Geometric Mechanics
Some Recent Progress

Jerrold E. Marsden
Control and Dynamical Systems,
Caltech

Oberwolfach, July 21, 2008

Collaborators: as we go along
Reduction Theory
Reduction Theory

- Goes back to at least Jacobi, Routh, etc in the mid 1800’s.
Reduction Theory

- Goes back to at least Jacobi, Routh, etc in the mid 1800’s.
- Resurgence with work of Arnold, Smale etc in 1960s
Reduction Theory

• Goes back to at least Jacobi, Routh, etc in the mid 1800’s.

• Resurgence with work of Arnold, Smale etc in 1960s

• Various forms of reduction:
 ★ Symplectic reduction (Meyer, JM, Weinstein, 1972)
 ★ Cotangent bundle (in, eg, Foundations of Mechanics)
 ★ Poisson reduction (various + JM and Ratiu, 1986)
 ★ Lagrangian reduction (Scheurle, JM Cendra, Ratiu).
 ★ Dirac structures and reduction (Bloch, Crouch, van der Schaft, Blankenstein, Ratiu, Weinstein and “oids” folks, Cendra, JM, Ratiu, Yoshimura...).
Reduction Theory

• Goes back to at least Jacobi, Routh, etc in the mid 1800’s.
• Resurgence with work of Arnold, Smale etc in 1960s
• Various forms of reduction:
 ★ Symplectic reduction (Meyer, JM, Weinstein, 1972)
 ★ Cotangent bundle (in, eg, Foundations of Mechanics)
 ★ Poisson reduction (various + JM and Ratiu, 1986)
 ★ Lagrangian reduction (Scheurle, JM Cendra, Ratiu).
 ★ Dirac structures and reduction (Bloch, Crouch, van der Schaft, Blankenstein, Ratiu, Weinstein and “oids” folks, Cendra, JM, Ratiu, Yoshimura...)
• Lets talk about reduction by stages to be specific.
Brief Stages Comments
First results due to JM and Weinstein in 1972
Brief Stages Comments

• First results due to JM and Weinstein in 1972

• Semi-direct product reduction theory by Guillemin, Sternberg, Ratiu, JM and Weinstein—early 1980s
Brief Stages Comments

- First results due to JM and Weinstein in 1972
- **Semi-direct product** reduction theory by Guillemin, Sternberg, Ratiu, JM and Weinstein—early 1980s
- **Lagrangian semi-direct product reduction**, building on work of JM and Scheurle, done by Holm, JM and Ratiu in the late 1980s. Related to alpha models.
• First results due to JM and Weinstein in 1972

• **Semi-direct product** reduction theory by Guillemin, Sternberg, Ratiu, JM and Weinstein—early 1980s

• **Lagrangian semi-direct product reduction**, building on work of JM and Scheurle, done by Holm, JM and Ratiu in the late 1980s. Related to alpha models.

• **Lagrangian reduction by stages**; Cendra, JM and Ratiu in the late 1990s.
Brief Stages Comments

- First results due to JM and Weinstein in 1972

- **Semi-direct product** reduction theory by Guillemin, Sternberg, Ratiu, JM and Weinstein—early 1980s

- **Lagrangian semi-direct product reduction**, building on work of JM and Scheurle, done by Holm, JM and Ratiu in the late 1980s. Related to alpha models.

- **Lagrangian reduction by stages**; Cendra, JM and Ratiu in the late 1990s.

- **Hamiltonian reduction by stages** ...
Reduction by Stages
Reduction by Stages

- History in “the books”
Reduction by Stages

- History in “the books”
Reduction by Stages
Reduction by Stages

- The general idea in the symplectic case
Reduction by Stages

• The general idea in the symplectic case

• One has a big group M and a normal subgroup N; one first reduces by N and then by something akin to M/N.
Reduction by Stages

• The general idea in the symplectic case

• One has a big group M and a normal subgroup N; one first reduces by N and then by something akin to M/N.

• Think of M being the Euclidean group, N the translation subgroup and M/N the rotation group.
Reduction by Stages

• The general idea in the symplectic case
• One has a big group M and a normal subgroup N; one first reduces by N and then by something akin to M/N.
• Think of M being the Euclidean group, N the translation subgroup and M/N the rotation group.
Application to Fluids
Application to Fluids

• Applies to bodies in fluids—work of Joris Vankershaver, Eva Kanso and JM
Application to Fluids

• Applies to bodies in fluids—work of Joris Vankershaver, Eva Kanso and JM

• The first group is the particle relabeling group, while the second one is the Euclidean group. The big group is the synthesis of the two—the full symmetry group of the problem.
Application to Fluids

• Applies to bodies in fluids—work of Joris Vankershaver, Eva Kanso and JM

• The first group is the particle relabeling group, while the second one is the Euclidean group. The big group is the synthesis of the two—the full symmetry group of the problem.

• The “hand calculation” of the resulting Hamiltonian and variational structure is difficult—Shashikanth et al and Borisov and Mamaev. Reduction by stages gives this (and more general) and how they are related.
But there is more...a lot more
But there is more...a lot more

- The right context for Dirac Reduction by Stages is now known (*Dirac Anchored Vector Bundles*). Work in progress: Cendra, JM, Ratiu and Yoshimura.
But there is more...a lot more

• The right context for Dirac Reduction by Stages is now known (*Dirac Anchored Vector Bundles*). Work in progress: Cendra, JM, Ratiu and Yoshimura.

• Also, reduction, multimomentum maps and related topics in field theories is slowly getting there (Marco Lopez-Castrillón, JM, Mark Gotay)
But there is more...a lot more

- The right context for Dirac Reduction by Stages is now known (Dirac Anchored Vector Bundles). Work in progress: Cendra, JM, Ratiu and Yoshimura.

- Also, reduction, multimomentum maps and related topics in field theories is slowly getting there (Marco Lopez-Castrillon, JM, Mark Gotay)

- Progress on Dirac structures in field theory is also very promising (Joris Vankershaver and others)
But there is more...a lot more

• The right context for Dirac Reduction by Stages is now known (*Dirac Anchored Vector Bundles*). Work in progress: Cendra, JM, Ratiu and Yoshimura.

• Also, reduction, multimomentum maps and related topics in field theories is slowly getting there (Marco Lopez-Castrillon, JM, Mark Gotay)

• Progress on Dirac structures in field theory is also very promising (Joris Vankershaver and others)

• Different sort of reduction (model reduction) in work of Tomohiro Yanao---radii of gyration in molecular systems. Geometric mechanics methods critical!
But there is more...a lot more

• The right context for Dirac Reduction by Stages is now known (Dirac Anchored Vector Bundles). Work in progress: Cendra, JM, Ratiu and Yoshimura.

• Also, reduction, multimomentum maps and related topics in field theories is slowly getting there (Marco Lopez-Castrillon, JM, Mark Gotay)

• Progress on Dirac structures in field theory is also very promising (Joris Vankershaver and others)

• Different sort of reduction (model reduction) in work of Tomohiro Yanao---radii of gyration in molecular systems. Geometric mechanics methods critical!

• Work of Cendra, Etchechoury, JM on Dirac-Gotay-Nester constraints in the Dirac Structure Context. Confused?
Discrete Mechanics
Discrete Mechanics

Lagrangian $L(q, \dot{q})$
Discrete Mechanics

Lagrangian $L(q, \dot{q})$

Hamilton’s Principle

$$\delta \int_{a}^{b} L(q, \dot{q}) \, dt = 0$$
Discrete Mechanics

Lagrangian \(L(q, \dot{q}) \)

Hamilton’s Principle

\[\delta \int_a^b L(q, \dot{q}) \, dt = 0 \]

Gives the Euler-Lagrange equations

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0 \]
Hamilton's Principle

Gives the Euler-Lagrange equations

\[\delta \int_{a}^{b} L(q, \dot{q}) \, dt = 0 \]

Gives the Euler-Lagrange equations

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0 \]
Discrete Mechanics

Lagrangian $L(q, \dot{q})$

Hamilton’s Principle

\[\delta \int_a^b L(q, \dot{q}) \, dt = 0 \]

Gives the Euler-Lagrange equations

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0 \]
Discrete Mechanics

Lagrangian \(L(q, \dot{q}) \)

Hamilton’s Principle

\[\delta \int_{a}^{b} L(q, \dot{q}) \, dt = 0 \]

Gives the Euler-Lagrange equations

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0 \]

\(L_d(q_0, q_1, h) \approx \int_{0}^{h} L(q(t), \dot{q}(t)) \, dt \)

Discrete Hamilton’s Principle

\[\delta \sum_{k=0}^{N-1} L_d(q_k, q_{k+1}, h_k) = 0 \]
Discrete Mechanics

Lagrangian $L(q, \dot{q})$

Hamilton's Principle

$$\delta \int_{a}^{b} L(q, \dot{q}) \, dt = 0$$

Gives the Euler-Lagrange equations

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0$$

Discrete Hamilton's Principle

$$L_d(q_0, q_1, h) \approx \int_{0}^{h} L(q(t), \dot{q}(t)) \, dt$$

$$\delta \sum_{k=0}^{N-1} L_d(q_k, q_{k+1}, h_k) = 0$$

Gives discrete E-L equations

$$D_h L_d(q_{i-1}, q_i, h_{i-1}) + D_1 L_d(q_i, q_{i+1}, h_i) = 0$$
Discrete Mechanics

Lagrangian $L(q, \dot{q})$

Hamilton’s Principle

$$\delta \int_a^b L(q, \dot{q}) \, dt = 0$$

Gives the Euler-Lagrange equations

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0$$

Discrete Hamilton’s Principle

$$L_d(q_0, q_1, h) \approx \int_0^h L(q(t), \dot{q}(t)) \, dt$$

$$\delta \sum_{k=0}^{N-1} L_d(q_k, q_{k+1}, h_k) = 0$$

Gives discrete E-L equations

$$D_2 L_d(q_{i-1}, q_i, h_{i-1}) + D_1 L_d(q_i, q_{i+1}, h_i) = 0$$

$q(a)$ $q(b)$ $q(i)$ $\delta q(i)$ q_i varied point

Q q_i δq_i q_N
Hamilton’s Principle

\[\delta \int_{a}^{b} L(q, \dot{q}) \, dt = 0 \]

Gives the Euler-Lagrange equations

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}^i} - \frac{\partial L}{\partial q^i} = 0 \]

Discrete Hamilton’s Principle

\[L_d(q_0, q_1, h) \approx \int_{0}^{h} L(q(t), \dot{q}(t)) \, dt \]

Gives discrete E-L equations

\[\delta \sum_{k=0}^{N-1} L_d \left(q_k, q_{k+1}, h_k \right) = 0 \]

\[D_2 L_d \left(q_{i-1}, q_i, h_{i-1} \right) + D_1 L_d \left(q_i, q_{i+1}, h_i \right) = 0 \]

Add forces to this formalism, such as control forces
Simple Example

- Let M be a positive definite symmetric n by n matrix and V be a given potential. Choose the Lagrangian:

$$L(q, \dot{q}) = \frac{1}{2} \dot{q}^T M \dot{q} - V(q).$$

- Discrete Lagrangian chosen by using the rectangle rule on the action integral together with a naive finite difference approximation of the velocity (more sophisticated quadrature rules give higher order accurate algorithms, such as SPARK).

$$L_d(q_0, q_1, h) = h \left[\frac{1}{2} \left(\frac{q_1 - q_0}{h} \right)^T M \left(\frac{q_1 - q_0}{h} \right) - V(q_0) \right]$$

- Resulting DEL equations (the algorithm):

$$M \left(\frac{q_{k+1} - 2q_k + q_{k-1}}{h^2} \right) = -\nabla V(q_k)$$
Noether’s theorem

A nice thing about the variational formulation is that such algorithms are naturally symplectic and results such as Noether’s theorem remain valid.

The proofs of these things are basically the same as in the continuous theory.
Numerical Example (West)
Numerical Example (West)

- Uses above type of algorithm for a particle moving in the plane under a radially symmetric potential (with several “made up” potential wells).
Uses above type of algorithm for a particle moving in the plane under a radially symmetric potential (with several “made up” potential wells).
Celestial Computations
(Scheeres, Leok, et al)
Celestial Computations
(Scheeres, Leok, et al)
The Outer Solar System
250,000 years into the future

Runge-Kutta Method (RK4)
Störmer-Verlet method
The Outer Solar System
250,000 years into the future

Runge-Kutta Method (RK4)

Störmer-Verlet method
Molecular Systems
Molecular Systems
A “gauge theory”—one separates the shape dynamics from the orientation dynamics. The geometry is nontrivial!
(Yanao, Koon, Kevrekides, JM)
A “gauge theory”—one separates the shape dynamics from the orientation dynamics. The geometry is nontrivial! (Yanao, Koon, Kevrekides, JM)
Molecular Systems

A “gauge theory”—one separates the shape dynamics from the orientation dynamics. The geometry is nontrivial! (Yanao, Koon, Kevrekides, JM)

Unstructured perturbations require high energy to induce flipping.
Molecular Systems

A “gauge theory”—one separates the shape dynamics from the orientation dynamics. The geometry is nontrivial! (Yanao, Koon, Kevrekides, JM)

Unstructured perturbations require high energy to induce flipping.
Molecular Systems

A “gauge theory”—one separates the shape dynamics from the orientation dynamics. The geometry is nontrivial! (Yanao, Koon, Kevrekides, JM)

Unstructured perturbations require high energy to induce flipping.

Structured perturbations induce flipping with low energy.
Molecular Systems

A “gauge theory”—one separates the shape dynamics from the orientation dynamics. The geometry is nontrivial! (Yanao, Koon, Kevrekides, JM)

Philip DuToit, Igor Mezic, JM
Stochastic Example (Bou-Rabee)

- Variational simulation of the 3 mass system with Brownian excitation at constant temperature
Variational simulation of the 3 mass system with Brownian excitation at constant temperature

Mass effects important for the most probable conformation change.
Variational simulation of the 3 mass system with Brownian excitation at constant temperature.
Mass effects important for the most probable conformation change.
Discrete Mechanics also Applies to Field Theories, such as E and M

standard “synchronized” method

our new “asynchronous” method
More on Dirac Structures?
More on Dirac Structures?

- Poisson structures in classical field theory are troublesome—conjecture that field theoretic Dirac structures will help.
More on Dirac Structures?

• Poisson structures in classical field theory are troublesome—conjecture that field theoretic Dirac structures will help.

• Discrete Dirac structures and Dirac integrators are surely interesting; Melvin Leok and student are looking into this.
More on Dirac Structures?

• Poisson structures in classical field theory are troublesome—conjecture that field theoretic Dirac structures will help.

• Discrete Dirac structures and Dirac integrators are surely interesting; Melvin Leok and student are looking into this.

• Reduction for discrete mechanics is also troublesome; perhaps the Dirac setting helps there too.
Discrete Mechanics and Optimal Control (DMOC)

• DMOC recasts the problem in discrete time as

\[
\text{Minimize } J_d(q_d, u_d) = \sum_{k=0}^{N-1} F_d(q_k, q_{k+1}, u_k, u_{k+1}),
\]

subject to boundary conditions (prescribed or periodic), and the appropriate forced DEL equations of motion.

• This formulation is an equality constrained, nonlinear optimization problem that can be solved with sequential quadratic programming (SQP).

Sina Ober-Blöbaum, Oliver Junge, JM
How DMOC Works—the Idea
How DMOC Works—the Idea

- Start by variationally discretizing both the cost function and the equations of motion, being careful with the boundary conditions.
How DMOC Works—the Idea

- Start by variationally discretizing both the cost function and the equations of motion, being careful with the boundary conditions.
- Now one has a discrete function of a string of configuration points together with constraints; the discrete equations together with any other constraints.
How DMOC Works—the Idea

- Start by variationally discretizing both the cost function and the equations of motion, being careful with the boundary conditions.
- Now one has a discrete function of a string of configuration points together with constraints; the discrete equations together with any other constraints.
- Send the resulting system to an optimizer, such as SQP or a root finder together with a first guess at a solution.
How DMOC Works—the Idea

- Start by variationally discretizing both the cost function and the equations of motion, being careful with the boundary conditions.
- Now one has a discrete function of a string of configuration points together with constraints; the discrete equations together with any other constraints.
- Send the resulting system to an optimizer, such as SQP or a root finder together with a first guess at a solution.
- Initial guesses and multiple minima are important issues.
How DMOC Works—the Idea

- Start by variationally discretizing both the cost function and the equations of motion, being careful with the boundary conditions.
- Now one has a discrete function of a string of configuration points together with constraints; the discrete equations together with any other constraints.
- Send the resulting system to an optimizer, such as SQP or a root finder together with a first guess at a solution.
- Initial guesses and multiple minima are important issues.
- The problem with initial guesses and local minima perhaps can be overcome with the DMOC primitives idea!
How DMOC Works—the Idea

- Start by variationally discretizing both the cost function and the equations of motion, being careful with the boundary conditions.
- Now one has a discrete function of a string of configuration points together with constraints; the discrete equations together with any other constraints.
- Send the resulting system to an optimizer, such as SQP or a root finder together with a first guess at a solution.
- Initial guesses and multiple minima are important issues.
- The problem with initial guesses and local minima perhaps can be overcome with the DMOC primitives idea!
- Some examples...
Falling Cats, Divers, Swimming

James Martin, Eva Kanso
Falling Cats, Divers, Swimming

James Martin, Eva Kanso
Falling Cats, Divers, Swimming

James Martin, Eva Kanso
Satellite Reorientation

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM
Satellite Reorientation

Handling Constraints: variational discrete null space method

• Easy formulation of discrete Lagrangian with constant mass matrix.
• Symplectic-momentum conserving.
• Exact constraint fulfillment.
• Minimal dimension of resulting system.
• Condition number independent of time step.

Unlike

• Lagrange multiplier method: larger dimension of system than necessary and conditioning problems.
• Generalized coordinates: higher nonlinearity difficult for large multibody systems.
Satellite Reorientation

Handling Constraints: variational discrete null space method

• Easy formulation of discrete Lagrangian with constant mass matrix.
• Symplectic-momentum conserving.
• Exact constraint fulfillment.
• Minimal dimension of resulting system.
• Condition number independent of time step.

combine with DMOC
Consistent reorientation of satellite with minimal control effort.

Unlike

• Lagrange multiplier method: larger dimension of system than necessary and conditioning problems.
• Generalized coordinates: higher nonlinearity difficult for large multibody systems.

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM
Handling Constraints: variational discrete null space method

• Easy formulation of discrete Lagrangian with constant mass matrix.
• Symplectic-momentum conserving.
• Exact constraint fulfillment.
• Minimal dimension of resulting system.
• Condition number independent of time step.

Unlike

• Lagrange multiplier method: larger dimension of system than necessary and conditioning problems.
• Generalized coordinates: higher nonlinearity difficult for large multibody systems.

combine with DMOC
Consistent reorientation of satellite with minimal control effort.

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM
Satellite Reorientation

Handling Constraints: variational discrete null space method

- Easy formulation of discrete Lagrangian with constant mass matrix.
- Symplectic-momentum conserving.
- Exact constraint fulfillment.
- Minimal dimension of resulting system.
- Condition number independent of time step.

Unlike

- Lagrange multiplier method: larger dimension of system than necessary and conditioning problems.
- Generalized coordinates: higher nonlinearity difficult for large multibody systems.

Consistent reorientation of satellite with minimal control effort.

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM
Optimal Helicopter Flight

- Optimize, eg, fuel consumption in piloting a helicopter.
Optimal Helicopter Flight

- Optimize, e.g., fuel consumption in piloting a helicopter.
DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with roadmap strategies and dynamic programming to achieve global optimal strategies.
DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date

- Tested on helicopters searching in a cluttered terrain
- Tested on global minima for vehicles deployed to formation
DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date
- Tested on helicopters searching in a cluttered terrain
- Tested on global minima for vehicles deployed to formation
DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date

- Tested on helicopters searching in a cluttered terrain
- Tested on global minima for vehicles deployed to formation
DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date

- Tested on helicopters searching in a cluttered terrain
- Tested on global minima for vehicles deployed to formation
DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date

• Tested on helicopters searching in a cluttered terrain
• Tested on global minima for vehicles deployed to formation

Future Directions: Combine with trend optimization techniques for charting efficient roadmaps. Make use of this technique in the surveillance problem.
Global Strategies using DMOC Primitives

Roadmap, dynamic programming strategies for rapid search methods drawing from the DMOC primitives library for the component pieces. Dynamics is faithfully represented.
Another Examples
Multiscale Trend Optimization (MTO)
Multiscale Trend Optimization (MTO)

MTO --- a technique developed for a self assembly problem (Philip DuToit and others).
Multiscale Trend Optimization (MTO)

MTO --- a technique developed for a self assembly problem (Philip DuToit and others).

Accomplishments to date

• Self assembly (100x speedup over simulated annealing)
• Robotic design (in progress)
Multiscale Trend Optimization (MTO)

MTO --- a technique developed for a self assembly problem (Philip DuToit and others).

Accomplishments to date
- Self assembly (100x speedup over simulated annealing)
- Robotic design (in progress)
Multiscale Trend Optimization (MTO)

MTO --- a technique developed for a self assembly problem (Philip DuToit and others).

Accomplishments to date

• Self assembly (100x speedup over simulated annealing)
• Robotic design (in progress)
Multiscale Trend Optimization (MTO)

MTO --- a technique developed for a self assembly problem (Philip DuToit and others).

Accomplishments to date

- Self assembly (100x speedup over simulated annealing)
- Robotic design (in progress)
Multiscale Trend Optimization (MTO)

MTO --- a technique developed for a self assembly problem (Philip DuToit and others).

Accomplishments to date

• Self assembly (100x speedup over simulated annealing)
• Robotic design (in progress)
The Idea of MT Optimization

Evaluations of J given α are assumed to be expensive, and thus gradient based methods would be inefficient.

Good for situations in which J is noisy

Trend optimization samples a small number of points,...

...fits a trend to the results using prescribed basis functions,...
The Idea of MT Optimization

...rapidly determines the global minimum of the trend, ...

...evaluates new points around the trend minimizer â, ...

...updates the trend, ...

...and repeats until convergence.
Multiscale Trend Optimization—More
Multiscale Trend Optimization—More

Developed in the self assembly problem, useful for optimization when the cost function is multiscale, noisy, lots of local minima and expensive to evaluate.

We plan to use this tool in surveillance
Multiscale Trend Optimization—More

Developed in the self assembly problem, useful for optimization when the cost function is multiscale, noisy, lots of local minima and expensive to evaluate.

We plan to use this tool in surveillance

Test Case—Robotic Walker (David Pekarek):
- DMOC and inner-outer loop strategy—more on DMOC shortly
- What is the best place for the knees?
Developed in the self assembly problem, useful for optimization when the cost function is multiscale, noisy, lots of local minima and expensive to evaluate.

We plan to use this tool in surveillance

Test Case—Robotic Walker (David Pekarek):
- DMOC and inner-outer loop strategy—more on DMOC shortly
- What is the best place for the knees?
Developed in the self assembly problem, useful for optimization when the cost function is multiscale, noisy, lots of local minima and expensive to evaluate.

We plan to use this tool in surveillance

Test Case—Robotic Walker (David Pekarek):
- DMOC and inner-outer loop strategy—more on DMOC shortly
- What is the best place for the knees?
Multiscale Trend Optimization—More

Developed in the self assembly problem, useful for optimization when the cost function is multiscale, noisy, lots of local minima and expensive to evaluate.

We plan to use this tool in surveillance

Test Case—Robotic Walker (David Pekarek):
- DMOC and inner-outer loop strategy—more on DMOC shortly
- What is the best place for the knees?
Design of Dynamics

Example Systems to Optimize:

- Bipedal Robots
Design of Dynamics

Inner/Outer Loop Architecture

- Inner loop: DMOC determines optimal trajectories and controls
- Outer loop efficiently searches for optimal design parameters (trend optimization)
- Scheme yields optimal mechanical system design for specified tasks

Example Systems to Optimize:
- Bipedal Robots
Inner/Outer Loop Architecture

- Inner loop: DMOC determines optimal trajectories and controls
- Outer loop efficiently searches for optimal design parameters (trend optimization)
- Scheme yields optimal mechanical system design for specified tasks

Example Systems to Optimize:
Inner/Outer Loop Architecture

- Inner loop: DMOC determines optimal trajectories and controls
- Outer loop efficiently searches for optimal design parameters (trend optimization)
- Scheme yields optimal mechanical system design for specified tasks

Example Systems to Optimize:

Initial Design → MTO → Optimal Design

Optimize given Design

Design of Dynamics
Design of Dynamics

Inner/Outer Loop Architecture

• Inner loop: DMOC determines optimal trajectories and controls
• Outer loop efficiently searches for optimal design parameters (trend optimization)
• Scheme yields optimal mechanical system design for specified tasks

Example Systems to Optimize:

Initial Design → MTO → Optimal Design

DMOC

Optimize given Design

Future: Stochastic DMOC
Trend Optimization’s minimizer
Trend Optimization’s minimizer
Trend Optimization’s minimizer
Global solution for optimal control problems

Formation of hovercraft

- relative arrangement on target manifold
- minimize control effort
- many local minima

Sampling-based Roadmap

- graph of DMOC primitives
- dynamic programming
- global state space exploration
- near globally optimal solution
Hurricane Nabi (Philip DuToit)

www.digital-typhoon.org

Typhoon 200514 : 2005-08-29 00:00 UTC
LCS for Hurricane Nabi

Sun Sep 4 04:00:00 2005

NCEP/NCAR Reanalysis Data at the 850mb pressure level.
Celestial Invariant Manifolds
(Koon, Lo, JM, Ross)
Celestial Invariant Manifolds
(Koon, Lo, JM, Ross)

- Invariant manifolds have been used, for example, to design spacecraft trajectories, such as the NASA *Genesis Discovery Mission*: Aug, 2001 to Sept, 2004
Invariant manifolds have been used, for example, to design spacecraft trajectories, such as the NASA Genesis Discovery Mission: Aug, 2001 to Sept, 2004. Flew on a nearly heteroclinic return orbit following invariant manifolds in the 3-body problem.
Invariant manifolds have been used, for example, to design spacecraft trajectories, such as the NASA Genesis Discovery Mission: Aug, 2001 to Sept, 2004. Flew on a nearly heteroclinic return orbit following invariant manifolds in the 3-body problem.
Free Ride (Dellnitz)
Free Ride (Dellnitz)

• Invariant manifolds are very efficient highways for navigating in the solar system
Free Ride (Dellnitz)

- Invariant manifolds are very efficient highways for navigating in the solar system
Nature was there first (naturally)
Nature was there first (naturally)
Nature was there first (naturally)
Here DMOC and LCS come together
(Ashley Moore, Evan Gawlick)
Here DMOC and LCS come together (Ashley Moore, Evan Gawlick)

<table>
<thead>
<tr>
<th>Delta V (m/s)</th>
<th>Initial Guess</th>
<th>DMOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>case 1</td>
<td>175.8273</td>
<td>0.2331</td>
</tr>
<tr>
<td>case 2</td>
<td>178.5763</td>
<td>0.4452</td>
</tr>
<tr>
<td>case 3</td>
<td>172.7951</td>
<td>0.0672</td>
</tr>
<tr>
<td>case 4</td>
<td>171.3516</td>
<td>0.0902</td>
</tr>
<tr>
<td>case 5</td>
<td>177.8498</td>
<td>0.4386</td>
</tr>
</tbody>
</table>

Initial Guess

DMOC Result
Coherent Structures Everywhere
Coherent Structures Everywhere

- Hurricanes
Coherent Structures Everywhere

- Hurricanes
Coherent Structures Everywhere

- Hurricanes
- Jupiter’s red spot
Coherent Structures Everywhere

• Hurricanes

• Jupiter’s red spot
Coherent Structures Everywhere

- Hurricanes
- Jupiter’s red spot
- Neptune’s great dark spot
Coherent Structures Everywhere

- Hurricanes
- Jupiter’s red spot
- Neptune’s great dark spot
Features of Invariant Manifolds
Features of Invariant Manifolds

- Invariant manifolds—usually thought of for autonomous or periodic systems. Ocean and atmosphere are not!
Features of Invariant Manifolds

- Invariant manifolds—are usually thought of for autonomous or periodic systems. Ocean and atmosphere are not!
- Invariant manifolds are usually “attached” to fixed points, periodic orbits, or other invariant sets—not required by LCS the way we do them today.
Features of Invariant Manifolds

• Invariant manifolds—usually thought of for autonomous or periodic systems. Ocean and atmosphere are not!

• Invariant manifolds are usually “attached” to fixed points, periodic orbits, or other invariant sets—not required by LCS the way we do them today.

• George Haller idea—use FTLE (Finite Time Liapunov Exponent Fields) and look for ridges—this was developed in the PhD Theses of Lekien, Shadden.
Invariant Manifolds: Standard View
Invariant Manifolds: Standard View

- Start with the simple pendulum—a swing!
Invariant Manifolds: Standard View

- Start with the simple pendulum—a swing!
 \[\ddot{x} + \sin x = 0 \]
Invariant Manifolds: Standard View

• Start with the simple pendulum—a swing!
 \[\ddot{x} + \sin x = 0 \]

• Phase portrait—showing the invariant manifolds (separatrices attached to fixed points.)
Invariant Manifolds: Standard View

• Start with the simple pendulum—a swing!
 \[\ddot{x} + \sin x = 0 \]

• Phase portrait—showing the invariant manifolds (separatrices attached to fixed points.)
Homoclinic Chaos: Standard View
Homoclinic Chaos: Standard View

- Periodically perturb the simple pendulum with forcing
Homoclinic Chaos: Standard View

- Periodically perturb the simple pendulum with forcing

\[\ddot{x} + \sin x + \epsilon \dot{x} \sin t = 0 \]
Homoclinic Chaos: Standard View

• Periodically perturb the simple pendulum with forcing
 \[\ddot{x} + \sin x + \varepsilon \dot{x} \sin t = 0 \]

• Velocity field—hard to tell what is going on:
Homoclinic Chaos: Standard View

- Periodically perturb the simple pendulum with forcing

\[\ddot{x} + \sin x + \epsilon \dot{x} \sin t = 0 \]

- Velocity field—hard to tell what is going on:
Standard way around this
Standard way around this

• Use of the Poincaré map (1880) to get a homoclinic tangle: excellent way to view for periodic systems.
Standard way around this

• Use of the Poincaré map (1880) to get a homoclinic tangle: excellent way to view for periodic systems.
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.
- Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context.
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.
- Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context.
- How do we know for sure?
Transient Chaos

• Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.

• Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context

• How do we know for sure?

• LCS will reveal the tangle in hurricane dynamics !!
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to **transient chaos**—dynamic events over intermediate time scales.

- Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context

- How do we know for sure?

- LCS will reveal the tangle in hurricane dynamics !!

- First, a bit more about the tangle
Smale Horseshoe
Smale Horseshoe

- Smale (in the 1960s) abstracted what was going on in the tangle to produce the horseshoe map.
Smale Horseshoe

- Smale (in the 1960s) abstracted what was going on in the tangle to produce the horseshoe map.
Smale Horseshoe

- Smale (in the 1960s) abstracted what was going on in the tangle to produce the horseshoe map.

- Proved lots of nice things—eg, an invariant Cantor set.
Smale Horseshoe in the Tangle
Transient Chaos
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.
Transient Chaos

• Poincaré’s homoclinic tangle corresponds to transient chaos—
 dynamic events over intermediate time scales.

• Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.
- Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context.
- I will show you the tangle in hurricane dynamics!!
Transient Chaos

• Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.

• Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context.

• I will show you the tangle in hurricane dynamics !!

• First, a bit more about the tangle.
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to transient chaos—dynamic events over intermediate time scales.
- Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context
- I will show you the tangle in hurricane dynamics!!
- First, a bit more about the tangle
Transient Chaos

- Poincaré’s homoclinic tangle corresponds to **transient chaos**—dynamic events over intermediate time scales.

- Infinite time notions like strange attractors, inertial manifolds, etc are not relevant in this context.

- I will show you the tangle in hurricane dynamics!!

- First, a bit more about the tangle

Poincaré, one of the creators of modern dynamical systems, 1890
Lagrangian Coherent Structures
Lagrangian Coherent Structures

- Generalizes invariant manifolds to the case of time dependent dynamical systems
Lagrangian Coherent Structures

- Generalizes invariant manifolds to the case of time dependent dynamical systems
- For time varying systems, LCS move in time
Lagrangian Coherent Structures

- Generalizes invariant manifolds to the case of time dependent dynamical systems
- For time varying systems, LCS move in time
Look at lobes, mixing, dynamically
Back to Nabi
Nabi has horseshoes in it
Even Shades of a Cantor Set
Even Shades of a Cantor Set
Even Shades of a Cantor Set
3D Structures
3D Structures
3D Structures
3D Structures
LCS Key Features
LCS Key Features

- LCS often surround coherent structures
LCS Key Features

- LCS often surround coherent structures
- Useful for computing mixing and transport via lobe dynamics
LCS Key Features

- LCS often surround coherent structures
- Useful for computing mixing and transport via lobe dynamics
- In fluids, particles move in a dynamical system given by the velocity field of the flow
LCS Key Features

- LCS often surround coherent structures
- Useful for computing mixing and transport via lobe dynamics
- In fluids, particles move in a dynamical system given by the velocity field of the flow
- LCS divide particles with different dynamical fates
LCS Key Features

• LCS often surround coherent structures
• Useful for computing mixing and transport via lobe dynamics
• In fluids, particles move in a dynamical system given by the velocity field of the flow
• LCS divide particles with different dynamical fates
• Clear example in ocean dynamics
Lagrangian Coherent Structures in Monterey bay
Other Uses of LCS
Other Uses of LCS

- Drifter deployment strategies
Other Uses of LCS

• Drifter deployment strategies
• Also important in AOSN and ASAP projects (Naomi Leonard, Steve Ramp, other oceanographers)
Other Uses of LCS

• Drifter deployment strategies
• Also important in AOSN and ASAP projects (Naomi Leonard, Steve Ramp, other oceanographers)
• Data collection in Monterey Bay (ROMS, HOPS)
Other Uses of LCS

• Drifter deployment strategies
• Also important in AOSN and ASAP projects (Naomi Leonard, Steve Ramp, other oceanographers)
• Data collection in Monterey Bay (ROMS, HOPS)
• Pathways for gliders and strategies for improving data assimilation (Pierre Lermiscaux and Francois Lekien)
Other Uses of LCS

- Drifter deployment strategies
- Also important in AOSN and ASAP projects (Naomi Leonard, Steve Ramp, other oceanographers)
- Data collection in Monterey Bay (ROMS, HOPS)
- Pathways for gliders and strategies for improving data assimilation (Pierre Lermiscaux and Francois Lekien)
- Pollution studies (LCS play a key role in timing and fate of pollution)
Other Uses of LCS

- Drifter deployment strategies
- Also important in AOSN and ASAP projects (Naomi Leonard, Steve Ramp, other oceanographers)
- Data collection in Monterey Bay (ROMS, HOPS)
- Pathways for gliders and strategies for improving data assimilation (Pierre Lermiscaux and Francois Lekien)
- Pollution studies (LCS play a key role in timing and fate of pollution)
- Cardiovascular studies
LCS for flow over an Airfoil
Two Types of LCS: Attracting and Repelling
LCS for Ozone Hole Breakup
The ocean plays a major role in the distribution of the planet’s heat through deep sea circulation. This simplified illustration shows this “conveyor belt” circulation which is driven by differences in heat and salinity. Records of past climate suggest that there is some chance that this circulation could be altered by the changes projected in many climate models, with impacts to climate throughout lands bordering the North Atlantic.
Vortex Rings
Vortex Rings
Vortex Rings
Vortex Rings
Vortex Rings
Laboratory Vortex Rings
LCS for the vortex ring

Vortex velocity field

Shawn Shadden, Stanford
LCS for the vortex ring

Vortex velocity field

Shawn Shadden, Stanford
LCS for the vortex ring

Vortex velocity field

Shawn Shadden, Stanford
LCS and Vortex Ring Boundaries

LCS gives much sharper boundaries than vorticity
LCS gives much sharper boundaries than vorticity.
Lobes in the vortex ring
Lobes, Mixing, Transport
Jellyfish
Jellyfish
Jellyfish one more time

Lobes determine which fluid is entrained

LCS
Lobes, Mixing, Transport
3D LCS-Meddies
3D LCS-Meddies

Ellipsoid of vorticity
3D LCS-Meddies

Ellipsoid of vorticity
3D LCS-Meddies

Ellipsoid of vorticity

Particle trajectories
3D LCS

- Mediterranean Salt Lenses in the Atlantic
3D LCS

- Mediterranean Salt Lenses in the Atlantic
3D LCS

- Mediterranean Salt Lenses in the Atlantic

Side view
3D LCS

• Mediterranean Salt Lenses in the Atlantic

Side view
3D LCS

- Mediterranean Salt Lenses in the Atlantic

Side view

Top view
Hairpin vortices in near wall turbulent flow

- Melissa Green,
 George Haller,
 Clancy Rowley
Hairpin vortices in near wall turbulent flow

- Melissa Green,
- George Haller,
- Clancy Rowley
Hairpin vortices in near wall turbulent flow

- Melissa Green,
- George Haller,
- Clancy Rowley
A Word on Computing LCS
A Word on Computing LCS

• Approximate the fastest separation rate of nearby particles by finding the maximum eigenvalues of a 2×2 or 3×3 symmetric matrix—the Cauchy-Green tensor (pull-back of the metric tensor under the flow map)
A Word on Computing LCS

- Approximate the fastest separation rate of nearby particles by finding the maximum eigenvalues of a 2 x 2 or 3 x 3 symmetric matrix—the Cauchy-Green tensor (pull-back of the metric tensor under the flow map).

- This is the \textit{FTLE Field, a real valued (time dependent) function on the plane or in space}. This gives the \textit{repelling LCS}.
A Word on Computing LCS

• Approximate the fastest separation rate of nearby particles by finding the maximum eigenvalues of a 2 x 2 or 3 x 3 symmetric matrix—the Cauchy-Green tensor (pull-back of the metric tensor under the flow map)

• This is the *FTLE Field, a real valued (time dependent) function on the plane or in space*. This gives the *repelling LCS*

• Compute *ridges* in the FTLE field. Those are the LCS!
A Word on Computing LCS

- Approximate the fastest separation rate of nearby particles by finding the maximum eigenvalues of a 2×2 or 3×3 symmetric matrix—the Cauchy-Green tensor (pull-back of the metric tensor under the flow map).

- This is the **FTLE Field**, a real valued (time dependent) function on the plane or in space. This gives the repelling **LCS**.

- Compute **ridges** in the FTLE field. Those are the LCS!

- Run time backwards for the attracting **LCS**.
A Word on Computing LCS

• Approximate the fastest separation rate of nearby particles by finding the maximum eigenvalues of a 2×2 or 3×3 symmetric matrix—the Cauchy-Green tensor (pull-back of the metric tensor under the flow map).

• This is the **FTLE Field, a real valued (time dependent) function on the plane or in space.** This gives the **repelling LCS.**

• Compute **ridges** in the FTLE field. Those are the LCS!

• Run time backwards for the **attracting LCS.**

• Computations in 2d can be done on a laptop, but in 3d it requires a hefty computer.
Ridges can be complicated
Robustness against uncertainty
Robustness against uncertainty

- Uncertainty can be in the data itself, the mathematical model, the computational resolution, or noise
Robustness against uncertainty

- Uncertainty can be in the data itself, the mathematical model, the computational resolution, or noise
Robustness against uncertainty

- Uncertainty can be in the data itself, the mathematical model, the computational resolution, or noise.

Attracting LCS low res
Robustness against uncertainty

- Uncertainty can be in the data itself, the mathematical model, the computational resolution, or noise.

Attracting LCS low res
Robustness against uncertainty

- Uncertainty can be in the data itself, the mathematical model, the computational resolution, or noise

Attracting LCS low res

Attracting LCS high res
Cardiovascular Applications
Cardiovascular Applications

• Emerging field of virtual surgery-Charlie Taylor, Stanford
Cardiovascular Applications

- Emerging field of virtual surgery-Charlie Taylor, Stanford
- Work of Alison Marsden and Shawn Shadden
Cardiovascular Applications

- Emerging field of virtual surgery - Charlie Taylor, Stanford
- Work of Alison Marsden and Shawn Shadden