are $\mathbf{J}^{-1}(\mu)/G_{\mu}$... depends on G_{μ} . For **SO**(3), $\mu \neq 0 \Rightarrow G_{\mu} = S^{1}$ $\mu = 0 \Rightarrow G_{\mu} = \mathbf{SO}(3)$

Consider SO(3)-symmetric Hamiltonian systems with free action

(日)

Two questions ...

1. generic REs

G. Patrick and M. Roberts (2000) define the notion of *transverse RE*, and show that for *generic* systems with symmetry all RE are transverse.

In particular,

for generic Hamiltonian systems with **SO**(3) symmetry, when $\mu = 0$ then $\xi \neq 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(μ =angular momentum, ξ =angular velocity)

This is not what we see in "simple mechanical systems"

2. Stability

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Bifurcation diagram for 4 point vortices on the sphere:

ring + pole

2. Stability

Bifurcation diagram for 4 point vortices on the sphere:

3. Reduction

Orbit reduction for a free action: write locally

$$\mathcal{P}/G \simeq \mathcal{P}_0 imes \mathfrak{g}^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Then with $s \in \mathcal{P}_0$, $\mu \in \mathfrak{g}^*$, $H(s, \mu)$ is Hamiltonian on orbit space.

3. Reduction

Orbit reduction for a free action: write locally

$$\mathcal{P}/G \simeq \mathcal{P}_0 imes \mathfrak{g}^*$$

Then with $s \in \mathcal{P}_0$, $\mu \in \mathfrak{g}^*$, $H(s, \mu)$ is Hamiltonian on orbit space.

Theorem (JM, 1997): If (0,0) is a non-degenerate RE in \mathcal{P}_0 then there is a map $\phi : \mathfrak{g}^* \to \mathcal{P}_0$ such that

$$(s,\mu)$$
 is a RE of $H\iff egin{cases} s=\phi(\mu)\ d(h_{|\mathcal{O}_{\mu}})(\mu)=0, \end{cases}$

(日)

where $h : \mathfrak{g}^* \to \mathbf{R}$ is just $h(\mu) := H(\phi(\mu), \mu)$.

3. Reduction

Orbit reduction for a free action: write locally

$$\mathcal{P}/G \simeq \mathcal{P}_0 imes \mathfrak{g}^*$$

Then with $s \in \mathcal{P}_0$, $\mu \in \mathfrak{g}^*$, $H(s, \mu)$ is Hamiltonian on orbit space.

Theorem (JM, 1997): If (0,0) is a non-degenerate RE in \mathcal{P}_0 then there is a map $\phi : \mathfrak{g}^* \to \mathcal{P}_0$ such that

$$(s,\mu)$$
 is a RE of $H\iff \begin{cases} s=\phi(\mu)\\ d(h_{|\mathcal{O}_{\mu}})(\mu)=0, \end{cases}$

where $h : \mathfrak{g}^* \to \mathbf{R}$ is just $h(\mu) := H(\phi(\mu), \mu)$.

Moreover at such a RE, $\xi = dh$.

4. Generic case

Interested in critical points of a function h on g^* , when restricted to spheres (=energy-Casimir method).

Generically, $dh(0) \neq 0$. In that case near 0 there is a smooth curve of REs, and at 0, $\xi = dh \neq 0$. (These are the transverse REs from before).

(日)

4. Generic case

Interested in critical points of a function h on g^* , when restricted to spheres (=energy-Casimir method).

Generically, $dh(0) \neq 0$. In that case near 0 there is a smooth curve of REs, and at 0, $\xi = dh \neq 0$. (These are the transverse REs from before).

Indeed,

locally can choose coords so that

$$h(x, y, z) = z,$$

then REs form the z-axis.

イロト 不得 トイヨト イヨト

4. Generic case

Interested in critical points of a function h on g^* , when restricted to spheres (=energy-Casimir method).

Generically, $dh(0) \neq 0$. In that case near 0 there is a smooth curve of REs, and at 0, $\xi = dh \neq 0$. (These are the transverse REs from before).

Indeed,

locally can choose coords so that

$$h(x, y, z) = z,$$

then REs form the z-axis.

5. Stabilities

Assume (0,0) is a local minimum of H(s,0)(so Lyapounov stable RE in \mathcal{P}_0) then

with h(x, y, z) = z

h restricted to sphere has

- minimum at (0, 0, z) with z < 0, and
- a maximum at (0, 0, z) with z > 0.

Thus:

- overall Lyapounov stable RE at points (0, 0, z) with z < 0
- and only elliptic at points with z > 0 (because of coupling with \mathcal{P}_0).

> < 同 > < 回 > < 回 >

Example revisited

6. Non-generic RE

Now suppose dh(0) = 0, — eg time reversible system or simple mechanical system.

Then (Taylor series) $h(x, y, z) = ax^2 + by^2 + cz^2 + \cdots$

If a, b, c distinct, can show (Singularity Theory) that '...' are irrelevant.

cf. rigid body

6. Non-generic RE

Now suppose dh(0) = 0, — eg time reversible system or simple mechanical system.

Then (Taylor series) $h(x, y, z) = ax^2 + by^2 + cz^2 + \cdots$

If a, b, c distinct, can show (Singularity Theory) that '...' are irrelevant.

cf. rigid body

Suppose a > b > c. Then

- $(0, 0, \pm z)$ is minimum (Lyapounov)
- $(0, \pm y, 0)$ is saddle (unstable)
- $(\pm x, 0, 0)$ is maximum (elliptic)

6. Non-generic RE

Now suppose dh(0) = 0, — eg time reversible system or simple mechanical system.

Then (Taylor series) $h(x, y, z) = ax^2 + by^2 + cz^2 + \cdots$

If a, b, c distinct, can show (Singularity Theory) that '...' are irrelevant.

cf. rigid body

Suppose a > b > c. Then

- $(0, 0, \pm z)$ is minimum (Lyapounov)
- $(0, \pm y, 0)$ is saddle (unstable)
- $(\pm x, 0, 0)$ is maximum (elliptic)

7. Unfolding

The condition dh(0) = 0 is really 3 conditions, so it's a codimension-3 singularity.

3 unfolding parameters α,β,γ :

$$h(x, y, z) = ax^2 + by^2 + cz^2 + \alpha x + \beta y + \gamma z$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

7. Unfolding

The condition dh(0) = 0 is really 3 conditions, so it's a codimension-3 singularity.

3 unfolding parameters α,β,γ :

$$h(x, y, z) = ax^{2} + by^{2} + cz^{2} + \alpha x + \beta y + \gamma z$$

Condition for RE is $dh - \lambda d(x^2 + y^2 + z^2) = 0$,

or

$$\operatorname{rank} \left[\begin{array}{ccc} x & y & z \\ h_x & h_y & h_z \end{array} \right] < 2$$

7. Unfolding

The condition dh(0) = 0 is really 3 conditions, so it's a codimension-3 singularity.

3 unfolding parameters α,β,γ :

$$h(x, y, z) = ax^{2} + by^{2} + cz^{2} + \alpha x + \beta y + \gamma z$$

Condition for RE is $dh - \lambda d(x^2 + y^2 + z^2) = 0$,

or

$$\operatorname{rank} \left[\begin{array}{cc} x & y & z \\ h_x & h_y & h_z \end{array} \right] < 2$$

3 equations in 3 unknowns, but solution set is a curve!

Unfolding

Equations are (taking a = 1, b = 0, c = -1):

$$(x + \alpha)(y - \beta) = -\alpha\beta$$

$$(y + \beta)(z - \gamma) = -\beta\gamma$$

$$(2x + \alpha)(2z - \gamma) = -\alpha\gamma$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unfolding

Discriminant in unfolding space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Unfolding — with stabilities

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○