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Criticality in shallow water hydrodynamics

In shallow water, a uniform flow with velocity u and depth h,
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is said to be critical when u2 = gh (Froude number unity).

Another characterization: the flow is critical when the speed of a
plane wave in the linearization about uniform flow equals speed of
uniform flow:

speed of plane waves = ±
√

gh

Criticality is a bifurcation point for solitary waves.

In this case, Froude number unity is a bifurcation point for the KdV
solitary wave (add dispersion to SWE to see this).



Criticality in shallow water hydrodynamics

Shallow water equations

ut + uux + ghx = 0 and ht + uhx + hux = 0 .

Steady solutions realize constant values of Q and R

R = gh + 1
2u2 and Q = hu .

Given Q and R find values of h and u. Criticality:

• the state at which R is a minimum for fixed Q 6= 0
• the state at which Q is a maximum for fixed R > 0 (u > 0)

Q fixedR

h

R fixedQ

u



Generalize criticality to non-trivial states?

Use quasi-static approximation, or consider the flow to be
slowly-varying in the x−direction and use WKB theory

GILL (1977) J. Fluid Mech.
KILLWORTH (1992) J. Fluid Mech.
JOHNSON & CLARKE (2001) Ann. Rev. Fluid Mech.

Define criticality to be when eigenvalues of the linearization
pass through zero.

BENJAMIN (1971) A unified theory of conjugate flows,
Phil. Trans. Royal Soc. London A

But restricted to parallel flows (independent of x), and criticality
is treated as a one-parameter problem.



New observation: uniform flows are relative equilibria

Criticality is an n−parameter problem with n = dim(g)

(h, u) are coordinates for a Lie algebra

(R, Q) are coordinates for a momentum map

Criticality of uniform flows corresponds to degeneracy of RE
Degenerate RE generate zero eigenvalues: a saddle-center
bifurcation transverse to the group orbit

Saddle-center leads to homoclinic bifurcation (SW)

Role of curvature of the momentum map

Geometric phase along group

Thom-Boardman classification of singularities

Generalize criticality: can define criticality for any flow which can be
characterized as a RE !



G−equivariant Hamiltonian systems

Consider a Hamiltonian system with symmetry. For example, take

Jut = ∇H(u) , u ∈ M = R2n+2 ,

and suppose that it is equivariant with respect to an n−dimensional
abelian Lie group G (subgroup of the Euclidean group) with Lie
algebra g, action Φg(u) and generator

ξM(u) :=
d
ds

∣∣∣∣
s=0

Φexp(tξ)(u) , ξ ∈ g .

Suppose G is symplectic and the Hamiltonian function is
G−invariant, etc., and momentum map

J : M → g∗ .



Symplectic relative equilibria

Relative equilibria are solutions which travel along a group orbit at
constant speed. An RE is of the form

u(t) = Φexp(tξ)(ϕ) for some ξ ∈ g ,

where ϕ : g → M is a critical point of the augmented Hamiltonian

Hξ(u) := H(u)− 〈J(u)− µ, ξ〉 .

A critical point, ϕ, of Hξ is a mapping from g into M. Substitution into
the momentum gives

µ = J ◦ ϕ(ξ) .

a mapping from g into g∗.
The equation DHξ = 0 can also be interpreted as the Lagrange
necessary condition for a constrained variational principle: find critical
points of H restricted to level sets of the momenta.

(cf. MARSDEN (1992), MARSDEN & RATIU (1994))



Degenerate relative equilibria

A RE is non-degenerate when the second variation of Hξ at a critical
point is a non-degenerate quadratic form on the subspace consisting
of vectors tangent to J−1(µ) and transverse to the group orbit.

Four types of degeneracy

• Singularity of the momentum map.

Assume throughout that µ is a regular value of the momentum map.

• Failure of G-Morse: the dimension of the kernel of the second
variation of Hξ is greater than the dimension of the group. Related to
Dc(µ) singular.

• Failure of G-Morse: µ fixed, but external parameters varied;
example: PALMORE, Measure of degenerate relative equilibria I, Ann.
Math. (1976).

• det[DP(c)] = 0, P(c) := J ◦ ϕ and c are coordinates for g.



Degenerate RE and the Jacobian

The key to the study of
the nonlinear behaviour
transverse to the group
orbit near degenerate RE
is the geometry of

P : g → g∗ .

The condition

det[DP(c)] = 0 ,

defines a hypersurface in
g with image in g∗

P

P

1

2

P
3

n



Geometry of det[DP(c)] = 0

When DP(c) has rank n − 1
there exists n ∈ Tc g with

[DP(c)]n = 0 .

The image of the
hypersurface in g∗ can have
singularities. By introducing a
metric, n can be interpreted
as a normal vector to the
surface in g∗, at regular
points.
The surface in g∗ is a barrier
to the existence of RE.

P

P

1

2

P
3

n



Thom-Boardman singularity theory

For a mapping P : X → Y, with X, Y n−dimensional vector
spaces, the subsets

Σk (P) = {c ∈ X : rank(Jac(c)) = n − k }

are known in singularity theory as the Thom-Boardman
singularities. Restrict to the case k = 1. There is a hierarchy of
singular sets, for example

Σ11(P) = Σ1

(
P
∣∣∣∣
Σ1(P)

)

is the set where Jacobian of the kernel of P restricted to Σ1(P)
drops in rank by one. The classification continues until the
dimension is exhausted. The connection with degenerate RE:

Momentum map P(c) ∈ Σ1(P) ⇒ saddle-center bifurcation
Nonlinearity: P(c) /∈ Σ11(P) ⇒ homoclinic bifurcation



Degeneracy of DP(c) and saddle-center

Linearize about a degenerate relative equilibrium

0 is an eigenvalue of geometric multiplicity n
0 is an eigenvalue of algebraic multiplicity 2n
0 is an eigenvalue of (at least) algebraic multiplicity 2n + 2
if and only if det[DP(c)] = 0 (invoking the G−Morse
hypothesis).

Saddle-center bifurcation of eigenvalues in the linearization
transverse to the group orbit corresponds to P(c) ∈ Σ1(P).

Transform linearization to Williamson normal form.



Leading order nonlinear normal form

For values of the momenta in a neighbourhood of a degenerate
point,there exists coordinates
(φ1, . . . , φn, u, I1, . . . , In, v) ∈ R2n+2 satisfying

−dv
dt = I1 − 1

2κu2 + · · · ,

du
dt = s1v + · · · ,

−dIj
dt = 0 , j = 1, . . . , n

dφ1
dt = u + · · ·
dφj
dt = sj Ij + · · · , j = 2, . . . , n .

The coordinates (I1, . . . , In) are local coordinates near a point
on the criticality hypersurface in P−space. The coordinate I1 is
associated with the direction transverse to the hypersurface,
and I2, . . . , In are associated with directions tangent to the
image of the hypersurface det[DP(c)] = 0.



Formula for κ and the symplectic signs

The coefficient of the nonlinear term in the normal form, κ, can
be expressed in terms of the generalized eigenvectors,

κ = −〈ξn+1, D3H(ξn+1, ξn+1)〉 − 3〈ξ1, D3H(ξ1, ξ2n+2)〉

+3〈ξ1, D3H(ξn+1, ξ2n+1)〉 .

The sign s1 = ±1 is a symplectic invariant associated with the
symplectic Jordan theory.

The signs sj for j = 2, . . . , n are the signs of the nonzero
eigenvalues of DP(c).



κ and the momentum map

The coefficient κ has a characterization in terms of the
geometry of the momentum map P

κ = a3
0 〈df (c), n〉 , f (c) := det[DP(c)] ,

where a0 is a positive constant.

Remark: κ can also be characterized as the intrinsic second
derivative1 of the mapping P(c) (e.g. PORTEOUS 1971,
GOLUBITSKY & GUILLEMIN 1973):

〈df (c), n〉 = Constant 〈D2P(c)(n, n), n〉 .

1 Thanks to James Montaldi (Manchester) for this observation.



Curvature of the momentum map

Let
g ∼= Tc g = h⊕ X , h = Ker(DP(c))

g∗ ∼= TP(c) g∗ = Y⊕ h∗ ,

It is the curvature of the graph of the function

K (c, s) = 〈n, P(c + sn)〉 ,

on h× h∗ that appears in the normal form

κ = Constant
d2

ds2

∣∣∣∣
s=0

K (c, s) ,

for some positive constant.

(cf. TJB, J. Diff. Eqns, 2008)



Leading order nonlinear normal form

Normal form transverse to the group

−dv
dt = I1 − 1

2κu2 + · · · ,

du
dt = s1v + · · · .

Normal form tangent to the group

−dIj
dt = 0 , j = 1, . . . , n

dφ1
dt = u + · · ·
dφj
dt = sj Ij + · · · , j = 2, . . . , n

Directional geometric phase, plus dynamic drift along the group.



Schematic of the geometric phase
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Bifurcation of internal solitary waves
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Taking a Boussinesq model for internal waves (e.g. CHOI & CAMASSA
(1999) J. Fluid Mech.), can formulate the steady part as a Hamiltonian
system on R8 with a three-dimensional group of affine translations.

The Lie algebra can be coordinatized by the parameters associated
with the uniform flow (h1, u1, u2), and the momentum map can be
coordinatized by (R, Q1, Q2) where R is the Bernoulli energy and Qj
are the mass flux in each layer. Rigid lid implies h1 + h2 = d .



Criticality and geometry of P : g → g∗

P(c) := J ◦ ϕ = R(c)ξ∗1 + Q1(c)ξ∗2 + Q2(c)ξ∗3 ,

with c = (h1, u1, u2) and

R(c) = 1
2ρ1u2

1 −
1
2ρ2u2

2 + (ρ1 − ρ2)gh1

Q1(c) = ρ1h1u1

Q2(c) = ρ2(d − h1)u2 .

DP(c) =

(ρ1 − ρ2)g ρ1u1 −ρ2u2
ρ1u1 ρ1h1 0
−ρ2u2 0 ρ2(d − h1)

 ,

and there exists n satisfying Jac(c)n = 0 when f (c) = 0 where

f (c) = det(Jac(c)) = ρ1ρ2(ρ1 − ρ2)gh1(d − h1)
[
1− F 2

1 − rF 2
2
]

,

where F 2
j = u2

j /((1− r)ghj) and r = ρ2/ρ1.

Plot the surface f (c) = 0 and its image in the (R, Q1, Q2) plane.



Criticality surfaces for two-layer flow

g g∗



Criticality and df (c) · n

Now

f (c) := det[Jac(c)] = C
[
(1− r)−

u2
1

gh1
− r

u2
2

gh2

]
, C = ρ2

1ρ2gh1h2 .

The criticality surface in (h1, u1, u2) space is defined by f−1(0) and a
vector v is tangent to this surface if df · v = 0. Now,

df =
C
g

(
u2

1

h2
1
−

ru2
2

h2
2

,−2u1

h1
,−2ru2

h2

)
,

and so

〈df , n〉 =
3C
ρ1g

(
ρ1

u2
1

h2
1
− ρ2

u2
2

h2
2

)
.

(cf. TJB & Donaldson, Phys. Fluids, 2007)



Shallow water hydrodynamics
–degenerate RE, mean flow, secondary criticality and dark solitary waves
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Stokes waves in shallow water coupled to a mean flow are RE
associated with G = R2 × S1 with R2 associated with mean flow, and
S1 associated with the periodic wave (the Stokes wave):

(h, u, k) → (R, Q, B)

When these RE are degenerate,

det
[
∂(R, Q, B)

∂(h, u, k)

]
= 0 ,

the flow is critical and a class of solitary waves is generated: steady
“dark solitary waves”.

(cf. TJB & DONALDSON, J. Fluid Mech. 2006)



Model Hamiltonian system with S1 × R2 symmetry

a Axx + 2ib Ax + β|A|2A = −2 (`hx + mux)A

r hxx + c uxx = ` (|A|2)x

c hxx + s uxx = m (|A|2)x ,

where a, b, β, `, m, r , s and c are given (in general nonzero) real
parameters with rs − c2 6= 0. (For water waves gh0 − c2

g 6= 0.)

Jux = ∇H(u) , u ∈ R8 .

When RE associated with the group S1 × R2 are degenerate, a
homoclinic bifurcation occurs which corresponds to a form of
steady dark solitary wave. Found also in full water wave
problem (cf. TJB & Donaldson J. Fluid Mech. 2006).



Schematic of the image of Σ1(P) for degenerate
Stokes waves
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Schematic of steady dark solitary waves
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Degenerate RE and internal solitary waves

Two-layer flow with a rigid lid

uniform flows = 3D RE, critical surface is 2D
〈df , n〉 = 0 separates solitary waves of elevation from
solitary waves of depression.
3D mean flow (uniform flow) coupled to a periodic wave =
4D RE, 3D critical surface, bif. to internal steady DSWs

Two-layer flow with a free surface

uniform flow = 4D RE, critical surface is 3D
〈df , n〉 = 0 is a 2D manifold
uniform flow (mean flow) coupled to a periodic wave = 5D
RE, 4D critical surface, bif. to internal steady DSWs

Theory predicts manifold of bifurcating solitary waves from each
family of degenerate RE. The bifurcating SWs may have
exponentially small tails in the case of two layers with free surface.

(cf. TJB & DONALDSON, Eur J Mech B/Fluids (2008))



Remarks on dimension and group action

When the group has dimension n, 2n + 2 is the lowest
dimension phase space in which the phenomena can occur.

— Dimension N with N > 2n + 2: complementary dimensions
hyperbolic, can use center-manifold reduction.

– Dimension N with N > 2n + 2: complementary dimensions
elliptic, will get persistence issues and exponentially-small tails,
as in the case without symmetry (e.g. Iooss & Lombardi, J. Diff.
Eqns 2006)

– When the group is non-abelian need to bring in more theory
to do the tangent/transverse splitting of the vectorfield (e.g.
ROBERTS, WULFF & LAMB J. Diff. Eqns 2002), but one expects
the basic idea to persist (geometry of momentum map on RE
determining the nonlinear normal form transverse to group).



Degenerate conservation laws – and criticality

n−layer models of stratified flow, in the shallow water
approximation, lead to conservation laws of the form

Ut + F(U)x = 0 , U ∈ R2n ,

where F : R2n → R2n is the flux vector.
The conservation law is said to be degenerate at U0 if the
Jacobian DF(U0) is singular

det[DF(U0)] = 0 criticality!

For the n−layer models the flux vector is of the form

F(U) = M∇E(U) ,

where M is a symmetric invertible – but indefinite – matrix. For
this class of systems, the flux vector can be related to a
momentum map.



Conservation laws – with dispersive regularization

Consider
Ut + F(U)x = DUxxx , U ∈ R2n ,

with F(U) = M∇E(U), D invertible, and M−1D symmetric.
Steady solutions satisfy

DUxxx = M∇E(U)x ,

which is Hamiltonian:

−Rx = 0

−Px = R−∇E(U)

φx = U

Ux = D−1MP .

H(φ, U, R, P) = 1
2〈D

−1MP, P〉+ 〈R, U〉 − E(U) .



Conservation laws – degenerate RE

−Rx = 0

−Px = R−∇E(U)

φx = U

Ux = D−1MP .

2n−dimensional affine symmetry: invariant under ε 7→ φ + ε for
all ε ∈ R2n. R ∈ R2n defines the momentum map. Look at RE

φ(x) = cx + φ0 ,

Then
U = c , P = 0 ,

and
R = ∇E(c) .

The RE are non-degenerate precisely when

det[D2E(c)] 6= 0 .



Conservation laws, dispersion and degenerate RE
– summary –

Ut + F(U)x = DUxxx , U ∈ R2n ,

F(U) = M∇E(U) , M invertible , M−1D symmetric .

Introduce a potential U = φx , creating a symmetry.
Homogeneous (constant) states U0 ∈ R2n can be
characterized as relative equilibria.
These RE are degenerate precisely when the flux vector is
degenerate

det[DF(c)] = 0 (equivalent to det[D2E(c)] = 0) .

A mechanism for generating solitary waves.



Degenerate conservation laws

Consider conservation laws with regularization

Ut + F(U)x = DUxx or Ut + F(U)x = DUxxx ,

where U ∈ Rn, F : Rn → Rn is a given smooth mapping (the flux
vector), and D is an n × n matrix.

Let U0 ∈ Rn be any constant vector. The conservation law is
degenerate at U0 if the Jacobian DF(U0) is singular

det[DF(U0)] = 0 criticality!

Assume simple degeneracy, then there exists eigenvectors

DF(U0)ξ = 0 and ηT DF(U0) = 0 .

Appropriate model near criticality?



KdV or Burger’s model near criticality

Let X = εx and T = ε2t and decompose

U(x , t) = U0 + εA(X , T , ε)ξ + ε2V (X , T , ε) , ηT V = 0 .

Formally,

AT + κ AAX − νAXX = ε R1

d
dX

(
PDF(U0)V + 1

2PD2F(U0)u2 − PD(U0)uX
)

= εR2 ,

where

κ =
d2

ds2

∣∣∣∣
s=0

〈η, F (U0 + sξ)〉 ,

suggesting
V = L1u2 + L2uX + · · · .

where L1 and L2 are constant matrices.



KdV or Burger’s model near criticality

Remarks on the formal construction

The reduction for V has a form similar to a center-manifold
reduction.
DF(U0) is not required to have real eigenvalues.
No special requirements on D except that ν = 〈η, Dξ〉 6= 0.
Dispersive regularization: same argument but with
T = ε3t , and reduced equation is KdV
The hypersurface defined by det[DF(U0)] = 0 is not in
general connected.

Formally, the dynamics near the ξ direction in Rn is governed by

AT + κAAX = νAXX or AT + κAAX = νAXXX .



Validity of the reduced models

What can one say rigorously about these reduced models?

Suppose the conservation law is hyperbolic (DF(U0)
diagonalizable with real eigenvalues), the regularization
dissipative, and suppose D is symmetric and positive. Then
there exists T0 > 0 such that

‖U− εABurgersξ‖W 1,2
b (R)

≤ Cε3/2eKT0 ,

where C and K depend on the norm of the initial data (initial
data in W 2,2

b (R)), but are independent of ε. Here, W 1,2
b (R) is

the Sobolev space based on the uniformly local space Lp
b(R)

with norm
‖u‖Lp

b(R) := sup
s∈R

‖u‖Lp([s,s+1]) .

(TJB & Zelik, in preparation).



Comments on reductions to KdV or Burgers

Results in the literature on the steady problem (validity of
steady Burgers, then Evans function analysis of the
reduced stability problem): see FREISTÜHLER &
SZMOLYAN, ARMA (2002), PLAZA & ZUMBRUN, DCDS
(2004).
Does there is exist an invariant manifold decomposition in
Rn near span{ξ}?
In the dispersive case, validity is trickier due to
resonances. Example: longwave-shortwave resonance in
two-layer model (disconnected criticality surface)



Multiple zero eigenvalues of DF(c)

In the dissipative case, multiple (semisimple) zero leads to
coupled Burgers

∂u
∂t

+ Γ1
11 u

∂u
∂x

+ Γ1
12

∂(uv)

∂x
+ Γ1

22v
∂v
∂x

= ν11
∂2u
∂x2 + ν12

∂2v
∂x2

∂v
∂t

+ Γ2
11 u

∂u
∂x

+ Γ2
12

∂(uv)

∂x
+ Γ2

22v
∂v
∂x

= ν21
∂2u
∂x2 + ν22

∂2v
∂x2 ,

Γk
ij := 〈ηk , D2F(U0)(ξi , ξj)〉 .

Under appropriate hypotheses, coupled Burger’s appears to be
valid (TJB & Zelik, work in progress).
For the dispersive case, one finds coupled KdV equations –
validity open.



Summary

– Generalization of criticality in fluid mechanics –

Hamiltonian formulation
Any flow that can be characterized as a RE has a concept
of criticality: degeneracy of the RE
Criticality generates solitary waves
Properties of the bifurcating solitary wave (homoclinic
orbit) encoded in the geometry of the momentum map
evaluated on a family of RE
Used to find new families of solitary waves in shallow water
hydrodynamics

New observations in dynamical systems.
Connections with hyperbolic and mixed conservation laws.
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Homoclinic bifurcation from invariant tori

For illustration, consider a T2−equivariant Hamiltonian system on R6,

Jut = ∇H(u) , u ∈ R6 ,

with momentum map J.

RE associated with this group are tori,

u(t) = Φg(t)(ϕ) .

Take coordinates ω1 and ω2 for the Lie algebra. The family of RE is
non-degenerate when

det

[
∂P1
∂ω1

∂P1
∂ω2

∂P2
∂ω1

∂P2
∂ω2

]
6= 0 equivalently det

[
∂ω1
∂I1

∂ω1
∂I2

∂ω2
∂I1

∂ω2
∂I2

]
6= 0 ,

where (P1, P2) are the momenta evaluated on an RE, and (I1, I2) can
be interpreted as values of level sets.



Degenerate invariant tori and homoclinic bifurcation

Near degeneracy, there exists new coordinates (φ1, φ2, u, I1, I2, v)
satisfying

− dv
dt = I1 − 1

2κu2 + · · ·
du
dt = s1v + · · ·

− dIj
dt = 0 j = 1, 2

dφ1
dt = u + · · ·

dφ2
dt = s2 I2 + · · ·

with

κ = a3
0 〈df (ω), n〉 , f (ω) := det

[
∂P1
∂ω1

∂P1
∂ω2

∂P2
∂ω1

∂P2
∂ω2

]
.

– There is a geometric phase shift on the invariant torus.
– A new mechanism for saddle-center bifurcation of tori?
– Even the case n = 1 is new!
(TJB & DONALDSON (2005) Phys. Rev. Lett.)



The quasi-periodic saddle-center bifurcation
Reappraisal of HANSSMANN (1998)

HANSSMANN (1998) takes a saddle-center bifurcation in the
plane, and adds an integrable n−torus.

−dv
dt = λ + b(ω)u2

du
dt = a(ω)v

−dIj
dt = 0

dθj
dt = ωj , j = 1, . . . , n .

Then perturbation terms are added which break the symmetry
(integrability) and persistence of the bifurcation on Cantor
subsets of parameter space is proved.

See also BROER, HANSSMANN & YOU (2005).



Infinite dimensions – with continuous spectrum

Suppose there is a continuous spectrum on the imaginary axis
and a saddle-center bifurcation

– Normal form theory goes through to leading order, but the
continuous spectrum will be an obstacle to persistence of the
homoclinic orbit – open problem.
– This example arises in nonlinear Schrödinger equation with
non-Kerr nonlinearity where the RE is a solitary wave.
– Need a nonlinear version of the linear theory of GRILLAKIS,
SHATAH & STRAUSS (1987).



Saddle-center with infinite dimensional center

Formal normal form theory goes through to leading order for
the saddle-center coupled to an infinite number of pure
imaginary eigenvalues. But the center modes will be an
obstacle to persistence.

This example arises in the time-dependent water-wave
problem. There is a sequence (possibly infinite) of
saddle-center bifurcations, and the attendant homoclinic
bifurcations – have been found to be associated with a form of
wave breaking – micro-breakers.

– TJB, J. Fluid Mech. (2004)



Whitham modulation theory

The Whitham modulation equations can be written in the form

−At − Bx = 0

θt = ω
θx = κ

where A is the wave action and B is the wave action flux. Substituting
the second and third equations into the first results in the PDE

Aωθtt + (Aκ + Bω)θxt + Bκθxx = 0 ,

which is hyperbolic if

det
[
Aω Aκ

Bω Bκ

]
< 0 ,

and elliptic when the sign is positive.
What is the appropriate modulation equation when the determinant
vanishes or is near vanishing? Spatio-temporal homoclinic
bifurcation?



Spatio-temporal RE and homoclinic bifurcation

Replace symplectic relative equilibria with multi-symplectic relative
equilibria. Consider a multi-symplectic PDE in canonical form

Jut + Kux = ∇S(u) ,

that is equivariant with respect to a Lie group G.

(P(u), Q(u)) = (〈JξM , u〉, 〈KξM , u〉) ,

is the multi-momentum map, with ξM the generator of the group. An
RE is of the form

u(t) = Φg(t,x)(u0) , (gt , gx) = (ω, κ) ,

and u0 satisfies ∇H(u0) = ω∇P(u0) + κ∇Q(u0). This variational
principle is non-degenerate when

det
[

∂P
∂ω

∂P
∂κ

∂Q
∂ω

∂Q
∂κ

]
6= 0 .

Application: relation between degenerate MS-RE and the
Benjamin-Feir instability, (TJB & DONALDSON, J. Fluid Mech. 2006)
– may also lead to a new spatio-temporal homoclinic bifurcation.



Planar homoclinic bifurcation – Hamiltonian systems

−ṗ =
∂H
∂q

, q̇ =
∂H
∂p

, or Jut = ∇H(u) , u =

(
q
p

)
.

Suppose there is an equilibrium point u0 = (q0, p0).
Let L = D2H(u0); spectrum of J−1L is of the form

Introduce a parameter µ so H(u, µ) and a double zero
eigenvalue occurs in the linearization when µ = µ0

Generically the nonlinear problem has a homoclinic
bifurcation for µ near µ0.



Planar homoclinic bifurcation – nonlinear theory

At the double zero eigenvalue, the eigenvectors satisfy

Lξ1 = 0 and Lξ2 = Jξ1

Normalise the eigenvectors and introduce a transformation,

u(x) = q̃(t)ξ1 + s p̃(t)ξ2 + h.o.t .

Then locally using normal form theory, q̃(t) and p̃(t) satisfy

−p̃t = µ̃− 1
2κq̃2 + · · ·

q̃t = s p̃ + · · ·

where µ̃ = C (µ− µ0), s = ±1 (symplectic sign) and

κ = 〈ξ1, D3H(u0)(ξ1, ξ1)〉



Homoclinic bifurcation from periodic orbits
— with a transition of Floquet multipliers at +1

Consider a standard autonomous Hamiltonian system on R4

with a branch of periodic solutions.

Jut = ∇H(u) , u ∈ R4 .

Linearise about the periodic orbit and suppose that as a
parameter is varied, a pair of Floquet exponents passes
through +1.

What happens in the nonlinear problem?



Homoclinic bifurcation from periodic orbits

Standard theory: use a Floquet transformation to transform the
system to a constant coefficient system, apply normal form theory to
the constant coefficient problem ...

U(t , θ) = q̃(t)ξ1(θ) + s p̃(t)ξ2(θ) + h.o.t .

with nonlinear normal form to leading order

−p̃t = µ− 1
2κq̃2 + · · ·

q̃t = s p̃ + · · ·

– reduced system is the same as the saddle-center bifurcation of an
equilibrium;

e.g. ARNOLD, KOZLOV & NEISHTADT (1993), Chapter 7.



What about the phase shift?

When the system is autonomous, the Floquet multiplier at +1
has algebraic multiplicity four and geometric multiplicity one.

The Jordan chain has length four, not two.

Let
L = D2H(û(θ))− ωJ

d
dθ

,

then
Lξ1 = 0 ,
Lξ2 = Jξ1 ,
Lξ3 = Jξ2 ,
Lξ4 = Jξ3 .



Normal form with phase shift

Let

U(t , θ) = φ(t)ξ1(θ) + u(t)ξ2(θ)− s I(t)ξ4(θ) + s v(t)ξ3(θ) + · · · ,

where s = ±1 is a symplectic sign. Then using nonlinear
normal form theory1 one can show to leading order,

−It = 0
−vt = I − 1

2κu2 + · · ·
φt = u + · · ·
ut = s v + · · ·

where

κ = −〈ξ2, D3H(ξ2, ξ2)〉−3〈ξ1, D3H(ξ1, ξ4)〉+3〈ξ1, D3H(ξ2, ξ3)〉 .

and H = 1
2sv2 + Iu − 1

6κu3 + · · · .
1Cushman-Sanders, Iooss



Action and periodic orbits

The action of a periodic orbit is defined by

A(q, p) =

∮
p · qθdθ =

1
2π

∫ 2π

0

1
2〈JUθ, U〉dθ

When Floquet multipliers pass through +1 there is a stationary
point of the action.

ω

Action

See POINCARÉ (1892), DEPRIT & HENRARD (1968) and
SEPULCHRE & MACKAY (1997).



Curvature and geometric phase

−Ix = 0
−vx = I − 1

2κu2 + · · ·
φx = u + · · ·
ux = s v + · · ·

The coefficient κ can be expressed in terms of the curvature of the
action-frequency curve

κ = a3
0

d2A
dω2 , a0 = |〈〈Jξ̂4, ξ̂1〉〉|−1/2 .

(cf. TJB & DONALDSON, Phys. Rev. Lett. 2005). The geometric
phase is then determined from the third equation

∆φ =

∫ +∞

−∞
(u(x)− u0) dx , u0 = ±

√
2I
κ

.



Summary: nonlinearity near saddle-center bifurcation

A′(ω) = 0: bifurcation of Floquet multipliers

Reduced normal form (after scaling u, v , I, t),

−vt = I − 1
2A′′(ω)u2 + · · ·

ut = s v + · · · , s = ±1 ,

– Nonlinear term in normal form determined by curvature of
frequency map
– I is a measure of the distance from bifurcation point in action
space
– flow along the group has a geometric phase

It = 0 and φt = u + · · · .


