Point vortices interacting with a planar rigid body

Joris Vankerschaver
Control and Dynamical Systems
California Institute of Technology
jv@caltech.edu

Abstract

A significant step towards understanding the dynamics of marine animals or underwater vehicles consists of finding out how rigid bodies interact with fluids. Different groups of researchers have studied the latter problem with a view towards applications; here we take a new look at this problem, focussing on the underlying geometry. This is joint work with Jerod Marsden and Eva Kanso.

1. Overview and problem setting

We consider the dynamics of N point vortices interacting with a planar rigid body. The dynamics of system was first described by Shashikanth et al. [2002] (SMBK) and Borisov et al. [2003] (BMR), who discovered two different but equivalent formulations of the equations of motion by straightforward calculations. However, many questions remain: most notably, is there anything intrinsic to be said about these equations, and why are there different formulations of the dynamics?

Even though the interest in this system is fairly recent, closely related dynamical systems are very well known.

1. Kirchhoff (1877) derived the equations of motion for a rigid body moving in potential flow: L = A × X and A = A × Ω.

Here L = mN and A = IΩ are the translational and rotational moment of the body, respectively.

2. Lin (1941) showed that the motion of point vortices in a bounded domain in R² are Hamiltonian:

ΓI dx I = δΩ dx I,

where H = −Wv(x1, . . . , xN) and Wv is the Kirchhoff-Howell function.

The Kirchhoff equations are Lie-Poisson on se(3); this observation was used by Leonard et al. who studied the stability of bottom-heavy underwater vehicles. A similar system was used by Kanai et al. [2005] to study bio-locomotion in a perfect fluid. Marsden and Weinstein (1983) showed that the point vortex system arises by symplectic reduction from irrotational flow. These underlying geometric properties partly explain the remarkable accuracy of the Chorin-vortex method.

1. Overview and problem setting

We consider the dynamics of N point vortices interacting with a planar rigid body. The configuration space is

Q = SE(2) × R, where Ω = R², times the Euclidean group in the plane.

On Q, two different groups act:

1. The group of volume-preserving diffeomorphisms acts on Q from the right, expressing particle relabelling symmetry.

2. SE(2), the Euclidean group of the plane, acts on Q from the left, since the system is invariant under rotations and translations of both the fluid and the solid.

3. Particle relabelling symmetry

After reduction by the particle relabelling symmetry, we obtain a system on T⁺SE(2) × R², where the individual factors describe the rigid body and the point vortices, respectively.

The reduced symplectic form is the sum of the canonical form on T⁺SE(2) and a magnetic term ζ on R², where

ζi = mN ∑ j=1 (−δΩ dx j ∧ δΩ dx j) + 2mNΩ-i(4).

The functions ζi are elementary stream functions encoding the response of the fluid to translations and rotations of the rigid body: the magnetic form hence encodes the effects of the ambient fluid. The Helmholtz-Hodge decomposition determines a connection on Ω and Ω is secretly the curvature of this connection.

4. The SE(2) symmetry

The resulting system is invariant under translations and rotations. To get rid of this symmetry, we use Poisson reduction. Physically speaking, this corresponds to rewriting the solid-fluid equations in terms of the rigid body.

By Poisson reducing the magnetic symplectic structure Ω − ζ, we obtain the non-standard Poisson structure of Borisov, Mamaev and Ramodanov (BMR).

The momentum map of the SE(2) symmetry can be used to construct a shift map from R² × se(2) to itself.

Pulling back the BMR Poisson structure by the shift map gives the canonical Poisson structure on R² × se(2):

(ξ, ψ) ↦ (ξ, ψ) − (ψ)−1 Ω + (ψ)−1 Ω (ψ) − (ψ)−1 Ω (ψ) − (ψ)−1 Ω (ψ),

where the first term is just the Lie-Poisson bracket on se(2) and the second term is the vortex bracket on R².

A similar shift map was used by Krishnaprasad and Marsden (1986) in the theory of coupling to a Lie group.

2. Reduction by stages

We start with a mechanical system on an infinite-dimensional configuration space, keeping track of the individual fluid particles and the rigid body. The configuration space is Q = SE(2) × R, times the Euclidean group in the plane.

volume-preserving embeddings of the fluid reference space Q, into R³, times the Euclidean group in the plane.

On Q, two different groups act:

1. The group of volume-preserving diffeomorphisms acts on Q from the right, expressing particle relabelling symmetry.

2. SE(2), the Euclidean group of the plane, acts on Q from the left, since the system is invariant under rotations and translations of both the fluid and the solid.

3. Particle relabelling symmetry

After reduction by the particle relabelling symmetry, we obtain a system on T⁺SE(2) × R², where the individual factors describe the rigid body and the point vortices, respectively.

The reduced symplectic form is the sum of the canonical form on T⁺SE(2) and a magnetic term ζ on R², where

ζi = mN ∑ j=1 (−δΩ dx j ∧ δΩ dx j) + 2mNΩ-i(4).

The functions ζi are elementary stream functions encoding the response of the fluid to translations and rotations of the rigid body: the magnetic form hence encodes the effects of the ambient fluid. The Helmholtz-Hodge decomposition determines a connection on Ω and Ω is secretly the curvature of this connection.

4. The SE(2) symmetry

The resulting system is invariant under translations and rotations. To get rid of this symmetry, we use Poisson reduction. Physically speaking, this corresponds to rewriting the solid-fluid equations in terms of the rigid body.

By Poisson reducing the magnetic symplectic structure Ω − ζ, we obtain the non-standard Poisson structure of Borisov, Mamaev and Ramodanov (BMR).

The momentum map of the SE(2) symmetry can be used to construct a shift map from R² × se(2) to itself.

Pulling back the BMR Poisson structure by the shift map gives the canonical Poisson structure on R² × se(2):

(ξ, ψ) ↦ (ξ, ψ) − (ψ)−1 Ω + (ψ)−1 Ω (ψ) − (ψ)−1 Ω (ψ) − (ψ)−1 Ω (ψ),

where the first term is just the Lie-Poisson bracket on se(2) and the second term is the vortex bracket on R².

A similar shift map was used by Krishnaprasad and Marsden (1986) in the theory of coupling to a Lie group.

5. Illustration: the Kutta-Joukowski force

Classically, the Kutta-Joukowski force on a rigid body moving with velocity u in a fluid with circulation Ω and unit density u is a force with magnitude Ω ut at right angles to the velocity.

Having circulation Ω is equivalent to placing a vortex of strength Ω at the center of the rigid body. Using this ansatz gives the following for the magnetic two-form:

where (ε1, ε2) is a basis of R² ⊂ se(2).

The equations of motion can then be written as

ux∂uΩ − ΦdΩ + dΨ = 0

The set of equations on the right-hand side are Hamilton’s equations under the influence of a gyroscopic form ΦdΩ. In coordinates, this is precisely the Kutta-Joukowski force.

6. Conclusions and outlook

We have seen how the dynamics of a rigid body interact- ing with point vortices can be derived in a systematic way by using successive reductions. Even though simplifying assumptions were made along the way, these results con- tinue to hold under less stringent assumptions.

1. Bodies of arbitrary shape. By using conformal mapping techniques, an arbitrary closed shape can be mapped onto the unit disc. By pulling back the results obtained for circular bodies, we can therefore extend these meth- ods for bodies of arbitrary shape.

2. Different distributions of vorticity. Considering a dif- ferent vorticity distribution is equivalent to focussing on a different co-adjoint orbit of sln, but the intrinsic geom- etry stays the same. For instance, for N vortex rings the co-adjoint orbit would be the space of knots and links with the Arnold-Marsden-Weinstein symplectic structure.

3. Three-dimensional bodies. The magnetic form ulti- mately relies on the Helmholtz-Hodge decomposition, which is independent of dimension. Hence there is also a magnetic form for 3D bodies, interacting with (say) vortex rings.

4. Stability. Kanso and Oskouei (2008) study the linear sta- bility of the translational relative equilibrium (F ¨oppl). To prove nonlinear stability, the energy-momentum method or topological methods may be used. For this, a good insight into the geometry of the system is required.

5. Numerics. Due to its strong geometric properties, the vortex patch method is remarkably accurate for the sim- ulation of vortical flows. An extension of this method to cover moving boundaries would be interesting.

References


Applied Dynamics and Geometric Mechanics, Mathematisches Forschungsinstitut Oberwolfach