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• Resurgence with work of Arnold, Smale etc in 1960s
• Various forms of reduction: 

★ Symplectic reduction (Meyer,  JM, Weinstein,1972)
★ Cotangent bundle (in, eg, Foundations of Mechanics)
★ Poisson reduction (various + JM and Ratiu, 1986)
★ Lagrangian reduction (Scheurle, JM Cendra, Ratiu).
★ Dirac structures and reduction (Bloch, Crouch, van 

der Schaft, Blankenstein, Ratiu, Weinstein and “oids” 
folks, Cendra, JM, Ratiu, Yoshimura...)

• Lets talk about reduction by stages to be specific.
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• Semi-direct product reduction theory by Guillemin, 
Sternberg, Ratiu, JM and Weinstein—early 1980s

• Lagrangian semi-direct product reduction, building on 
work of JM and Scheurle, done by Holm, JM and Ratiu in 
the late 1980s. Related to alpha models.

• Lagrangian reduction by stages; Cendra, JM and Ratiu in 
the late 1990s.

• Hamiltonian reduction by stages ...
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• The general idea in the 
symplectic case

• One has a big group M and 
a normal subgroup N; one 
first reduces by N and then 
by something akin to M/N.

• Think of M being the 
Euclidean group, N the 
translation subgroup and 
M/N the rotation group.

full reduction

first stage reduction

second stage reduction
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Application to Fluids

• Applies to bodies in fluids—work of Joris Vankershaver, 
Eva Kanso and JM

• The first group is the particle relabeling group, while 
the second one is the Euclidean group. The big group is 
the synthesis of the two—the full symmetry group of 
the problem.

• The “hand calculation” of the resulting Hamiltonian 
and variational structure is difficult—Shashikanth et al 
and Borisov and Mamaev. Reduction by stages gives 
this (and more general) and how they are related.
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But there is more...a lot more
• The right context for Dirac Reduction by Stages is now 

known (Dirac Anchored Vector Bundles). Work in 
progress: Cendra, JM, Ratiu and Yoshimura.

• Also, reduction, multimomentum maps and related 
topics in field theories is slowly getting there (Marco 
Lopez-Castrillon, JM , Mark Gotay)

• Progress on Dirac structures in field theory is also very 
promising (Joris Vankershaver and others)

• Different sort of reduction (model reduction) in work of 
Tomohiro Yanao---radii of gyration in molecular 
systems. Geometric mechanics methods critical !

• Work of Cendra, Etchechoury, JM on Dirac-Gotay-
Nester constraints in the Dirac Structure Context. 
Confused?
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Lagrangian

Discrete Hamilton’s Principle

Gives discrete E-L equations

Discrete Mechanics

Add forces to this formalism, such as control forces



Simple Example
 Let M be a positive definite symmetric n by n matrix and V be a given 

potential. Choose the Lagrangian: 

 Discrete Lagrangian chosen by using the rectangle rule on the action 
integral together with a naive finite difference approximation of the velocity 
(more sophisticated quadrature rules give higher order accurate algorithms, 
such as SPARK).

 Resulting DEL equations (the algorithm):



Noether’s 
theorem

A nice thing about the variational 
formulation is that such algorithms 
are naturally symplectic and results 
such as Noether’s theorem remain 
valid.

The proofs of these things are 
basically the same as in the 
continuous theory.

Emmy Noether (1882–1935)

Text
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Molecular Systems

Unstructured perturbations 
require high energy to induce 
flipping

Structured perturbations 
induce flipping with low energy

A “gauge theory”—one 
separates the shape dynamics 
from the orientation dynamics. 

The geometry is nontrivial !
(Yanao, Koon, Kevrekides, JM)

Philip DuToit, Igor Mezic, JM
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Discrete Mechanics also Applies to 
Field Theories, such as E and M
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More on Dirac Structures?

• Poisson structures in classical field theory are 
troublesome—conjecture that field theoretic Dirac 
structures will help. 

• Discrete Dirac structures and Dirac integrators are 
surely interesting; Melvin Leok and student are looking 
into this.

• Reduction for discrete mechanics is also troublesome; 
perhaps the Dirac setting helps there too.
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Discrete Mechanics and Optimal Control 
(DMOC)

• DMOC recasts the problem in discrete time as

Minimize Jd(qd, ud) =
N−1∑

k=0

Fd(qk, qk+1, uk, uk+1),

subject to boundary conditions (prescribed or periodic),
and the appropriate forced DEL equations of motion.

• This formulation is an equality constrained, nonlinear op-
timization problem that can be solved with sequential
quadratic programming (SQP).

Sina Ober-Blöbaum, Oliver Junge, JM



How DMOC Works—the Idea



How DMOC Works—the Idea

 Start by variationally discretizing both the cost function 
and the equations of motion, being careful with the 
boundary conditions. 



How DMOC Works—the Idea

 Start by variationally discretizing both the cost function 
and the equations of motion, being careful with the 
boundary conditions. 
 Now one has a discrete function of a string of 
configuration points together with constraints; the discrete 
equations together with any other constraints. 



How DMOC Works—the Idea

 Start by variationally discretizing both the cost function 
and the equations of motion, being careful with the 
boundary conditions. 
 Now one has a discrete function of a string of 
configuration points together with constraints; the discrete 
equations together with any other constraints. 
 Send the resulting system to an optimizer, such as SQP or 
a root finder together with a first guess at a solution.



How DMOC Works—the Idea

 Start by variationally discretizing both the cost function 
and the equations of motion, being careful with the 
boundary conditions. 
 Now one has a discrete function of a string of 
configuration points together with constraints; the discrete 
equations together with any other constraints. 
 Send the resulting system to an optimizer, such as SQP or 
a root finder together with a first guess at a solution.
 Initial guesses and multiple minima are important issues.



How DMOC Works—the Idea

 Start by variationally discretizing both the cost function 
and the equations of motion, being careful with the 
boundary conditions. 
 Now one has a discrete function of a string of 
configuration points together with constraints; the discrete 
equations together with any other constraints. 
 Send the resulting system to an optimizer, such as SQP or 
a root finder together with a first guess at a solution.
 Initial guesses and multiple minima are important issues.
 The problem with initial guesses and local minima 
perhaps can be overcome with the DMOC primitives idea !



How DMOC Works—the Idea

 Start by variationally discretizing both the cost function 
and the equations of motion, being careful with the 
boundary conditions. 
 Now one has a discrete function of a string of 
configuration points together with constraints; the discrete 
equations together with any other constraints. 
 Send the resulting system to an optimizer, such as SQP or 
a root finder together with a first guess at a solution.
 Initial guesses and multiple minima are important issues.
 The problem with initial guesses and local minima 
perhaps can be overcome with the DMOC primitives idea !
 Some examples...



Falling Cats, Divers, Swimming

James Martin, Eva Kanso



Falling Cats, Divers, Swimming

James Martin, Eva Kanso



Falling Cats, Divers, Swimming

James Martin, Eva Kanso



Falling Cats, Divers, Swimming

James Martin, Eva Kanso



Falling Cats, Divers, Swimming

James Martin, Eva Kanso



Satellite Reorientation

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM



•Easy formulation of discrete Lagrangian with 
constant mass matrix.
•Symplectic-momentum conserving.
•Exact constraint fulfillment.
•Minimal dimension of resulting system. 
•Condition number independent of time step.

Handling Constraints: variational 
discrete null space method

Unlike

•Lagrange multiplier method: larger dimension 
of system than necessary and conditioning 
problems.
•Generalized coordinates: higher nonlinearity 
difficult for large multibody systems.

Satellite Reorientation

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM



•Easy formulation of discrete Lagrangian with 
constant mass matrix.
•Symplectic-momentum conserving.
•Exact constraint fulfillment.
•Minimal dimension of resulting system. 
•Condition number independent of time step.

Handling Constraints: variational 
discrete null space method

Unlike

•Lagrange multiplier method: larger dimension 
of system than necessary and conditioning 
problems.
•Generalized coordinates: higher nonlinearity 
difficult for large multibody systems.

combine with DMOC
Consistent reorientation of satellite with minimal control 

effort.

Satellite Reorientation

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM



•Easy formulation of discrete Lagrangian with 
constant mass matrix.
•Symplectic-momentum conserving.
•Exact constraint fulfillment.
•Minimal dimension of resulting system. 
•Condition number independent of time step.

Handling Constraints: variational 
discrete null space method

Unlike

•Lagrange multiplier method: larger dimension 
of system than necessary and conditioning 
problems.
•Generalized coordinates: higher nonlinearity 
difficult for large multibody systems.

combine with DMOC
Consistent reorientation of satellite with minimal control 

effort.

Satellite Reorientation

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM



•Easy formulation of discrete Lagrangian with 
constant mass matrix.
•Symplectic-momentum conserving.
•Exact constraint fulfillment.
•Minimal dimension of resulting system. 
•Condition number independent of time step.

Handling Constraints: variational 
discrete null space method

Unlike

•Lagrange multiplier method: larger dimension 
of system than necessary and conditioning 
problems.
•Generalized coordinates: higher nonlinearity 
difficult for large multibody systems.

combine with DMOC
Consistent reorientation of satellite with minimal control 

effort.

Satellite Reorientation

Sigrid Leyendecker, Sina Ober-Blöbaum, Michael Ortiz, JM



Optimal Helicopter Flight

Marin Kobilarov



Optimal Helicopter Flight
• Optimize, eg, fuel consumption in piloting a helicopter.

Marin Kobilarov



Optimal Helicopter Flight
• Optimize, eg, fuel consumption in piloting a helicopter.

Marin Kobilarov



DMOC Primitives, Roadmap Strategies (Marin Kobilarov)



DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with 
roadmap strategies and dynamic programming to achieve global optimal strategies.



DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with 
roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date
• Tested on helicopters searching in a cluttered terrain 
• Tested on global minima for vehicles deployed to formation



DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with 
roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date
• Tested on helicopters searching in a cluttered terrain 
• Tested on global minima for vehicles deployed to formation



START

GOAL

DMOC primitives

DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with 
roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date
• Tested on helicopters searching in a cluttered terrain 
• Tested on global minima for vehicles deployed to formation



START

GOAL

DMOC primitives

DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with 
roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date
• Tested on helicopters searching in a cluttered terrain 
• Tested on global minima for vehicles deployed to formation



START

GOAL

DMOC primitives

DMOC Primitives, Roadmap Strategies (Marin Kobilarov)

DMOC Primitives chosen from pre-computed libraries can be combined with 
roadmap strategies and dynamic programming to achieve global optimal strategies.

Accomplishments to date
• Tested on helicopters searching in a cluttered terrain 
• Tested on global minima for vehicles deployed to formation

Future Directions: Combine with trend optimization techniques for charting 
efficient roadmaps. Make use of this technique in the surveillance problem.   
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Roadmap, dynamic programming strategies for rapid search methods 
drawing from the DMOC primitives library for the component pieces. 
Dynamics is faithfully represented.

Global Strategies using DMOC Primitives
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The Idea of MT Optimization
J

α

The nonlinear function we
wish to locally minimize.

Evaluations of J given α are
assumed to be expensive, and
thus gradient based methods
would be inefficient.

J

α

Trend optimization samples
a small number of points,...

J

α

...fits a trend to the
results using prescribed
basis functions,...

Good for situations in which J is noisy



The Idea of MT Optimization

J

α

...rapidly determines
the global minimum
of the trend,...

α̂

J

α

...evaluates new points around
the trend minimizer α̂,...

α̂

J

α

...updates the trend,...

J

α
α̂

...and repeats until convergence.
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• Inner loop: DMOC determines optimal 
trajectories and controls
• Outer loop efficiently searches for 
optimal design parameters (trend 
optimization)
• Scheme yields optimal mechanical 
system design for specified tasks

Inner/Outer Loop Architecture Example Systems to Optimize:

Bipedal Robots

Future: Stochastic DMOC

Design of Dynamics

MTOInitial Design

DMOC

Optimal Design

Optimize given Design
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Global solution for optimal control problems
Formation of hovercraft

! relative arrangement on
target manifold

! minimize control effort

! many local minima

Sampling-based Roadmap

! graph of DMOC primitives

! dynamic programming

! global state space
exploration

! near globally optimal
solution
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GOAL
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Hurricane Nabi (Philip DuToit)



LCS for Hurricane Nabi

NCEP/NCAR Reanalysis Data at the 850mb pressure  level.
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Here DMOC and LCS come together 
(Ashley Moore, Evan Gawlick)

Initial Guess DMOC
case 1 175.8273 0.2331
case 2 178.5763 0.4452
case 3 172.7951 0.0672
case 4 171.3516 0.0902
case 5 177.8498 0.4386

Delta V (m/s)

Initial Guess DMOC Result
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Features of Invariant Manifolds

• Invariant manifolds—usually thought of for autonomous 
or periodic systems. Ocean and atmosphere are not ! 

• Invariant manifolds are usually “attached” to fixed points, 

periodic orbits, or other invariant sets—not required by 
LCS the way we do them today. 

• George Haller idea—use FTLE (Finite Time Liapunov 
Exponent Fields) and look for ridges—this was developed 
in the PhD Theses of Lekien, Shadden.
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ẍ + sinx = 0



Invariant Manifolds: Standard View
• Start with the simple pendulum—a swing!
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Smale Horseshoe
• Smale (in the 1960s) abstracted what was going on in the 

tangle to produce the horseshoe map.

• Proved lots of nice things—eg, an invariant Cantor set.
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Transient Chaos

• Poincaré’s homoclinic tangle 
corresponds to transient chaos—
dynamic events over intermediate time 
scales.

• Infinite time notions like strange 
attractors, inertial manifolds, etc are 
not relevant in this context

• I will show you the tangle in hurricane 
dynamics !!

• First, a bit more about the tangle

Poincaré, one of the 
creators of modern 

dynamical systems, 1890
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Back to Nabi
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LCS Key Features

• LCS often surround coherent structures

• Useful for computing mixing and transport via lobe 
dynamics

• In fluids, particles move in a dynamical system given by 
the velocity field of the flow

• LCS divide particles with different dynamical fates

• Clear example in ocean dynamics 
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Lagrangian Coherent Structures in Monterey bay



LCS in the Ocean
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Other Uses of LCS

• Drifter deployment strategies
• Also important in AOSN and ASAP projects (Naomi 

Leonard, Steve Ramp, other oceanographers)
• Data collection in Monterey Bay (ROMS, HOPS)
• Pathways for gliders and strategies for improving data 

assimilation (Pierre Lermiscaux and Francois Lekien)
• Pollution studies (LCS play a key role in timing and fate of 

pollution)
• Cardiovascular studies



LCS for flow over an Airfoil



Two Types of LCS:
Attracting and Repelling



LCS for Ozone Hole Breakup



Thermohaline Circulation
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 Laboratory Vortex Rings
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Lobes, Mixing, Transport
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Vortex Rings and Jellyfish



Jellyfish one more time



Lobes, Mixing, Transport
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3D LCS-Meddies

Ellipsoid of vorticity Particle trajectories
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A Word on Computing LCS
• Approximate the fastest separation rate of nearby 

particles by finding the maximum eigenvalues of a 2 x 2 
or 3 x 3 symmetric matrix—the Cauchy-Green tensor 
(pull-back of the metric tensor under the flow map)

• This is the FTLE Field, a real valued (time dependent) 
function on the plane or in space. This gives the repelling 
LCS

• Compute ridges in the FTLE field. Those are the LCS !

• Run time backwards for the attracting LCS 

• Computations in 2d can be done on a laptop, but in 3d it 
requires a hefty computer. 



Ridges can be complicated
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