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I The Isotropic XY Chain
Local Hamilton function:
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si�x; t� 2 R; i � 1;2;3: Spin components at the site
x 2 Z and time t 2 R.

Nearest neighbour
interaction.

External magnetic field of
strength � 2 R.

Using ṡi�x; t� � lim
n!1
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, we obtain the following equations of motion:
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We restrict ourselves to spins of the absolute value
r
s21 �x; t�� s

2
2 �x; t�� s

2
3 �x; t� � 1.

Discrete Symmetry Group

Coupled bistable units.

For coupled bistable units, travelling wave
kink solutions can be observed. Their tails are
trapped by energetic arguments to the neigh-
bourhood of two degenerate groundstates.
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Kink solution.

Continuous Symmetry Group

Coupled SO(2) symmetric units.

In the case of a continuous symmetry group,
the tails of generalized kink solutions are no
longer trapped. They might drift along orbits
of the symmetry group.

?
II «Spiral Like» Solutions
2.1 Spiral Waves

Spiral waves are solutions of the form

s�x; t� �
�
a cos�’0 �∆x �!t�;a sin�’0 �∆x �!t�; b

�T
(2.3)

with a;b 2 R, the angular shift ∆ 2 R and the angular velocity ! 2 R.

If we plug this ansatz into the equations of motion (1.2), we obtain

! � 2
q

1� jaj2 cos∆ . (2.4)
Spiral wave solution of the XY model.

2.2 Spiral Solitons

Definition 2.1 A L1 rotating travelling wave solution

s�x; t� �
�
Re�ei!t��x � ct��; Im�ei!t��x � ct��;

q
1� j��x � ct�j2

�
(2.5)

of equation (1.2) with � : R! fz 2 C j jzj � 1 g, the angular velocity ! 2 R and the velocity c 2 R
is called a spiral soliton solution if there exist an angular shift ∆ 2 R and two constants �� 2 C
with

lim
x!�1 e�i∆x��x� � �� (2.6)

and �� 6� e�i∆x��x� for at least one x 2 R. The latter condition holds automatically if �� 6� �� .
By ∆1 � arg�� � arg�� , we denote the asymptotic phase shift of the spiral soliton solution.
In many cases, �� and �� have the same absolute value. Then, we denote by r1 � j��j the
asymptotic amplitude.

Spiral solitons interpolate spatially between a pair of spiral
wave solutions. They can be understood as an (essentially)
localized defect (i.e., a phase shift) which travels with the
velocity c through the lattice.
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Spiral soliton solution of the XY model with velocity c � 1.

Theorem 2.2 Let c 2 ��2;2�, � � x � ct, a 2 ��1;0�[ �0;1� and " > 0 sufficiently small. Then,
equation (1.2) has spiral soliton solutions of velocity c and asymptotic amplitude r1 � ". These
solutions have the form

���� � " ei�’0�∆��!t�g�"��"�� (2.7)

with ’0 2 R, ∆ � " ap
2
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cos∆ and g�"� 2 L1�R;C�. The function

g�"� depends continuously on " in the L1 norm and behaves as " ! 0 asymptotically like
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The asymptotic phase shift ∆1 depends continuously on " and tends to 2 arccosa as " ! 0.

In the case of c � 0, the function g�"� is evaluated only at the discrete set of points x 2 "Z. Therefore,
every function g�"� leads by the shift x ! x � x0 with x0 2 R to a one parameter family of spiral
soliton solutions.

III Spectral Stability
3.1 Strategy

• Transform Spiral wave or Spiral soliton solution into the fixed point of an equivalent
dynamical system.

• Linearize the transformed equations of motion around the fixed point.

• Spectral analysis of this linearization with respect to l2 perturbations.

• The spectrum provides information on the stability properties of the fixed point (and,
thus, of the original solution).
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Construction of a fixed point corresponding to a spiral soliton with nonzero velocity c 6� 0.

3.2 Stationary Spiral Soliton Solutions

CB solutions turn out to be spectrally stable, while CS solutions are linearly unstable.
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Spectrum of a CB solution for
r1 � 0:8 and ∆1 � 2:59.
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Spectrum of a CS solution for
r1 � 0:8 and ∆1 � 2:59.
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Positive eigenvalue of the CS solution as
a function of r1 and ∆1 .
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CB and CS solutions.

3.3 The Case of Nonzero Velocity

Single spiral soliton solutions with velocity c 6� 0 are always spectrally stable. The concatenation
of multiple spiral soliton solutions of the same velocity c becomes linearly unstable.
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Spectrum of a spiral soliton solution with c � 1, r1 � 0:3 and ∆1 � 2:63.
The solution is spectrally stable.
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Detail of the spectrum of a double spiral soliton solution with c � 0:5,
r1 � 0:3 and ∆1 � 5:19. The solution is linearly unstable.

IV Interactions
4.1 Perturbation of Spiral Waves

FRM II, Garching.
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Schematic run of a neutron scattering
experiment.
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Time development of a local perturbation applied to a
spiral wave solution with a � 0:8, ∆ � 0:8 and ! � 1:2.

4.2 Perturbation of Spiral Solitons

The effect of a small perturbation on an
(unstable) CS soliton. The solution be-
gins to travel through the lattice with
some small velocity c 6� 0.
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Local perturbation of an (unstable) CS solution with r1 � 0:8 and ∆1 � 2:59.

On the other hand, a CB soliton is stable under the same pertur-
bation. It only starts oscillating around its original position. This
effect is special to spatially discrete systems (have in mind that
in PDEs there is no distinction between CS and CB solitons) and
is called pinning or propagation failure.
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Local perturbation of a (stable) CB solution
with r1 � 0:8 and ∆1 � 2:59.

4.3 Collision of Spiral Solitons

Spiral solitons interact by a phase shift.
This is the defining property of solitons
in the classical sense.
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Collision of two spiral solitons with
r1 � 0:5, ∆ � 0, c1 � 0 and c2 � 0:3.
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Collision of two spiral solitions with
r1 � 0:5, ∆ � 0, c1 � �0:1 and c2 � 0:5.

Of particular interest are collisions
where spiral solitons of zero velocity
are involved. On the left hand side,
the phase shift transforms a CS soli-
ton into a CB soliton. The energetic
difference between both solutions is
emitted as an additional pair of high-
speed spiral solitons.
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Collision of two spiral solitons with r1 � 0:8,
∆ � 0:2, c1 � 0 and c2 � 0:4422.
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Collision of two spiral solitions with
r1 � 0:8, ∆ � 0:2, c1 � 0 and c2 � 0:5.


