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ABSTRACT

In this work we present a class of mechanical systems, which we
have called generalized nonholonomic systems (GNHS), given by
Lagrangian systems with constraints whose constraint forces do not
satisfy D’Alembert principle. They provide an apropriate scenario for
the study of mechanical systems with general constraints. We discuss
an application of them to the control of servomechanisms,
considering as an example the stabilization of the inertia wheel
pendulum. Before that, we motivate the definition of a GNHS by
analyzing simple mechanical systems with constraints.
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1. CONSTRAINED SYSTEMS OF N PARTICLES

Let us call ri ∈ R3 the position of the i-th particle of the system.
Of course, if we apply on it a known force fi ∈ R3, then (if mi = 1)

r̈i (t) = fi (r1 (t) , ..., rN (t) , ṙ1 (t) , ..., ṙN (t)) ,

i.e. curves ri (t)’s satisfy Newton equations. Writing

R = (r1, ..., rN ) ∈ R3N and F = (f1, ..., fN ) ∈ R3N

such equations reduce to

R̈ (t) = F
(
R (t) , Ṙ (t)

)
.

� 3N unknowns R (t), 3N normal ODE =⇒ existence and
uniqueness of solutions.
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Let us consider for this system a set of constraints

ωk

(
R, Ṙ

)
= 0, k = 1, ...,K.

Note: We say such constraints are holonomic if there exist functions
φk such that

ωk

(
R, Ṙ

)
=
∂φk
∂R

(R) · Ṙ
(
i.e. ωk =

dφk
dt

)
.

In this case last conditions can be derived from equations

φk (R) = cte, k = 1, ...,K.

Otherwise, we say the constraints are nonholonomic. �
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If we ask that R (t) satisfies the constraints, i.e.

ωk

(
R (t) , Ṙ (t)

)
= 0, k = 1, ...,K,

we must add a force on the system, the constraint force, which we
shall denote FC . Then, a trajectory R (t) of the system must satisfy

R̈ (t) = F
(
R (t) , Ṙ (t)

)
+ FC (t) and ωk

(
R (t) , Ṙ (t)

)
= 0,

for some force FC (t).

� 3N + 3N = 6N unknowns R (t) and FC (t); 3N +K equations. It
is not a good model for the physical system. We need more
information; e.g. information about constraint forces.
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2. D’ALEMBERT PRINCIPLE

Assume that constraints are linear in velocities, i.e.

ωk

(
R, Ṙ

)
= ωk (R) · Ṙ = 0.

Defining the distribution CR = {ω1 (R) , ...,ωK (R)}⊥, R ∈ R3N ,
D’Alembert principle says:

FC |R ∈ C⊥R.

Equations of motions result R̈ (t) = F
(
R (t) , Ṙ (t)

)
+ FC (t) ,

Ṙ (t) ∈ CR(t), FC (t) ∈ C⊥R(t).

� 6N unknowns and 3N +K + (3N −K) = 6N equations.
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In Lagrangian terms, we have a so-called nonholonomic system: a
trajectory γ : I → Q of the system is given by

EL (L)
(
γ(2) (t)

)
= f (t) , γ ′ (t) ∈ Cγ(t), f (t) ∈ Coγ(t),

where L : TQ→ R, EL (L) : T (2)Q→ T ∗Q and C ⊂ TQ is a distribution
on Q. If L is simple we have existence and uniqueness of solutions.

Some questions:

� Is this principle always valid?
Systems with constraints implemented by the contact of punctual
masses and rigid bodies usually satisfy the principle. But it is
easy to build up systems which do not: for instance, using
servomechanisms.
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� What about more general (nonlinear and/or higher order)
constraints?
Chetaev’s principle is the natural generalization [Chetaev (1934);
Valcovici (1958); Pironneau (1983)]. Unfortunately, there do not
exist interesting mechanical systems fulfilling this principle.

� Why insist on deriving, by a universal procedure, the space of
constraint forces from constraint itself?
This is, probably, a consequence of a misunderstanding of the
concept of virtual displacement; mainly in relation with variational
principles.
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3. GENERALIZED NONHOLONOMIC SYSTEMS

Idea: Consider the constraints and the space where constraint forces
take their values as independent data; and do not attempt to derive
one from another by a universal procedure [Dazord (1994); Marle
(1996); Cendra et al (2004)].

Generalized nonholonomic systems (GNHS):

1. Data: (L, C,F), C ⊂ TQ, F ⊂ T ∗Q a codistribution.

2. Equations of motion:

EL (L)
(
γ(2) (t)

)
= f (t) , γ ′ (t) ∈ Cγ(t), f (t) ∈ Fγ(t).

D’Alembert principle: F = Co.
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In general [Cendra et al (2004); Cendra & Grillo (2007)]:

1. Data: (L, C,F), C ⊂ T (k)Q, F ⊂ T (l)Q×Q T
∗Q.

2. Equations of motion:

EL (L)
(
γ(2) (t)

)
= f (t) , γ(k) (t) ∈ Cγ(t),

(
γ(l) (t) , f (t)

) ∈ Fγ(t).
Examples: Elastic rolling bodies (like pneumatic tires), systems with
friction forces, underactuated systems...
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4. CONTROL OF SERVOMECHANISMS

Inertia wheel pendulum: Q = S1 × S1
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� Lagrangian: L = 1
2
I θ̇

2
+ 1

2
J

(
θ̇ + ψ̇

)2

−M g (1 + cos θ).

� Space of actuators: F(θ,ψ) = {(fθ, fψ) : fθ = 0} ⊂ T ∗
(θ,ψ)Q.
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(Almost) Every triple (L, C,F) with second (or lower) order constraints
defines a Lagrangian system with external forces (L, u), with
u : TQ→ T ∗Q, the related constraint force, such that Im (u) ⊂ F . The
pair (L, u) can be interpreted as a closed-loop mechanical system
(CLMS), being u the control law. Then, given an underactuated
system (L,F) and a set of constraints C, we have in this way a CLMS:

(L,F)⊕ C  (L, C,F) (L, u) , Im (u) ⊂ F .

Idea: In order to stabilize a given underactuated system (L,F), fix a
set of constraint C that make stabilization possible, and derive control
law u as the related constraint force [Marle (1996); Shiriaev, Perram,
Canudas-de-Wit (2005)].
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Example (inertia wheel pendulum): We can consider the kinematic
constraints

C(θ,ψ) =
{(
θ̇, ψ̇

)
: θ̇ + a ψ̇ = b sin θ

}
,

and implement it by using the actuators (i.e. a torque on the disc), so

F(θ,ψ) = {(fθ, fψ) : fθ = 0} .

This gives a CLMS with u = (uθ, uψ) = (0, uψ), where

uψ

(
θ, ψ, θ̇, ψ̇

)
=

(I J b/a) θ̇ cos θ + (1− 1/a) M g J sin θ

I + J − J/a
.
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For certain values of a and b we have quasi-global asymptotic
stability:
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Here, ω̂ is a variable proportional to θ̇ [Pérez (2006)].
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Final comments

� Is this method systematic?

It is, by now, just an alternative.

� Any CLMS can be constructed from a GNHS; i.e. any control law
can be seen as the constraint force related to a given set of
constraints?

It can be shown that every CLMS is equivalent to a second order
GNHS. So, there is a deep connection between CLMS and
constrained mechanical systems [Grillo, Maciel & Pérez (2008)].
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