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All computations of the FTLE were computed using codes developed re-

Figure |: We are given a time-dependent vector field Figure 2: Compute the Finite Time Liapunov Expo- 3. Modular: The code is written in C++ language to facilitate modularity.
cently at Caltech. o . )
nent (FTLE) using derivatives of the flow map. Code additions and subtractions can be easily made.
X =v(X,t The code has the following features:
o6, 1) | o7 © code Tas The ToTlowing Teatires 4. Efficient Data Structures: The code is designed for analysis of
A trajectory is the solution of the initial value problem: OtT<X> — m In dt |. N-dimensional: The FTLE can be computed for flows in N dimen- !ar(gje daﬁabslets. Light-weight data structures allow for efficient use of lim-
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X(to; to, XO) = Xo. Define the Lagrangian Coherent Structures (LCS) as ple. 5. Features for Geophysical Applications: The code allows for
ridges in the FTLE. This methodology follows that of computation on the sphere, storm tracking for computation in storm-
The flow map maps points forward in the flow. Haller, Shadden, Lekien, Couillette, and Marsden. centered coordinates, using nested grid data, and non-uniformly spaced

2. Parallel: The code exploits independence of trajectory calculations
to perform computations efficiently in parallel resulting in dramatic speed

up.

grids that are convenient for geophysical applications.

1. Lagrangian Coherent Structures and Lobe Dynamics in a Simple Model
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Figure 8: Computation of the attracting and repelling LCS for the windfield of Typhoon Nabi ..}
reveals a sharply-defined boundary for the vortex that cannot be determined by mere inspec- | -
tion of the velocity or vorticity fields. :
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will be entrained and detrained via the action of lobe dynamics.
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Figures 10a-c: Snapshots of the evolution of the LCS reveals how the green lobe is entrained  *} 7\,
into the vortex while the brown lobe is detrained via the action of lobe dynamics. 2K | %
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Figure | 1: A satellite image of Typhoon Nabi that struck Japan in September 2005.

Figure 12: A textbook illustration of the classical homoclinic tangle associated with a per-
turbed homoclinic connection.

Figure |3: The LCS captures the homoclinic tangle in the simple kinematic model.
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Figures |4a-c: The LCS for several typhoons is compared with that of the simplified model
and reveals that lobe dynamics is a dominant transport mechanism in tropical storms.
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3. Transport Structures near the Eyewall in Hurricane Isabel

Figure 15: Satellite image of Hurricane Isabel.
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Figures |6a-c: High resolution models capture the process of eyewall re-
placement in which the eyewall disintegrates and is replaced by an eyewall of
larger radius which subsequently contracts. The intensity of the storm fluc-
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Figure 17: The New York Times carried an article explaining how meteor- e
ologists must accurately model the physics of eyewall replacement in order . -
to improve predictions of hurricane intensity. Fig I5 Ehe New York Times Fig 17 29 May 2007
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Figures 18: The repelling LCS computed in 3D for Isabel reveals the Lagrangian eyewall structure.
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Figures 19a-d: The eyewall structure is viewed from several angles. The eyewall computed with LCS uses Lagrangian RO e eppe
dynamics of the flow and is not obtained using inspection of the Eulerian velocity field as is typically done in mete- B T
orology. e
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Figures 20a,b: The eyewall as determined by LCS is a dynamical barrier in the flow that separates regions of different
dynamical behavior. To illustrate this, we place drifters colored red, green, and blue in different regions relative to the
eyewall.
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Figures 21a-d: A sequence of snapshots of the drifter trajectories in Hurricane Isabel show how the LCS separates
regions of different dynamical behavior. The blue drifters are quickly advected into the upper atmosphere while the
red drifters remain trapped in the eyewall. Interestingly, green drifters that initially start within a lobe protruding
from eyewall, are eventually stripped off the eye and exit to the upper atmosphere. Further study will determine
how these processes are related to eyewall replacement.

Latitude

Fisures 22a-d: The same sequence of snapshots of drifters in Hurricane Isabel is shown from above.

Longitude

Fig 20b ’ Fig 22a Fig 22b Fig 22 Fig 22d




