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Second order linear dynamical systems
They appear in many physical systems of interest  such 
as electrical, mechanical, electromechanically coupled, 
and thermomechanically coupled systems (MEMS).

SEM of 10.47 MHz lateral free-free beam resonator
(Ref: W.-T. Hsu et al,  Transducer 2001)Transfer function

Single input single output system

Matrices involved are large.
Computationally expensive to evaluate.

Select small projection subspace X and Y which 
accurately represents the motion in a certain 
frequency range.

Matrices involved are small!!

Proper selection of      and       is crucial to preserve properties 
of the transfer function such as structure and approximation 
accuracy.

Second-order Krylov subspaces for X and Y
Given matrices       ,      and starting vector       , the kth second-order Krylov
subspace                            is defined by the recursion relation,

Select      to span the right second-order Krylov subspace

Select      to span the left second-order Krylov subspace

Moments of the transfer function
Given a transfer function, the moments are defined as the coefficients of 
its power series expansion around a given point.

Power series expansion around s=0.  
and         are the moments.

Theorem
Let integers                       . If,

then,

X contains the kth right second-order Krylov subspace.

Y contains the rth left second-order Krylov subspace.

The first k+r moments of the 
transfer functions match

and,

Corollary
The theorem above holds for a nonzero expansion point           with minor 
modification of the construction of the second-order Krylov subspaces.

Modeling of thermoelastic damping
Linearized thermoelasticity, which is the equations of motion coupled with the 
heat equation, can be used to model an energy dissipation mechanism in 
MEMS called Thermoelastic damping .
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Mechanical Domain Thermal Domain
Coupling

Energy loss from coupling of domains

Structure of equations

•Mass and damping matrices are singular and unsymmetric. 
•Damping and stiffness matrices are unsymmetric.
•The coupling terms are tranposes of each other,                                 .

Assume symmetric purely mechanical excitation
In practical applications, the devices of interest are excited purely 
mechanically in the form of electrostatic forces in the case of MEMS. 
Additionally, the displacement response at the loading point is usually 
the output quantity of interest.

Right and left second-order Krylov subspaces are related.

By selecting     and       as,

•The structure of the equation is preserved.
•By use of the theorem presented, one can match at least 2k moments by just 
producing a kth second-order Krylov subspace. This cannot be proven with the 
version of the theorem presented for the first-order form of the transfer function.

Higher 
accuracy!

Michigan Free-Free beam structure.

and       contain the right and left second-order Krylov subspaces.

(Ref: W.-T. Hsu et al,  Transducer 2001)

Schematic of structure and deformed shape for mode at 100 [MHz] 
(Color represents temperature fluctuation).

•Material is Polysilicon

•2D plane stress analysis

•Expand ROM at
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Dimensional equation Non-dimensional equationTransfer function
•Full model: 60318 DOFs
•ROMs

•SOAR 2:   2DOFs 

•SOAR-S4: 4DOFs

•SOAR 4:   4DOFs

•SOAR-L2: 2DOFs

k iterations  of the 
SOAR iterations

2 SOAR iterations

2 SOAR iterations
Structure preserving 
model reduction

4 SOAR iterations

2 SOAR iterations for 
both left and right 
second-order Krylov
subspace for total of 4 
SOAR iteration.

•SOAR-S4 is accurate irrespective of 
dimensionalization

All computational effort of the reduced order modeling is spent on 
generating these subspaces, i.e.,  conducting SOAR iterations.

•SOAR-S4 requires less SOAR iterations.

•SOAR-S4 requires 12 seconds to generate 
the transfer function (100 points) compared 
to 165 seconds for the full model.

Computationally cheap to evaluate!!

(Ref: R.-C. Li and Z. Bai, Structure-preserving model reduction using Krylov subspace formulation, 2005)

The moment matching property is a measure of the accuracy  obtained from 
this Krylov subspace based reduced order modeling scheme. More matched 
moments lead to a more accurate representation of the dynamical system.


