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•Background
• Basic observation about Hamiltonian systems: satisfy Liou-

ville’s theorem, preserving volume in phase space, thus cannot
exhibit asymptotic stability.
Reflection of this: spectrum of linearization about a fixed

point symmetric about imaginary axis.

Class of energy preserving systems which can exhibit asymp-
totic stability: nonholonomic systems – systems with noninte-
grable constraints. In the absence of external dissipative forces,
are always energy preserving.
Do not necessarily preserve volume in the phase space – – see

for example Zenkov, Bloch and Marsden [1998], Zenkov and
Bloch [2002], Kozlov, Jovanovich,



• Infinite Dimensions – oscillators interacting with fields. Hagerty,
Bloch and Weinstein. Bloch, Hagerty, Rojo and Weinstein.
Radiation Damping. Sofer and Weinstein. Original model of
Lamb. Overall system Hamiltonian but can induce dissipation
locally in oscillator.



•Double Brackets and Dissipation Double bracket flows: dis-
sipative mechanism in otherwise energy conserving mechanical
systems, Bloch, Krishnaprasad, Marsden and Ratiu [1996].

• Simple example: rigid body equations:

IΩ̇ = (IΩ) × Ω,

or, in terms of the body angular momentum M = IΩ,

Ṁ = M × Ω.

Energy equals the Lagrangian: E(Ω) = L(Ω) and energy is
conserved.
Add a term cubic in the angular velocity:

Ṁ = M × Ω + αM × (M × Ω),

where α is a positive constant.



• Related example is the Landau-Lifschitz equations for the
magnetization vector M in a given magnetic field B:

Ṁ = γM × B +
λ

‖M‖2
(M × (M × B)),

where γ is the magneto-mechanical ratio (so that γ‖B‖ is the
Larmour frequency) and λ is the damping coefficient due to
domain walls.
• The equations are Hamiltonian with the rigid body Poisson

bracket:
{F, K}rb(M) = −M · [∇F (M) ×∇K(M)]

with Hamiltonians given respectively by H(M) = (M · Ω)/2 and
H(M) = γM · B.
Dissipation in these systems is not induced by any Rayleigh

dissipation function in the literal sense
However, it is induced by a dissipation function in the follow-

ing restricted sense: It is a gradient when restricted to each
momentum sphere,



Have:
d

dt
‖M‖2 = 0

d

dt
E = −α‖M × Ω‖2,

for the rigid body,

• Interesting feature of these dissipation terms is that they
can be derived from a symmetric bracket. in much the same
way that the Hamiltonian equations can be derived from a skew
symmetric Poisson bracket. For the case of the rigid body, this
bracket is

{{F, K}} = α(M ×∇F ) · (M ×∇K).

(For more on symmetric brackets see Crouch [1981] and Lewis
and Murray [1999].)



•The Chaplygin Sleigh
Here we describe the Chaplygin sleigh, perhaps the simplest

mechanical system which illustrates the possible dissipative na-
ture of energy preserving nonholonomic systems.
Nonholonomic: subject to nonintegrable constraints – satisifes

Lagrange D’Alembert equations.
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Figure 0.1: The Chaplygin sleigh is a rigid body moving on two sliding posts and one knife edge.



Equations:

v̇ = aω2

ω̇ = − ma

I + ma2
vω

Equations have a family of relative equilibria given by (v, ω)|v =
const, ω = 0.
Linearizing about any of these equilibria one finds one zero

eigenvalue and one negative eigenvalue.
In fact the solution curves are ellipses in v − ω plane with the

positive v-axis attracting all solutions.
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Figure 0.2: Chaplygin Sleigh/2d Toda phase portrait.



•Euler-Poincaré-Suslov Equations
Important special case of the reduced nonholonomic equa-

tions.
•Example: Euler-Poincaré-Suslov Problem on SO(3) In this

case the problem can be formulated as the standard Euler equa-
tions

Iω̇ = Iω × ω

where ω = (ω1, ω2, ω3) are the system angular velocities in a frame
where the inertia matrix is of the form I = diag(I1, I2, I3) and the
system is subject to the constraint

a · ω = 0

where a = (a1, a2, a3).



The nonholonomic equations of motion are then given by

Iω̇ = Iω × ω + λa

subject to the constraint. Solve for λ:

λ = −I−1a · (Iω × ω)

I−1a · a .

If a is an eigenvector of the moment of inertia tensor flow is
measure preserving.



Invariant Measures of the Euler-Poincaré-Suslov Equations
An important special case of the reduced nonholonomic equa-
tions is the case when there is no shape space. In this case the
system is characterized by the Lagrangian L = 1

2IABΩAΩB and
the left-invariant constraint

〈a, Ω〉 = aAΩA = 0. (0.1)

Here a = aAeA ∈ g
∗ and Ω = ΩAeA, where eA, A = 1, . . . , k, is a

basis for g and eA is its dual basis. Multiple constraints may be
imposed as well. The two classical examples of such systems
are the Chaplygin Sleigh and the Suslov problem. These prob-
lems were introduced by Chaplygin in 1895 and Suslov in 1902,
respectively.



We can consider the problem of when such systems exhibit
asymptotic behavior. Following Kozlov [1988] it is convenient
to consider the unconstrained case first. In the absence of con-
straints the dynamics is governed by the basic Euler-Poincaré
equations

ṗB = CC
ABI

ADpCpD = CC
ABpCΩA (0.2)

where pB = IABΩB are the components of the momentum p ∈
g
∗. One considers the question of whether the (unconstrained)

equations (0.2) have an absolutely continuous integral invariant
fdkΩ with summable density M. If M is a positive function of
class C1 one calls the integral invariant an invariant measure.
Kozlov [1988] shows

Theorem 0.1 The Euler-Poincaré equations have an invariant
measure if and only if the group G is unimodular.



A group is said to be unimodular if it has a bilaterally in-
variant measure. A criterion for unimodularity is CC

AC = 0 (us-
ing the Einstein summation convention). Now we know (Liou-
ville’s theorem) that the flow of a vector differential equation
ẋ = f (x) is phase volume preserving if and only if Div f = 0. In
this case the divergence of the right hand side of equation (0.2)
is CC

ACI
ADpD = 0. The statement of the theorem now follows

from the following theorem of Kozlov [1998]: A flow due to a
homogeneous vector field in R

n is measure-preserving if and
only if this flow preserves the standard volume in R

n.



Now, turning to the case where we have the constraint (0.1)
we obtain the Euler-Poincaré-Suslov equations

ṗB = CC
ABI

ADpCpD + λaB = CC
ABpCΩA + λaB (0.3)

together with the constraint (0.1). Here λ is the Lagrange mul-
tiplier. This defines a system on the subspace of the dual Lie
algebra defined by the constraint. Since the constraint is as-
sumed to be nonholonomic, this subspace is not a subalgebra.
One can then formulate a condition for the existence of an in-
variant measure of the Euler-Poincaré-Suslov equations.

Theorem 0.2 Equations (0.3) have an invariant measure if and
only if

Kad∗
I−1aa + T = µa, µ ∈ R, (0.4)

where K = 1/〈a, I−1a〉 and T ∈ g
∗ is defined by 〈T, ξ〉 = Trace(ad ξ).

This theorem was proved by Kozlov [1988] for compact algebras
and for arbitrary algebras by Jovanović [1998].



In coordinates, condition (0.4) becomes

KCC
ABI

ADaCaD + CC
BC = µaB.

For a compact algebra (0.4) becomes

[I−1a, a] = µa, µ ∈ R, (0.5)

where we identified g
∗ with g.

The proof of theorem 0.2 reduces to the computation of the
divergence of the vector field in (0.3).



In the compact case only constraint vectors a which commute
with I

−1a allow the measure to be preserved. This means that
a and I

−1a must lie in the same maximal commuting subalge-
bra. In particular, if a is an eigenstate of the inertia tensor,
the reduced phase volume is preserved. When the maximal
commuting subalgebra is one-dimensional this is a necessary
condition. This is the case for groups such as SO(3).
Bloch and Zenkov extend this to the case of internal variables.



•Radiation Damping
See Hagerty, Bloch and Weinstein [1999], [2002].
Important early work: Lamb [1900]. Related recent work may

be found in Soffer and Weinstein [1998a,b] [1999] and Kirr and
Weinstein [2001].
• Original Lamb model an oscillator is physically coupled to

a string. The vibrations of the oscillator transmit waves into
the string and are carried off to infinity. Hence the oscillator
loses energy and is effectively damped by the string.

• Lamb model
w(x, t) displacement of the string. with mass density ρ, ten-

sion T . Assuming a singular mass density at x = 0, we couple
dynamics of an oscillator, q, of mass M :



Figure 0.3: Lamb model of an oscillator coupled to a string.

∂2w

∂t2
= c2∂

2w

∂x2

Mq̈ + V q = T [wx]x=0

q(t) = w(0, t).

[wx]x=0 = wx(0+, t)−wx(0−, t) is the jump discontinuity of the slope
of the string. Note that this is a Hamiltonian system.
Can solve for w and reduce:



• Obtain a reduced form of the dynamics describing the ex-
plicit motion of the oscillator subsystem,

Mq̈ +
2T

c
q̇ + V q = 0.

The coupling term arises explicitly as a Rayleigh dissipation
term 2T

c q̇ in the dynamics of the oscillator.



Gyroscopic systems:
See Bloch, Krishnaprasad, Marsden and Ratiu [1994].
Linear systems of the form

Mq̈ + Sq̇ + Λq = 0

where q ∈ R
n, M is a positive definite symmetric n × n matrix,

S is skew, and Λ is symmetric and indefinite.
This system Hamiltonian with p = Mq̇, energy function

H(q, p) =
1

2
pM−1p +

1

2
qΛq

and the bracket

{F, K} =
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi
− Sij

∂F

∂pi

∂K

∂pj
.

Systems of this form arise from simple mechanical systems
via reduction; normal form of the linearized equations when
one has an abelian group.



Theorem 0.3 Dissipation induced instabilities—abelian case Un-
der the above conditions, if we modify the equation to

Mq̈ + (S + ǫR)q̇ + Λq = 0

for small ǫ > 0, where R is symmetric and positive definite,
then the perturbed linearized equations

ż = Lǫz,

where z = (q, p) are spectrally unstable, i.e., at least one pair
of eigenvalues of Lǫ is in the right half plane.



ω

Figure 0.4: Rotating plate with springs.

• Gyroscopic systens connected to wave fields.
In Hagerty, Bloch and Weinstein [2002] we describe a gyro-

scopic version of the Lamb model coupled to a standard non-
dispersive wave equation and to a dispersive wave equation.
Show that instabilities will arise in certain mechanical systems.
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Figure 0.5: Inverted spherical pendulum.



In the dispersionless case, the system is of the form

∂2w

∂t2
(z, t) = c2∂

2w

∂z2
(z, t),

M q̈(t) + Sq̇(t) + V q(t) = T
[∂w

∂z

]

z=0

w(0, t) = q(t),

w =
[

w1(z, t) · · · wn(z, t)
]T

is the displacement of the string in

the first n dimensions and [∂w
∂z ]z=0 is the jump discontinuity in

the slope of the string.
• Can reduce dynamics to essentially:

M q̈(t) = − Sq̇(t) − V q(t) − 2T

c
q̇(t),
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Figure 0.6: Gyroscopic Lamb coupling to a spherical pendulum.



• Nonholonomic Systems as Limits
It has been known (see even Cartheodory –1933) that the

Lagrange–d’Alembert equations can be obtained by starting
with an unconstrained system subject to appropriately chosen
dissipative forces, and then letting these forces go to infinity in
an appropriate manner.
Kozlov showed that the variational nonholonomic equations

too can be obtained as the result of another limiting process:
He added a parameter-dependent “inertial term” to the La-
grangian of the constrained system, and then showed that the
unconstrained equations approach the variational equations as
the parameter approaches infinity.



Nonholonomic constraints can be regarded in some sense as
due to “infinite” friction. Several authors have asked if this can
be quantified. Interestingly this goes back to the work at least
of Caratheodory who asked if the limiting case of such friction
could explain the motion of Chaplygin’s sleigh. Caratheodory
claimed this could not be done but Fufaev (1964) showed that
this was indeed possible. The general case was considered by
Kozlov (1983) and Karapetyan (1983).
The key idea it so take a nonlinear Rayleigh dissipation func-

tion of the form

F = −1

2
k

m
∑

j=1

(

n
∑

i=1

a
(j)
i (q)q̇i

)2

(0.6)

where k > is a positive constant. Taking the limit as k goes
to zero and using Tikhonov’s theorem yields the nonholonomic
dynamics.



However, the system in this setting is still not Hamiltonian.
The goal here is to keep the system in the class of Hamiltonian
systems by emulating the dissipation by coupling to an external
field



• The Chaplygin Sleigh

This system consists of a rigid body moving on two sliding
posts and one knife edge, and is perhaps the simplest n.h.s.
containing the quasi-dissipative feature mentioned above. This
mechanical system has three coordinates, two for the center
of mass (xC, yC) and one “internal” angular variable θ for the
rotation with respect to the knife edge located at (x, y) = (xC +
a cos θ, yC + a sin θ). The system can rotate freely around (x, y)
but is only allowed to translate in the direction (cos θ, sin θ): if we
choose our coordinates as q = (x, y, θ) there is a single constraint
given by

ẋ sin θ − ẏ cos θ = 0, (0.7)

or, a(1) = (sin θ,− cos θ, 0).



The equations of motion can be obtained without resorting to
the Lagrangian formalism, using simple balance of forces and
can be expressed in the form:

v̇ = aω2,

ω̇ = − ma

I + ma2
vω, (0.8)

with v = ẋ cos θ + ẏ sin θ the translational velocity, ω = θ̇, m the
mass and I the moment of inertia with respect to the center
of mass. a is the distance between the center of mass and the
contact point of the knife edge. The solutions of the above
equations are ellipses in the (v, ω) plane with equilibria given
by {v = const, ω = 0} and which are asymptotically stable.



The above equations can be also obtained using the virtual
force method starting with the unconstrained Lagrangian

L0 =
m

2

[

(

ẋ − aθ̇ sin θ
)2

+
(

ẏ + aθ̇ cos θ
)2

]

+
I

2
θ̇2, (0.9)

and using a Lagrange multiplier in the equations of motion:

m
d

dt

(

ẋ − aθ̇ sin θ
)

= −λ sin θ,

m
d

dt

(

ẏ + aθ̇ cos θ
)

= λ cos θ,

(I + ma2)θ̈ + maθ̇(ẋ cos θ + ẏ sin θ) = 0. (0.10)



Carathedory and Fufaev added a viscous friction force of the
from

R = −Nu (0.11)

to the sleigh equations.where u is the velocity in the direction
perpendicular to the blade. (Note that interchange u and v
compared to the original paper of Fufaev.)
Setting

k2 =
m

I + ma2
, ǫ =

I

Na2
(0.12)

the equations with dissipation become

u = ǫaω̇ (0.13)

v̇ = aω2 + ǫaωω̇ (0.14)

ak2ω̇ + vω = −ǫaω̈ (0.15)

It is clear that as ǫ goes to zero one recovers the original
equations. Cartheodory incorrectly argued however that since
no matter how small ǫ is these equations yield trejectories which



differ from that of the original system, dissipation cannot yield
the nonholonomic constraints.
Fufaev realized this is not correct since the system degener-

ates from a system of three to two equations and thus there is
a singularity. Setting µ = ǫa and σ = ω̇ we then get

ω̇ = σ (0.16)

v̇ = aω2 + µωσ (0.17)

µσ̇ = −ak2σ − vω (0.18)

Then as µ → 0 we get rapid motion except for the surface

ak2σ + µω = 0. (0.19)

The slow motion of this surface onto the v-ω plane then gives
the correct equations of motion.



• The Chaplygin Sleigh as as Particle in a Radiation Field

We now show that the sleigh equations can be obtained from
a variational principle as reduced equations of motion after
the system is coupled to an environment described by an U(1)
infinite field of the form a(z, t) ≡ [cos α(z, t), sin α(z, t)]. For the
Lagrangian of the free field we choose

LF =
K

2

∫

d2z ȧ2, (0.20)

and we couple the sleigh and the field with a term of the form

L1 =

∫

d2z δ(z − x) [γẋ · a + µ cos (α(z, t) − θ)] . (0.21)

The first term in square brackets corresponds to a minimal
coupling that favors ẋ in the direction of a; the second has the
form of a potential coupling that favors an alignment of the
internal variable θ with the local direction of a.



The total action is S =
∫

dt(L0 + LF + L1) where L0 is the La-
grangian of the free sleigh

L0 =
m

2

[

(

ẋ − aθ̇ sin θ
)2

+
(

ẏ + aθ̇ cos θ
)2

]

+
I

2
θ̇2, (0.22)

and can be regarded as a full “microscopic” theory of the sleigh
coupled to an environment.
The equations of motion of the combined system are now

obtained from a variational principle, δS = 0, and have the
form



m
d

dt

(

ẋ − aθ̇ sin θ
)

= γ

{

− sin α(x, t)
∂α

∂t
+ [ẋ sin α(x, t) − ẏ cos α(x, t)]

∂α

∂x

}

−µ sin[α(x, t) − θ)]
∂α

∂x
,

m
d

dt

(

ẏ + aθ̇ cos θ
)

= γ

{

cos α(x, t)
∂α

∂t
+ [ẋ sin α(x, t) − ẏ cos α(x, t)]

∂α

∂y

}

−µ sin[α(x, t) − θ)]
∂α

∂y
,

(I + ma2)θ̈ − ma
d

dt
(ẋ sin θ − ẏ cos θ) − maθ̇(ẋ cos θ + ẏ sin θ)

= µ sin [α(x, t) − θ] ,

K
∂2α(z, t)

∂t2
= δ(z − x) {γ [ẋ sin α(x, t) − ẏ cos α(x, t)] + µ sin [α(x, t) − θ]} .(0.23)



At this point we take the limit µ → ∞ in the third equation
above. This limit can be understood from the singular pertur-
bation theory, by dividing the left hand side of the equation by
µ, which amounts to rescaling the times in the derivatives by√

µ. (This is immediate by noting that the r.h.s. is homoge-
neous in the derivatives.) Therefore, for very large µ we have
a very slow dynamics on the r.h.s., which amounts to setting
sin[α(x, t)−θ] = 0. This is equivalent to saying that in the µ → ∞
limit the variables α(x, t) and θ are pinned to the same value.
Next we integrate equation (0.23) over an infinitesimal region
around x and obtain

ẋ sin α(x, t) − ẏ cos α(x, t) = ẋ sin θ − ẏ cos θ = 0, (0.24)

which means that the constraint is satisfied. Replacing the
constraint (and sin[α(x, t) − θ] = 0) in the first three equations
we obtain the same structure as (0.10) and therefore the same
flow as in Eq. (0.8).



The calculation shows that we have succeeded in deriving the
nonholonomic equations for a system with one internal (com-
pact) variable from a pure Lagrangian formalism. The classical
trayectories are obtained from a variational principle and quan-
tization can be introduced through the Path integral formalism:
the propagator is eiS/~, where S is the complete action.
Intuitively, the sleigh is coupled to an infinite bath of rotors

and, for µ → ∞, the internal variable and the rotors are locally
the same. In the limit K → 0 (vanishing moment of inertia for
the rotors) the internal variable imposes its value on the local
field instantaneously. Since the rotors are fixed in space they
can still guide the motion imposing the velocity to be locally
parallel to a. Also, since we are taking the limit K → 0, the field
does not take energy from the sleigh, and the nonholonomic
motion conserves energy.



Quantum Field Theory

Quantum case for a=0:
The Hamiltonian in this limit has the form

H =
1

2m
[px − λ cos α(x)]2 +

1

2m
[py − λ sin α(x)]2 +

1

2I
p2

θ (0.25)

+
1

2K

∫

dz Π2 (α(z)) + µ cos [θ − α(x)] . (0.26)

For the quantization of H we procede with the usual replace-
ments

p = −i~(∂x, ∂y), pθ = −i~∂θ, Π (α(z)) = −i~∂α(z). (0.27)

For the completely uncoupled case (λ = µ = 0) the eigenstates
are of the form

Ψ0 = ei
∫

dz m(z)α(z)eik·xeinθ, (0.28)

with m(z) and n integers and k the wave number of the trans-
lational degree of freedom.



The limit µ → ∞ ammounts to projecting the wave function
and the Hamiltonian to states where α(x) = θ, in such a way
that the Hamiltonian becomes

H =
1

2m
[px − λ cos θ]2 +

1

2m
[py − λ sin θ]2 +

1

2I ′
p2

θ (0.29)

+
1

2K

∫

dz Π2 (α(z)) [1 − δ(x − z)] , (0.30)

with 1/I ′ = 1/I + 1/K. Without loss of generality we can take
the quantum numbers m[(z) = 0 for z 6= x and the wave function
depends only on the {θ,x} degrees of freedom and obeys the
following Schoedinger equation:

{

1

2m
[px − λ cos θ]2 +

1

2m
[py − λ sin θ]2 +

1

2I ′
p2

θ

}

Ψ = ǫΨ. (0.31)

The above equation can be solved by separation of variables
Ψ = eik·xψk(θ), with k = k(cos θk, sin θk) a quasi-translational wave-



vector. The reduced equation satisfied the the angular part of
the wave function is

{

1

2I ′
p2

θ −
λ~k

m
cos(θ − θk)

}

ψk(θ) = ǫ′ψk(θ), (0.32)

with ǫ′ = ǫ − (λ2 + ~
2k2)/2m. This equation has well known solu-

tions in terms of the Mathieu functions. One can gain insight
on the structure of the solutions by looking at the fast limit
(k → ∞) which should exhibit features of the classical solution.
In this limit the fluctiations of the angle are small and centered
around θ = θk. This means that, up to small quantum fluctu-
ations, the knife edge is pointing in the direction of the plane
wave propagation. Expanding for small values of the angle we
find that the solutions in the fast limit are of the form

Ψk(x, θ) = eik·xe−(θ−θk)2/2∆2
θ, (0.33)

with

∆2
θ =

m~

λkI ′
. (0.34)



• Inverse Problems and Hamiltonization
• Idea: apply theory of inverse problem for Lagrangian sys-

tems (see e.g. Douglas, Crampin et. al.) to nonholonomic
systems. Inspired by work of Aboud Filho at. al. Can we find
a Lagrangian system whose dynamics restricts to the nonholo-
nomic dynamics for the right initial data?



Consider example first: The vertical rolling disk is a homoge-
neous disk rolling without slipping on a horizontal plane, with
configuration space Q = R

2 × S1 × S1 and parameterized by the
coordinates (x, y, θ, ϕ), where (x, y) is the position of the center
of mass of the disk, θ is the angle that a point fixed on the disk
makes with respect to the vertical, and ϕ is measured from the
positive x-axis. The system has the Lagrangian and constraints
given by

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2,

ẋ = R cos(ϕ)θ̇,

ẏ = R sin(ϕ)θ̇, (0.35)

where m is the mass of the disk, R is its radius, and I, J are
the moments of inertia about the axis perpendicular to the
plane of the disk, and about the axis in the plane of the disk,
respectively. The constrained equations of motion are simply:

θ̈ = 0, ϕ̈ = 0, ẋ = R cos(ϕ)θ̇, ẏ = R sin(ϕ)θ̇. (0.36)



The solutions of the first two equations are of course

θ(t) = uθt + θ0, ϕ(t) = uϕt + ϕ0,

and in the case where uϕ 6= 0, we get that the x- and y-solution
is of the form

x(t) =

(

uθ

uφ

)

R sin(ϕ(t)) + x0,

y(t) = −
(

uθ

uφ

)

R cos(ϕ(t)) + y0, (0.37)

from which we can conclude that the disk follows a circular
path. If uϕ = 0, we simply get the linear solutions

x(t) = R cos(ϕ0)uθt + x0, y(t) = R sin(ϕ0)uθt + y0. (0.38)

The situation in (0.38) corresponds to the case when ϕ remains
constant, i.e. when disk is rolling along a straight line. Solu-
tions like this turn out to be problematic...



Consider the nonholonomic equations of motion (0.36). As a
system of ordinary differential equations, these equations form
a mixed set of coupled first- and second-order equations. It is
well-known that these equations are never variational on their
own, in the sense that we can never find a regular Lagrangian
whose (unconstrained) Euler-Lagrange equations are equivalent
to the nonholonomic equations of motion.
There are, however, infinitely many systems of second-order

equations (only), whose solution set contains the solutions of
the nonholonomic equations. We shall call these second-order
systems associated second-order systems, and we wish to find
out whether or not we can find a regular Lagrangian for one
of those associated second-order systems. If so, we can use the
Legendre transformation to get a full Hamiltonian system on
the associated phase space.



There are infinitely many ways to arrive at an associated
second-order system for a given nonholonomic system. We shall
illustrating three choices below using the vertical rolling disk
as an example.
Consider, for example, taking the time derivative of the con-

straint equations, so that a solution of the nonholonomic system
(0.36) also satisfies the following complete set of second-order
differential equations in all variables (θ, ϕ, x, y):

θ̈ = 0, ϕ̈ = 0, ẍ = −R sin(ϕ)θ̇ϕ̇, ÿ = R cos(ϕ)θ̇ϕ̇. (0.39)

We shall call this associated second-order system the first asso-
ciated second-order system. Excluding for a moment the case
where uφ = 0, the solutions of equations (0.39) can be written



as

θ(t) = uθt + θ0

ϕ(t) = uϕt + ϕ0

x(t) =

(

uθ

uφ

)

R sin(ϕ(t)) + uxt + x0,

y(t) = −
(

uθ

uφ

)

R cos(ϕ(t)) + uyt + y0.

By restricting the above solution set to those that also satisfy
the constraints ẋ = cos(ϕ)θ̇ and ẏ = sin(ϕ)θ̇ (i.e. to those solutions
above with ux = uy = 0), we get back the solutions (0.37) of
the non-holonomic equations (0.36). A similar reasoning holds
for the solutions of the form (0.38). The question we then
wish to answer is whether the second-order equations (0.39)
are equivalent to the Euler-Lagrange equations of some regular
Lagrangian or not.



Now, taking note of the special structure of equations (0.39),
we may use the constraints (0.36) to eliminate the θ̇ depen-
dency. This yields another plausible choice for an associated
system:

θ̈ = 0, ϕ̈ = 0, ẍ = − sin(ϕ)

cos(ϕ)
ẋϕ̇, ÿ =

cos(ϕ)

sin(ϕ)
ẏϕ̇. (0.40)

We shall refer to this choice later as the second associated
second-order system.



Lastly, we may simply note that, given that on the constraint
manifold the relation sin(ϕ)ẋ − cos(ϕ)ẏ = 0 is satisfied, we can
easily add a multiple of this relation to some of the equations
above. One way of doing so leads to the system

Jϕ̈ = −mR(sin(ϕ)ẋ − cos(ϕ)ẏ)θ̇,

(I + mR2)θ̈ = mR(sin(ϕ)ẋ − cos(ϕ)ẏ)ϕ̇,

(I + mR2)ẍ = −R(I + mR2) sin(ϕ)θ̇ϕ̇ + mR2 cos(ϕ)(sin(ϕ)ẋ − cos(ϕ)ẏ)ϕ̇,

(I + mR2)ÿ = R(I + mR2) cos(ϕ)θ̇ϕ̇ + mR2 sin(ϕ)(sin(ϕ)ẋ − cos(ϕ)ẏ)ϕ̇.(0.41)

We shall refer to it as the third associated second-order system.
Indeed this complicated looking system is indeed variational!
The Euler-Lagrange equations for the regular Lagrangian

L = −1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2 + mRθ̇(cos(ϕ)ẋ + sin(ϕ)ẏ), (0.42)

are indeed equivalent to equations (0.41), and, when restricted
to the constraint distribution, its solutions are exactly those of
the nonholonomic equations (0.36).



Other examples include a nonholonomically constrained free
particle with unit mass moving in R

3 In this example one has
a free particle with Lagrangian and constraint given by

L =
1

2

(

ẋ2 + ẏ2 + ż2
)

, ż + xẏ = 0. (0.43)

and the constrained equations, which take the form

ẍ = 0, ÿ = − xẋẏ

1 + x2
, ż = −xẏ. (0.44)

Another example is the knife edge on a plane. It corresponds
physically to a blade with mass m moving in the xy plane at an
angle φ to the x-axis . The Lagrangian and constraints for the
system are:

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Jφ̇2, ẋ sin(φ) − ẏ cos(φ) = 0, (0.45)

from which we obtain the constrained equations:

φ̈ = 0, ẍ = − tan(φ)φ̇ẋ, ẏ = tan(φ)ẋ.



Associated Second Order Systems in General:
Assume the configuration space Q is locally just the Euclidean

space R
n and that the base space of the fibre bundle is two di-

mensional, writing (r1, r2; sα) for the coordinates. We will con-
sider the class of nonholonomic systems where the Lagrangian
is given by

L =
1

2
(I1ṙ

2
1 + I2ṙ

2
2 +

∑

α

Iαṡ
2
α), (0.46)

(with all Iα positive constants) and where the constraints take
the following special form

ṡα = −Aα(r1)ṙ2. (0.47)

Although this may seem to be a very thorough simplification,
this interesting class of systems does include, for example, all
the classical examples described above. We also remark that all
of the above systems fall in the category of so-called Chaplygin
systems.



In what follows, we will assume that none of the Aα are con-
stant (in that case the constraints are, of course, holonomic).
The nonholonomic equations of motion are now

r̈1 = 0, r̈2 = −N 2
(

∑

β

IβAβA
′
β

)

ṙ1ṙ2, ṡα = −Aαṙ2, (0.48)

where N is shorthand for the function

N(r1) =
1

√

I2 +
∑

α IαA2
α

. (0.49)

This function is directly related to the invariant measure of
the system. Indeed, we have shown that for a two-degree of
freedom system such as (0.48), we may compute the density N
of the invariant measure (if it exists) by integrating two first-
order partial differential equations derived from the condition
that the volume form be preserved along the nonholonomic



flow. In the present case, these two equations read:

1

N

∂N

∂r1
+

∑

β IβAβA
′
β

I2 +
∑

α IαA2
α

= 0,
1

N

∂N

∂r2
= 0, (0.50)

and obviously the expression for N in (0.49) is its solution up
to an irrelevant multiplicative constant. In case of the free
nonholonomic particle and the knife edge the invariant mea-
sure density is N ∼ 1/

√
1 + x2 and N ∼ 1/

√

(1 + tan2(φ)) = cos(φ),
respectively. In case of the vertically rolling disk it is a con-
stant. We shall see later that systems with a constant invariant
measure (or equivalently, with constant

∑

α IαA
2
α) always play a

somehow special role.



We are now in a position to generalize the associated second-
order systems to the more general class of nonholonomic sys-
tems above. In the set-up above, the first associated second-
order system is, for the more general systems (0.48), the system

r̈1 = 0, r̈2 = −N 2
(

∑

β

IβAβA
′
β

)

ṙ1ṙ2, s̈α = −(A′
αṙ1ṙ2 + Aαr̈2),

or equivalently, in normal form,

r̈1 = 0, r̈2 = −N 2
(

∑

β

IβAβA
′
β

)

ṙ1ṙ2,

s̈α = −
(

A′
α − N 2Aα

(

∑

β

AβA
′
β

)

)

ṙ1ṙ2. (0.51)

For convenience, we will often simply write

r̈1 = 0, r̈2 = Γ2(r1)ṙ1ṙ2, s̈α = Γα(r1)ṙ1ṙ2,

for these types of second-order systems.



The second associated second-order system we encountered
for the vertically rolling disk also translates to the more general
setting. We get

r̈1 = 0, r̈2 = −N 2
(

∑

β

IβAβA
′
β

)

ṙ1ṙ2,

s̈α =
(

A′
α − N 2Aα

(

∑

β

IβAβA
′
β

)

)

ṙ1

(

ṡα

Aα

)

, (0.52)

where in the right-hand side of the last equation, there is no
sum over α. A convenient byproduct of this way of associating a
second-order system to (0.48) is that now all equations decouple
except for the coupling with the r1-equation. To highlight this,
we will write this system as

r̈1 = 0, q̈a = Ξa(r1)q̇aṙ1

(no sum over a) where, from now on, (qa) = (r2, sα) and (qi) =
(r1, qa).



We can show essentially that it is possible to solve the inverse
problem for the second associated systems, but not for the first.
The third works in special cases.
We have:

Proposition 1 The function

L = ρ(ṙ1) +
1

2N



C2
ṙ2
2

ṙ1
+

∑

β

Cβ

ṡ2
β

Aβṙ1



 , (0.53)

with d2ρ/dṙ2
1 6= 0 and all Cα 6= 0 is in any case a regular La-

grangian for the second associated systems (0.52). If the in-
variant measure density N is a constant, then also

L = ρ(ṙ1) + σ(ṙ2) +
1

2N

∑

β

aβ

ṡ2
β

Aβṙ1
, (0.54)

where d2ρ/dṙ2
1 6= 0, d2σ/dṙ2

1 6= 0 and all Cα 6= 0 is a regular La-
grangian for the second associated systems (0.52)



A list of the Lagrangians for the nonholonomic free particle,
the knife edge on a horizontal plane and the vertically rolling
disk. The respective Lagrangians (0.53) for the first two exam-
ples are:

L = ρ(ẋ) +
1

2

√
1 + x2

(

C2
ẏ2

ẋ
+ C3

ż2

xẋ

)

, (0.55)

and

L = ρ(φ̇) +
1

2

√

m(1 + tan(φ)2)

(

C2
ẋ2

φ̇
+ C3

ẏ2

tan(φ)φ̇

)

,

= ρ(φ̇) +
1

2
C2

√
m

ẋ2

cos(φ)φ̇
+

1

2
C3

√
m

ẏ2

sin(φ)φ̇
. (0.56)

The vertically rolling disk in one of those systems with constant
invariant measure. The first Lagrangian (0.53) is:

L = ρ(ϕ̇) +

√
I + mR2

2

(

C2
θ̇2

ϕ̇
+ C3

ẋ2

cos(ϕ)ϕ̇
+ C4

ẏ2

sin(ϕ)ϕ̇

)

(0.57)



and the second Lagrangian (0.54) is:

L = ρ(ϕ̇) + σ(θ̇) −
√

I + mR2

2

(

a3
ẋ2

cos(ϕ)ϕ̇
+ a4

ẏ2

sin(ϕ)ϕ̇

)

. (0.58)



Let us put for convenience ρ(ṙ1) = 1
2I1ṙ

2
1 and σ(ṙ2) = 1

2I2ṙ
2
2 in the

Lagrangians of the previous section.

Proposition 2 Given the second associated second-order sys-
tem (0.52), the regular Lagrangian (0.53) (away from ṙ1 = 0)
and constraints (0.47) on TQ are mapped by the Legendre
transform to the Hamiltonian and constraints in T ∗Q given
by:

H =
1

2I1



p1 +
1

2
N





p2
2

C2
+

∑

β

Aβ

p2
β

Cβ









2

, C2pα = −Cαp2. (0.59)

In case N is constant, the second Lagrangian (0.54) and con-
straints (0.47) are transformed into

H =
1

2I2
p2

2 +
1

2I1



p1 +
1

2
N





∑

β

Aβ

aβ
p2

β









2

, I2Nṙ1pα + aαp2 = 0,

(0.60)



where ṙ1(r1, p1, pα) = (p1 + 1
2N

∑

α Aαp
2
α/aα)/I1.



• Chaplygin Sleigh with Oscillator
Consider dynamics of the Chaplygin sleigh coupled with an

oscillator. We show that the phase flow is integrable, and
generic invariant manifolds are two-dimensional tori.
Consider the Chaplygin sleigh with a mass sliding along the

direction of the blade. The mass is coupled to the sleigh through
a spring. One end of the spring is attached to the sleigh at the
contact point, the other end is attached to the mass. The
spring force is zero when the mass is positioned above the con-
tact point.
The configuration space for this system is R × SE(2). This

system has one shape (the distance from the mass to the contact
point, r) and three group degrees of freedom.



The reduced Lagrangian l : TR × se(2) → R is given by the
formula

l(r, ṙ, ξ) = 1
2mṙ2 + mṙξ2

+ 1
2

(

(J + mr2)(ξ1)2 + 2mrξ1ξ3 + (M + m)((ξ2)2 + (ξ3)2)
)

− 1
2kr2,

where ξ = g−1ġ ∈ se(2) and k is the spring constant. The con-
strained reduced Lagrangian is

lc(r, ṙ, ξ
1, ξ2) = 1

2mṙ2 + mṙξ2 + 1
2

(

(J + mr2)(ξ1)2 + (M + m)(ξ2)2
)

− 1
2kr2,

The constrained reduced energy

1
2mṙ2 + mṙξ2 + 1

2

(

(J + mr2)(ξ1)2 + (M + m)(ξ2)2
)

+ 1
2kr2

is positive-definite, and thus the mass cannot move infinitely
far from the sleigh throughout the motion.
The constraint is given by the formula

Ω3 = 0.

The reduced Lagrangian written as a function of (r, ṙ, Ω) be-



comes

l(r, ṙ, Ω) =
1

2

Mm

M + m
ṙ2

+
1

2

(

(J + mr2)(Ω1)2 + 2mrΩ1Ω3 + (M + m)((Ω2)2 + (Ω3)2
)

− 1

2
kr2.

The constrained reduced Lagrangian written as a function of
(r, ṙ, p) is

lc(r, ṙ, p) =
1

2

Mmṙ2

M + m
+

1

2

(

p2
1

J + mr2
+

p2
2

M + m

)

− kr2

2
.

Can show the reduced dynamics becomes

Mm

M + m
r̈ =

Mmr

(M + m)(J + mr2)
M

M+m+1
p2

1 − kr (0.61)

ṗ1 = − mr

(M + m)(J + mr2)
p1p2, (0.62)

ṗ2 =
mr

(J + mr2)
M

M+m+1
p2

1. (0.63)



Relative Equilibria of the Sleigh-Mass System:
Assuming (r, p) = (r0, p0) is a relative equilibrium, equation

(0.63) implies r0p
0
1 = 0. Thus, either r0 = 0 and p0

1 is an arbitrary
constant, or, using (0.61), p0

1 = 0 and r0 = 0. Thus the only
relative equilibria of the sleigh-mass system are

r = 0, p = p0.

The Discrete Symmetries and Integrability:
It is straightforward to see that equations (0.61)–(0.63) are in-

variant with respect to the following transformations:

(i) (r, p1, p2) → (r,−p1, p2),

(ii) (r, p1, p2) → (−r, p1,−p2),

(iii) (t, r, p) → (−t,−r, p),

(iv) (t, r, p1, p2) → (−t, r, p1,−p2).



We now use these transformations to study some of the so-
lutions of (0.61)–(0.63). Consider an initial condition (r, ṙ, p) =
(0, ṙ0, p0). Then the r-component of the solution subject to this
initial condition is odd, and the p-component is even. Indeed,
let

(r(t), p(t)), t > 0, (0.64)

be the part of this solution for t > 0. Then

(−r(−t), p(−t)), t < 0, (0.65)

is also a solution. This follows from the invariance of equations
(0.61)–(0.63) with respect to transformation (iii). Using the for-
mula

dr(t)

dt

∣

∣

∣

t=0
=

d(−r(−t))

dt

∣

∣

∣

t=0
,

we conclude that (0.64) and (0.65) satisfy the same initial condi-
tion and thus represent the forward in time and the backward
in time branches of a the same solution. Thus, r(−t) = −r(t)
and p(−t) = p(t).



Next, p1(t) = 0 implies that p2(t) = const and that r(t) satisfies
the equation

Mm

M + m
r̈ = −kr,

and thus equations (0.61)–(0.63) have periodic solutions

r(t) = A cos ωt + B sin ωt, p1 = 0, p2 = C,

where A, B, and C are arbitrary constants and ω =
√

k(M + m)/Mm.
Without loss of generality, we set A = 0 and consider periodic

solutions

r(t) = ṙ0/ω sin ωt, p1 = 0, p2 = p0
2, (0.66)

which correspond to the initial conditions

r(0) = 0, ṙ(0) = ṙ0, p1(0) = 0, p2(0) = p0
2.

We now perturb solutions (0.66) by setting

r(0) = 0, ṙ(0) = ṙ0, p1(0) = p0
1, p2(0) = p0

2. (0.67)



Assuming that p0
1 is small and using a continuity argument,

there exists τ = τp,ṙ0 > 0 such that

r(τp,ṙ0) = 0

for solutions subject to initial conditions (0.67). That is, the
r-component is 2τ-periodic if p0

1 is sufficiently small.
Using equation (0.61) and periodicity of r(t), we conclude that

p1 is 2τ-periodic as well. Equation (0.62) then implies that p2(t)
is also 2τ-periodic.
Thus, the reduced dynamics is integrable in an open subset of the re-

duced phase space. The invariant tori are one-dimensional, and
the reduced flow is periodic. A generic periodic trajectory in
the direct product of the shape and momentum spaces is shown
in Figure 0.7.
Using the quasi-periodic reconstruction theorem we obtain

the following theorem:

Theorem 0.1 Generic trajectories of the coupled sleigh-oscillator



r p1

p2

Figure 0.7: A reduced trajectory of the sleigh-mass system.

system in the full phase space are quasi-periodic motions on
two-dimensional invariant tori.

Typical trajectories of the contact point of the sleigh with the
plane are shown in Figure 0.8.



Figure 0.8: Trajectories of the contact point of the blade for various initial states.
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