

Hurricanes, Horseshoes, and Homoclinic Tangles
Visualizing Transport and Lobe Dynamics in Tropical Storms

0. Extracting Transport Structures using Finite Time Liapunov Exponents

	Define the Lagrangian Coherent Structures (LCS) as ridges in the FTLE. This methodology follows that of

3. Modular: The code is written in $\mathrm{C}++$ language to facilitate modularity Code additions and subtractions can be easily made.
4. Efficient Data Structures: The code is designed for analysis of large data sets. Light-weight data structures allow for efficient use of lim

5. Features for Geophysical Applications: The code allows for computation on the sphere, storm tracking for computation in stormcentered coordinates, using nested grid data, and non-uniformly spaced
grids that are convenient for geophysical applications.

1. Lagrangian Coherent Structures and Lobe Dynamics in a Simple Model

Figure 3 : The wind field at the 850 mb pressure level obtained from NCARNCEP Reanalysis data. The vortex evident North East of Japan is Typhoon Nabi (2005).
Figures 4a-c: A simple kinematic model for typhoon flow is given by superimposing a periodic
velocity field is:

$u=\frac{-\left(y-y_{0}\right)}{x^{2}+\left(y-y_{0}\right)^{2}+\alpha}-\beta$
$v=\frac{x}{x^{2}+\left(y-y_{0}\right)^{2}+\alpha}+\epsilon y \cos 2 t$
Figure 5: Superposition of the attracting (blue) and repelling (red) LCS computed for the unperturbed flow reveals the familiar homoclinic connection from geometric dynamics.

Figure 6: A snapshot of the LCS for the perturbed model vortex.
Figures 7a-d: A sequence illustrating how the LCS delineate the boundaries of lobes and reveal transport via lobe dynamics.
while red drifters are entrained into the vortex.

2. Lobe Dynamics in the Large-Scale Flow of Typhoon Nabi

Figure 8: Computation of the attracting and repeling LCS for the windfield of Typhoon Nabi
reveals a sharply-defined boundary for the vortex that cannot be determined by mere inspection of the velocity or vorticity fields.
Figure 9: Furthermore, intersections of the LCS define lobes colored brown and green that will be entrained and detrained via the action of lobe dynamics.
Figures 10 a-c: Snapshots of the evolution of the LCS reveals how the green lobe is entrained
into the vortex while the brown lobe is detrained via the action of lobe dynamics.

Figure II: A satellite image of Typhoon Nabi that struck Jpan in September 2005 Figure 12: A textbook illustration
turbed homoclinic connection
Figure I3: The LCS captures the homoclinic tangle in the simple kinematic model
Figures I Aa-c: The LCS for several typhoons is compared with that of the simplified model
and reveals that lobe dynamics is a dominant transport mechanism in tropical storms.

3. Transport Structures near the Eyewall in Hurricane Isabel

\qquad

