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1. Linear Dirac Structures on Vector

Spaces

• V, n-dimensional vector space, V ∗ dual space.

• Symmetric paring 〈〈. , .〉〉 on V ⊕ V ∗ defined by

〈〈(v1, α1), (v2, α2)〉〉 = 〈α1, v2〉+ 〈α2, v1〉 ,

where (v1, α1), (v2, α2) ∈ V ⊕ V ∗, and

〈· , ·〉 natural paring between V ∗ and V.

• A Dirac structure on V is a subspace
D ⊆ V ⊕ V ∗ such that D = D⊥, where D⊥ is
the orthogonal of D relative to the pairing
〈〈. , .〉〉.

Example

A presymplectic vector space (V, ω) has an
associated Dirac structure

Dω = {(v, α) ∈ V ⊕ V ∗ | α = ω[(v)}.

A skew-symmetric form π : V ∗ × V ∗ → R on V

defines a Dirac structure Dπ on V

Dπ = {(v, α) ∈ V ⊕ V ∗ | v = π](α)}.
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Lemma 1

A vector subspace D ⊆ V ⊕ V ∗ is a Dirac
structure on V if and only if it is maximally
isotropic with respect to the symmetric pairing
〈〈. , .〉〉 . A further equivalent condition is given by
dimD = n and 〈α1, v2〉+ 〈α2, v1〉 = 0 for all
(v1, α1), (v2, α2) ∈ D.

For a given subset W ⊆ V we define the
ω-orthogonal complement Wω by

Wω = {v ∈ V | ω(v, w) = 0 for all w ∈W}.

Lemma 2

Let ω be a presymplectic form on a vector space
V and let W ⊆ V be any vector subspace. Then
W [ := ω[(W ) = (Wω)◦, where the right hand side
denotes the annihilator of Wω.
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From Courant [1990] one easily deduces

Theorem 1

Let a given Dirac structure D ⊆ V ⊕ V ∗ and
define the subspace ED ⊆ V to be the projection
of D on V .

Then one can uniquely define a skew form ωD on
ED by ωD(v, w) = α(w), where v ⊕ α ∈ D. (One
checks that the definition of ωD is independent of
the choice of α.)

Conversely, given a vector space V, a subspace
E ⊆ V and a skew form ω on E, one sees that
Dω = {(v, α) | v ∈ E,α(w) = ω(v, w) for all w ∈
E} is the unique Dirac structure D on V such
that ED = E and ωD = ω.
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2. (Almost-) Dirac Manifolds

• By definition an almost Dirac structure (or,
in this talk, simply a Dirac structure) D on a
manifold M is a subbundle of the Whitney
sum D ⊆ TM ⊕ T ∗M such that for each
x ∈M, Dx ⊆ TxM ⊕ T ∗xM is a Dirac
structure on the vector space TxM. A Dirac
manifold is a manifold with a Dirac structure
on it.

For a given 2-form ω on M there is a
naturally associated Dirac structure Dω on
M, where Dωx = Dω(x).

For a given bivector π on M there is a
naturally associated Dirac structure Dπ on
M, where Dπx = Dπ(x).
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• Facts that can be proven

A Dirac structure D on M yields a
distribution EDx ⊆ TxM which carries a
presymplectic form ωD(x) : EDx × EDx → R,
for all x ∈M.

An interesting way of building Dirac
structures is the following

Theorem 1. Let M be a manifold and let ω be a
2-form on M. Given a regular distribution E on
M , define the skew-symmetric bilinear form ωE
on E by restricting ω to E × E. For each x ∈M
let

DωE
(x) = {(vx, αx) ∈ TxM ⊕ T ∗xM | vx ∈ E(x)

and αx(wx) = ωE(x)(vx, wx) for all wx ∈ E(x)} .

Then DωE
⊆ TM ⊕ T ∗M is a Dirac structure on

M . It is the only Dirac structure D on M

satisfying E(x) = ED(x) and ωE(x) = ωD(x), for
all x ∈M.
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By definition a Dirac structure D on M is called
integrable if the following condition is satisfied

〈LX1α2, X3〉+ 〈LX2α3, X1〉+ 〈LX3α1, X2〉 = 0,

for all pairs of vector fields and one-forms
(X1, α1), (X2, α2), (X3, α3) that take values in D

and where LX denotes the Lie derivative along
the vector field X on M .
This definition encompasses the notion of closedness for
presymplectic form and Jacobi identity for brackets.
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• The following fundamental theorem was
proven in Courant[1990]

Theorem 2. Let D be an integrable Dirac
structure on a manifold M. Then the
distribution ED is integrable, that is, for each
x ∈M there exists a uniquely determined
embedded submanifold S of M such that
TyS = EDy for all y ∈ S. Each leaf S carries
a presymplectic form ωD,S defined by
ωD,S(x) = ωD(x), for each x ∈ S.

We will be mainly concerned with Dirac structures
that need not be integrable, since
this is the situation for nonholonomic systems.

3. The Dirac Equation

Let M be a given manifold, D a given Dirac
structure on M. Let E : M → R be a given
function, called the energy function. By definition
the Dirac equation is the following equation

(x, ẋ)⊕ dE(x) ∈ Dx. (1)
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This equation generalizes the equation considered
in the Gotay-Nester algorithm,

ω(x)(ẋ, ) = dH(x),

and also the Poisson equation

ḟ(x) = {f,H}(x).

In fact, it is enough to take, respectively, D = Dω

and D = Dπ while E = H.

Example: Nonholonomic Systems

A nonholonomic system is given by a
configuration space Q, a distribution ∆ ⊆ TQ,
called the nonholonomic constraint and a
Lagrangian L : TQ→ R. Equations of motion are
given by Lagrange-d’Alembert’s principle.
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An equivalent form of this principle is the
following

δ

∫ t1

t0

(pq̇ − E(q, v, p))dt = 0,

where E : TQ⊕ T ∗Q→ R is defined by
E(q, v, p) = pv − L(q, v), and with the restriction
on variations δq ∈ ∆, δq(ti) = 0 for i = 1, 2, along
with the kinematic restriction v ∈ ∆. The
resulting equations are the following

ṗ− ∂L

∂q
∈ ∆◦ (2)

q̇ = v (3)

p− ∂L

∂v
= 0 (4)

v ∈ ∆ (5)

We are going to show that equations (2)-(5) can
be written in the form of Dirac equation (1). For
this purpose we must construct an appropriate
Dirac structure associated to the nonholonomic
constraint.
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Define the following Dirac structure
D̄∆ ⊆ TM ⊕ T ∗M on M = TQ⊕ T ∗Q associated
to a given distribution ∆ ⊆ TQ on a manifold Q

by the following local expression

D̄∆(q, v, p) = {(q, v, p, q̇, v̇, ṗ, α, γ, β) | q̇ ∈ ∆(q), α+ ṗ ∈ ∆◦(q),

β = q̇, γ = 0}.

Note: We shall accept both equivalent notations

(q, v, p, q̇, v̇, ṗ, α, γ, β) ≡ (q, v, p, q̇, v̇, ṗ)⊕(q, v, p, α, γ, β),

for an element of TM ⊕ T ∗M.

The following assertion establishes, in particular,
that D̄∆ is well defined globally: it does not
depend on the choice of a local chart.
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Let τ̄ : TQ⊕ T ∗Q→ Q and π̄ : TQ⊕ T ∗Q→ T ∗Q

be the natural maps that in local coordinates are
given by τ̄(q, v, p) = q and π̄(q, v, p) = (q, p). For a
given distribution ∆ ⊆ TQ consider the
distribution ∆̄ = (T τ̄)−1(∆) and also the 2-form
ω̄ = π̄∗ω, on the manifold TQ⊕ T ∗Q, where ω is
the canonical 2-form on T ∗Q. We have the local
expressions ∆̄ = {(q, v, p, q̇, v̇, ṗ) : q̇ ∈ ∆} and
ω̄(q, v, p) = dq ∧ dp. Now we can apply Theorem 1
replacing M by TQ⊕ T ∗Q, E by ∆̄ and ω by ω̄
and then we can easily check that the Dirac
structure DωE

coincides with D̄∆.
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The following assertion can be checked directly:

The condition

(x, ẋ)⊕ dE(x) ∈ D̄∆, (6)

where x = (q, v, p), is equivalent to

ṗ− ∂L

∂q
∈ ∆◦ (7)

q̇ = v (8)

p =
∂L

∂v
(9)

q̇ ∈ ∆, (10)

which is clearly equivalent to equations (2)-(5).
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4. Solving the Dirac Equation.

By definition, a solution to the Dirac equation (1)
on the Dirac manifold (M,D),

(x, ẋ)⊕ dE(x) ∈ Dx.

is a curve x(t) such that

(x(t), ˙x(t))⊕ dE (x(t)) ∈ Dx(t),

for all t.

The Gotay-Nester Algorithm can be
generalized for the general Dirac equation.

Define recursively M ⊇M1 ⊇M2 ⊇, ...

M1 = {x ∈M | ∃(x, v) ∈ TxM such that (x, v)⊕ dE(x) ∈ Dx}.

Mk+1 = {x ∈Mk | ∃(x, v) ∈ TxMk such that (x, v)⊕ dE(x) ∈ Dx}.
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One assumes for simplicity that each Mk is a
submanifold and that the sequence stops, say,
Mc = Mc+1, and, moreover, that the dimension of
the affine subspace

{(x, v) ∈ TxMc | (x, v)⊕ dE(x) ∈ Dx}

is locally constant. Then the Dirac equation
defines, at least locally, an ODE depending on
parameters. Existence of solution and smooth
dependence of the parameter is then guaranteed.

The previous algorithm, for the special case in
which D = Dω is the Dirac structure associated to
a presymplectic form ω has been written in terms
of the operator ω, defined on subsets of TM, by

Wω = {(x, v) ∈ TM | ω(x)(v, w) = 0, for all(x,w) ∈W},

obtaining what is called the Gotay-Nester
algorithm, namely

M1 = {x ∈M | 〈dE(x), EωDx〉 = 0, }

Mk+1 = {x ∈Mk | 〈dE(x), (EDx ∩ TxMk)ω〉 = 0}.
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For any Dirac structure on M and any Wx ⊆ EDx
define

WD
x = {(x, v) ∈ TxM | D[(x,w)(x, v) = {0}, all(x,w) ∈W},

where

D[((x, v)) = {α ∈ T ∗xM | (x, v)⊕ α ∈ D}

and
D[(Wx)

⋃
(x,v)∈Wx

D[((x, v)).

Then, for any Dirac structure D one can
generalize the Gotay-Nester algorithm as follows,

M1 = {x ∈M |
〈
dE(x), EDDx

〉
= 0, }

Mk+1 = {x ∈Mk |
〈
dE(x), (EDx ∩ TxMk)D

〉
= 0}.

• The previous algorithm gives a method to
solve the Dirac equation (1) which generalizes
the Gotay-Nester method. Namely, determine
Mc, assume that the dimension of the affine
space {(x, ẋ) ∈ TxMc | (1) is satisfied} is a
locally constant function of x, then one can
simply restrict (1) to Mc to obtain a vector
field on Mc depending on a parameter.
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More precisely, one can use any local
parametrization of Mc, say x = x(λ1, ..., λr),
where r is the dimension of Mc, and then
substitute this expression for x in (1) to
obtain an IDE in λ = (λ1, ..., λr), namely(
x(λ), Dλx(λ) · λ̇

)
⊕ dE (x(λ)) ∈ D (x(λ)) .

With the method just described, one can deal with many examples of
interest, such as nonholonomic systems and L-C circuits, provided that
one chooses the manifold M and the Dirac structure D properly.
One chooses the manifold M to be the Pontryagin bundle TQ⊕ T ∗Q
and a canonically constructed Dirac structure D̄∆ on M.

•
The constraint algorithm so described is naturally
adapted for reduction of Dirac structures.

• A refinement of the algorithm gives a
representantion of the final equation in terms
of brackets, generalizing the Dirac theory of
constranits for nonholonomic systema and
L-C circuits.
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5. Reduction

Dirac Anchored Vector Bundles Think of
an anchored vector bundle as being a
generalization of the tangent bundle. Examples
should be reduced tangent bundles
TM/G→M/G, where M is a principal bundle
with structure group G.

Define

(a) An anchored vector bundle is a pair
(π(E,M), ρE) where π(E,M) : E →M is a given
vector bundle and ρE : E → TM is a given
vector bundle map over the identity (that is,
ρE(e) ∈ Tπ(E,M)(e)M for e ∈ E) called the
anchor. For x ∈M , we denote by
ρx : Ex → TxM the restriction of ρ to the
fiber Ex. A morphism from the anchored
vector bundle (π(E,M), ρE) to the anchored
vector bundle (π(F,N), ρF ) is a vector bundle
map f : E → F, covering a map f : M → N,

such that ρF ◦ f = Tf ◦ ρE . This defines the
category of anchored vector bundles . The
morphism f is called an isomorphism if it has
an inverse.
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(b) Let π(E,M) : E →M be a given vector bundle
and let π(E∗,M) : E∗ →M be the dual vector
bundle of E. A fiberwise Dirac structure on
π(E,M), or simply a Dirac structure on
π(E,M), is a vector subbundle DE ⊆ E ⊕ E∗

such that, for each x ∈M, (DE)x ⊆ Ex ⊕ E∗x
is a linear Dirac structure on the vector space
Ex. A Dirac anchored vector bundle is a
triple (π(E,M), ρE , DE) where (π(E,M), ρE) is
an anchored vector bundle and DE is a Dirac
structure on π(E,M).

(c) A morphism (particular case, see below) from
the Dirac anchored vector bundle
(π(E,M), ρE , DE) to another Dirac anchored
vector bundle (π(F,N), ρF , DF ) is a pair of
vector bundle maps f : E → F, f̃ : E∗ → F ∗,

each covering a map f : M → N, such that
one is the dual of the other, ρF ◦ f = Tf ◦ ρE
and (f ⊕ f̃)(DE) = DF . (can define the notion
of backward and forward morphism and the
category of Dirac anchored vector bundles).
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(d) Let (π(E,M), ρE) be an anchored vector
bundle. A curve e(t), t ∈ (a, b) on E is called
admissible if the following condition is
satisfied

ρE (e(t)) =
d

dt
π(E,M)(e(t)), (11)

for all t ∈ (a, b).

Remarks.

• Any Lie algebroid, and even the more general
algebroid structure introduced by Grabowski
has an underlying anchored vector bundle
structure. For our version of Dirac reduction
theory, it is sufficient to have the structure of
a Dirac anchored vector bundle; that is, the
algebroid structure is not needed. (Bursztyn,
Crainic, Grabowski, Martinez).

• Note that we do not include any integrability
conditions in the definition of a Dirac
structure, as integrability does not hold in
examples such as nonholonomic systems.
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Dirac Equations of Motion. Let
(π(E,M), ρE , DE) be a given Dirac anchored
vector bundle.

Let ϕ ∈ Γ(E∗) given section of the dual bundle of
E, called the energy form. In many cases ϕ = dE ,
where E represents energy.

By definition, the associated Dirac system is
defined as follows

e⊕ ϕ(π(E,M)(e)) ∈ (DE)π(E,M)(e). (12)

A solution to the Dirac system (12) is an
admissible curve e = e(t) ∈ E, t ∈ (a, b), such that
(12) is satisfied for each t ∈ (a, b).

By definition, a Dirac dynamical system is a pair
(ϕ,D) where D =

(
π(E,M), ρE , DE

)
is an Dirac

anchored vector bundle and ϕ is an energy form.
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Reduced Anchored Vector Bundles. Let
D = (π(E,M), ρE , DE) be a given Dirac anchored
vector bundle. Assume that M is a principal
bundle with group G acting on M on the left, and
let π(M,M/G) : M →M/G be the natural
projection. We denote the action of an element
g ∈ G on M by f

g
: M →M .

Assume, in addition, that that G acts on E ⊕ E∗

by isomorphisms fg ⊕ f̃g : E ⊕ E∗ → E ⊕ E∗ of
Dirac anchored vector bundles, covering the
action of G on M and satisfies the condition
(fg)∗ = (f̃g)−1, for each g ∈ G. Recall that this
also means that this action leaves DE invariant.
Then we say we have an action of G on D , or
that G is a symmetry group of D.

One can show that E/G is a vector bundle over
M/G with a well defined vector bundle projection
π(E/G,M/G) : E/G→M/G.
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There is also a natural anchor for this vector
bundle, which we will denote, following our
general notation for the anchor, by ρE/G. It is
straightforward to check that
ρE/G := [Tπ(M,M/G)]G ◦ [ρE ]G does the job. By
definition,

[Tπ(M,M/G)]G : (TM)/G→ T (M/G)

is the vector bundle map defined by

[Tπ(M,M/G)]G([vm]G) = Tπ(M,M/G)(vm),

which one can easily check is well defined. A
common alternative notation for this map is
(Tπ(M,M/G))/G = [Tπ(M,M/G)]G.

Likewise, the map [ρE ]G : E/G→ (TM)/G is
defined by [ρE ]G([e]G) = [ρE(e)]G. The map ρE/G
so defined is an anchor because it is easy to check
that it is a vector bundle map
ρE/G : E/G→ T (M/G) over the identity.

Theorem 3. The quotient space (E ⊕ E∗)/G is
isomorphic to E/G⊕ (E/G)∗ as vector bundles
over M/G.
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Proof. One checks that a natural vector bundle
isomorphism Λ : (E ⊕ E∗)/G→ E/G⊕ (E/G)∗

covering the identity is given by

[em ⊕ αm]G 7→ [em]G ⊕ [αm]G

where em ∈ Em and αm ∈ E∗m. One checks that
this is well defined because if
[em ⊕ αm]G = [e′gm ⊕ α′gm]G, then [em]G = [e′gm]G
and [αm]G = [α′gm]G since the action of G, while
moving the common base points, acts
componentwise on the fibers of E ⊕ E∗. The
inverse map is similarly shown to be well defined
as follows. First, choose a point [em]G ⊕ [αgm]G in
E/G⊕ (E∗/G). Then write [αgm]G = [α′m]G
which is possible as the action by G on the fibers
is by linear isomorphisms. Now define a map by
[em]G ⊕ [α′m]G 7→ [em ⊕ α′m]G, which is, as above,
checked to be well defined and is the inverse of Λ.
Thus, Λ is a bundle isomorphism.
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Recall that DE ⊆ E ⊕ E∗. From the definition of
the action of G, we can then form the quotient
subbundle

DE/G ⊆ (E ⊕ E∗)/G ∼= E/G⊕ (E/G)∗

Theorem 4. Under the above assumptions and
constructions, the triple

D/G =
(
π(E/G,M/G), ρE/G, DE/G

)
, (13)

is a Dirac anchored vector bundle, called the
reduced Dirac anchored vector bundle. Moreover,
there is a natural morphism of Dirac anchored
vector bundles PG : D → D/G covering the
projection πM,M/G : M →M/G. Restricted to
each fiber of E ⊕ E∗, the associated map of
E ⊕ E∗ to (E ⊕ E∗)/G is an isomorphism.
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Proof. In the notation of the definition of a
morphism of Dirac anchored vector bundles, the
map f : E → F in this case is
f = π(E,E/G) : E → E/G. The map f̃ : E∗ → F ∗

is in this case, is f̃ : E∗ → (E/G)∗ the fiberwise
inverse dual of f̃ . Note again, that in our case,
the fibers of E and E/G have the same
dimension. These two maps clearly cover the
quotient map f = π(M,M/G) : M →M/G.

The requirement ρF ◦ f = Tf ◦ ρE in this case
becomes

ρE/G ◦ π(E,E/G) = Tπ(M,M/G) ◦ ρE

That is,

[Tπ(M,M/G)]G ◦ [ρE ]G ◦π(E,E/G) = Tπ(M,M/G) ◦ρE

which is readily checked. Each side evaluated on a
point em ∈ Em gives the tangent vector
[(Tπ(M,M/G) ◦ ρE)(em)]G.

The only thing we have not established yet is that
DE/G is a Dirac structure on the reduced bundle
E/G. Indeed, for each m ∈M we have a linear
isomorphism

fm ⊕ f̃m : Em ⊕ E∗m → (E/G)[m]G ⊕ (E/G)∗[m]G
.

where [m]G = π(M,M/G)(m) is the class of m.
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This isomorphism clearly transforms the linear
Dirac structure Dm ⊆ Em ⊕ E∗m into a linear
Dirac structure, which by definition is
(D/G)[m]G ⊆ (E/G)[m]G ⊕ (E/G)∗[m]G

.

Notice that in this method of Dirac reduction, the
fibers of the original underlying bundle E,
become, after reduction, the fibers of E/G, which
are not smaller in dimension, although the base
M/G of course is smaller. This will be shown to
be consistent with what one has in examples, such
as Lie-Poisson or Suslov reduction.

We shall introduce the following notation, often
more convenient in the categorical language,
namely

RG(E) := [E]G := E/G

RG(M) := [M ]G := M/G

RG(π(E,M)) := π(E/G,M/G)

RG(ρE) := ρE/G = [Tπ(M,M/G)]G ◦ [ρE ]G

RG(DE) := [DE ]G := DE/G := DE/G

RG(D) := [D]G := D/G

The various maps involved in the reduction
process are shown in Figure 1.
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Figure 1: The dark commutative triangles show the orig-

inal and reduced anchored vector bundles, alongwith maps

connecting them.
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Reduced Dirac Dynamical Systems. Now
let (ϕ,D) be a given Dirac dinamical system and
assume that the group G acts on D and also that
this action leaves ϕ invariant; that is,
ϕ(gm) = gϕ(m). We also say that G is a
symmetry for ϕ. In this case, there is an
associated section ϕ/G : M/G→ (E/G)∗ defined
by (ϕ/G)([m]G) = [ϕ(m)]G. Thus, we obtain a
naturally defined reduced Dirac dynamical system
(ϕ/G,D/G) which we also write as
RG(ϕ,D) = (RG(ϕ),RG(D), where
RG(ϕ) = ϕ/G := [ϕ]G.
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Reduction Theorem. We have the following
theorem, whose proof will be a consequence of the
above developments.

Theorem 5. Let (ϕ,D) =
(
ϕ, (π(E,M), ρE , DE)

)
be a given Dirac dynamical system and assume
that the group G is a symmetry of (ϕ,D). If a
curve e(t), t ∈ (a, b) is a solution of the Dirac
equations of motion; that is,

e⊕ ϕ(m) ∈ (DE)m (14)

where m = π(E,M)(e), then the reduced curve
[e]G(t), t ∈ (a, b) is a solution of the reduced Dirac
equations of motion; that is,

[e]G ⊕ [ϕ]G([m]G) ∈ ([DE ]G)[m]G . (15)
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Proof. Let e(t), t ∈ (a, b) be a solution of the
Dirac equation of motion (14) that is, by
definition it is an admissible curve satisfying

e(t)⊕ ϕ(m(t)) ∈ (DE)m(t) (16)

for all t ∈ (a, b), where m(t) = π(E,M) (e(t)) .
Taking equivalence classes of both sides of this
relation, it is easy to see using the definition of the
reduced Dirac structure that [e(t)]G satisfies the
reduced Dirac equation of motion (15), that is,

[e(t)]G ⊕ [ϕ]G([m(t)]G) ∈ ([DE ]G)[m(t)]G (17)

for all t ∈ (a, b). It only remains to show that
[e(t)]G is an admissible curve, in other words,

ρE/G[e(t)]G =
d

dt
π(E/G,M/G)[e(t)]G,

for all t ∈ (a, b). Using the definitions of ρE/G and
of [Tπ(M,M/G)]G and the commutativity of the
diagram in Figure 1, we have
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ρE/G[e(t)]G =
(
[Tπ(M,M/G)]G ◦ [ρE ]G

)
[e(t)]G

= [Tπ(M,M/G)]G ([ρE (e(t))]G)

= Tπ(M,M/G) (ρE (e(t)))

= Tπ(M,M/G) ·
d

dt
m(t)

=
d

dt
π(M,M/G) (m(t))

=
d

dt
[m(t)]G

=
d

dt
π(E/G,M/G)[e(t)]G,

which shows that [e(t)]G is admissible.
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Example: The Generalized Suslov
Problem. We next consider the particular case
of Example 1, where the manifold Q is a Lie
group while the distribution ∆ and the
Lagrangian L are left invariant. Let G be a Lie
group, ∆ ⊆ TG a given left invariant distribution
and L : TG→ R a given left invariant
Lagrangian. Define M = TG⊕ T ∗G and also D∆

as in Example 1, then the Dirac equations of
motion (12) will be the Lagrange-d’Alembert
equations, which we now calculate in detail.

Let TG ≡ G× g be the body coordinate
representation (that is, the left trivialization of
TG) and let s ⊆ g be a subspace such that
∆ = G× s. We can identify
TM ≡ (G× g× g∗)× (g× g× g∗). A given
element of TM is written (g, v, α, v̄, v̇, α̇), where
v̄ = g−1ġ. The presymplectic form ω̄ has the
following expression
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ω̄(g, v, α) ((v̄, v̇, α̇), (w̄, δw, δα)) = −〈α̇, w̄〉+〈δα, v̄〉+〈α, [v̄, w̄]〉.
(18)

Then we obtain the following expression for D∆,

D∆ = {(g, v, α, ġ, v̇, α̇, p̄, p, u) | v̄ ∈ s, ω̄(g, v, α) ((v̄, v̇, α̇), (w̄, δw, δα))

= 〈p̄, w̄〉+ 〈p, δw〉+ 〈u, δα〉, for all w̄ ∈ s, δw ∈ g, δα ∈ g∗}.

One can check that (g, v, α, ġ, v̇, α̇, p̄, p, u) ∈ D∆ if
and only if the following equations are satisfied

−α̇+ ad∗v̄ α− p̄ ∈ s◦, p = 0, v̄ = u, v̄ ∈ s.

(19)
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Define l : g→ R and e : g× g∗ → R, where
l(v) = L(e, v) and e(v, α) = 〈α, v〉 − l(v). Recall
that one defines
E(g, v, p) = 〈(g, p), (g, v)〉 − L(g, v). Since L is
invariant we clearly have E(g, v, α) = e(v, α),
which does not depend on g.

To write equations of motion we must calculate
(g, v, α, p̄, p, u) = dE(g, v, α), and we obtain

p̄ = 0, p = α− ∂l

∂v
, v = u. (20)
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From equations (19) and (20), we obtain

− d

dt

∂l

∂v
+ ad∗v

∂l

∂v
∈ s◦, v ∈ s. (21)

We have obtained the generalized Suslov
equations by simply calculating equation (12)
using a left trivialization.

Now we will show that the same equations can be
obtained by reduction.
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First of all, we are going to reduce the Dirac
anchored vector bundle
(πTM,M , ρTM ) = (τM , 1TM ) .

It is easy to see that

TM/G = (g× g∗)× (g× g× g∗).

We have the following expression for the reduced
Dirac structure D∆/G,

[D∆]G = {(v, α, ġ, v̇, α̇, p̄, p, u) | v̄ ∈ s, [ω̄]G(v, α) ((v̄, v̇, α̇), (w̄, δw, δα))

= 〈p̄, w̄〉+ 〈p, δw〉+ 〈u, δα〉, for all w̄ ∈ s, δw ∈ g, δα ∈ g∗},

where we have used the fact that

[ω̄]G(v, α) ((v̄, v̇, α̇), (w̄, δw, δα)) = −〈α̇, w̄〉+〈δα, v̄〉+〈α, [v̄, w̄]〉.
(22)

The reduced energy function is the function
e : g× g∗ → R. It is very easy to see that the
reduced Dirac equation reproduces the previous
equations of motion.
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Reduction by Stages: An Example Let
(πE,M , ρE) be a given Dirac anchored vector
bundle. Assume that M is a principal bundle
with structure group G, acting on the left. Now
assume that there is a normal subgroup N ⊆ G.
Then we can reduce by stages. One can check
that the natural isomorphism

E/G ≡ (E/N)/(G/N)

[e]G ≡ [[e]N ]G/N is an isomorphism of Dirac
anchored vector bundles.

Let us recall some facts from Lagrangian
reduction by stages, (Cendra, Marsden, Ratiu
[2001]). Let π : Q→ Q/G principal bundle with
structure group G acting on the left.

A principal connection. The curvature B is given
by Cartan’s structure equation
dA(u, v) = B(u, v) + [A(u), A(v)].

g̃ adjoint bundle.

Define the g̃-valued 2-form B̃ on the base Q/G by
B̃([q]G)(X,Y ) = [q,B(Xh(q), Y h(q))]G, where Xh

and Y h are the horizontal lifts of the vector fields
X and Y on Q/G. Denote ∇̃A the affine
connection naturally induced on the vector
bundle g̃ by the principal connection A. Let X̄i,
i = 1, 2 be given invariant vector fields on Q.
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Recall that one has an isomorphism
αA : TQ/G→ T (Q/G)⊕ g̃, given by
αA(q, q̇) = Tπ(q, q̇)⊕ [q,A(q, q̇)]G.

Let αA
(
[X̄i]G

)
= Xi ⊕ ξ̄i, i = 1, 2. Then one can

prove the following formula for the Lie bracket on
sections of Lagrange-Poincaré bundles:

[X1⊕ξ̄1, X2⊕ξ̄2] = [X1, X2]⊕∇̃AX1
ξ̄2−∇̃AX2

ξ̄1−B̃(X1, X2)+[ξ̄1, ξ̄2],

where, by definition,

[X1 ⊕ ξ1, X2 ⊕ ξ2] = αA
([

[X̄i, X̄i]
]
G

)
.

One would like to perform reduction by stages,
which has been done in Cendra, Marsden, Ratiu
[2001] carefully for two stages. We are going to
adapt that formula to show how to reduce in two
stages the Suslov problem, omitting the technical
aspects.
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Let a Lie group G, N a normal subgroup of G
and K = G/N. Let G, N and K be the Lie
algebras of G, N and K respectively. We choose
an identification G ≡ K ⊕N as linear spaces. Let
AN be a principal conexion on the principal
bundle G with structure group N having the
property that AN (gvq) = AdgAN (vq), for every
g, q ∈ G, vq ∈ TqG. Then G = KAN +N where
KAN is the horizontal lift of K in the bundle
G→ G/N. Note that KAN ∩N = {0}.

Then, the Lie bracket in the Lie algebra G can be
written in terms of the brackets of the Lie algebra
N and the Lie algebra K, and also in terms of
∇(AN ,V ) and B̃AN as follows:
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[κ1 ⊕ η1, κ2 ⊕ η2] = [κ1, κ2]⊕ [∇(AN ,V )]G/N,κ1η2

− [∇(AN ,V )]G/N,κ2η1 − [B̃AN ]G/N (κ1, κ2) + [η1, η2] .

Using formulas for reduced covariant derivatives
in the previous reference we can calculate
explicitly [B̃AN ]G/N (κ1, κ2) and [∇(AN ,V )]G/N,κη.

If we define the bilinear forms
bN : K ×N → Ñ/K ≡ N and

aN : K ×K → Ñ/K ≡ N

bN (κ, η) :=
[[
e, [κAN , η]

]
N

]
K

and
aN (κ, κ) :=

[[
e,−AN (e)

(
[κAN , κAN ]

)]
N

]
K

Then we can write the Lie bracket as follows:
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[κ⊕ η, κ⊕ η] = [κ, κ]⊕ bN (κ, η)− bN (κ, η)− aN (κ, κ) + [η, η].

Using this we can reduce in two stages. We are
not going to go through the details, but simply
observe that a key technical point of the
calculation will be to introduce the previous
expression of the Lie bracket in the expression of
the presymplectic form

[ω̄]G(v, α) ((v̄, v̇, α̇), (w̄, δw, δα)) = −〈α̇, w̄〉+〈δα, v̄〉+〈α, [v̄, w̄]〉.

The final expression of the equations is the
following



α̇ = ad∗κα

β̇ = β ([η, . ] + bN (κ, . ))

0 = β (bN ( . , η) + aN (κ, . ))

α =
∂l

∂κ

β =
∂l

∂η
.

THANK YOU FOR YOUR ATTENTION


