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Abstract

A significant step towards understanding the dynamics of
marine animals or underwater vehicles consists of finding
out how rigid bodies interact with fluids. Different groups
of researchers have studied the latter problem with a view
towards applications; here we take a new look at this prob-
lem, focussing on the underlying geometry. This is joint
work with Jerrold Marsden and Eva Kanso.

1. Overview and problem setting

We consider the dynamics of N point vortices interacting
with a planar rigid body. The dynamics of system was first
described by Shashikanth et al. [2002] (SMBK) and Borisov
et al. [2003] (BMR), who discovered two different but equiv-
alent formulations of the equations of motion by straightfor-
ward calculation. However, many questions remain: most
notably, is there anything intrinsic to be said about these
equations, and why are there different formulations of the
dynamics?

Even though the interest in this system is fairly recent,
closely related dynamical systems are very well known.

1. Kirchhoff (1877) derived the equations of motion for a
rigid body moving in potential flow :

L̇ = A×V and Ȧ = A×Ω.

Here L = mV and A = IΩ are the translational and rota-
tional momentum of the body, respectively.

2. Lin (1941) showed that the motion of point vortices in a
bounded domain in R2 are Hamiltonian:

Γk
dxk
dt

= J
∂H

∂xk
,

where H = −WG(x1, . . . ,xN ) and WG is the Kirchhoff-
Routh function.

The Kirchhoff equations are Lie-Poisson on se(3)∗; this ob-
servation was used by Leonard et al. who studied the stabil-
ity of bottom-heavy underwater vehicles. A similar system
was used by Kanso et al. [2005] to study bio-locomotion in
a perfect fluid. Marsden and Weinstein (1983) showed that
the point vortex system arises by symplectic reduction from
the Euler equations. These underlying geometric proper-
ties partly explain the remarkable accuracy of the Chorin
vortex method.

Since both subsystems benefit from reduction theory, it is
likely that the combined dynamics of the rigid body interact-
ing with point vortices will also yield to geometric methods.
In this poster we gather some evidence for that claim:

•we obtain the Poisson structures of SMBK and BMR
and the Poisson map linking them through reduction by
stages;

•we show how classical results like the Kutta-Joukowski
force are geometric in nature, arising because of non-
zero curvature;

•we make the link with other areas of interest, including
magnetic dynamics and coupling to a Lie group.
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Figure. The planar rigid body interacting with point vortices.

2. Reduction by stages

We start with a mechanical system on an infinite-
dimensional configuration space, keeping track of the in-
dividual fluid particles and the rigid body. The configuration
space is

Q = Embvol(F0,R
2)× SE(2),

of volume-preserving embeddings of the fluid reference
space F0 into R2, times the Euclidian group in the plane.

On Q, two different groups act:

1. The group of volume-preserving diffeomorphisms
acts on Q from the right, expressing particle relabelling
symmetry.

2. SE(2), the Euclidian group of the plane, acts on Q from
the left, since the system is invariant under rotations and
translations of both the fluid and the solid.
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Figure. The configuration space of the solid-fluid system,
consisting of mappings from the reference configuration into the plane.

3. Particle relabelling symmetry

After reduction by the particle relabelling symmetry, we ob-
tain a system on

T ∗SE(2)×R2N ,

where the individual factors describe the rigid body and the
point vortices, respectively.

The reduced symplectic form is the sum of the canonical
form on T ∗SE(2) and a magnetic term βµ on SE(2)×R2N :

βµ =

N∑
i=1

Γi
(
− dxi ∧ dyi + dΨA(xi) ∧ dξA

)
.

The functions ΨA are elementary stream functions encod-
ing the response of the fluid to translations and rotations of
the rigid body: the magnetic form hence encodes the ef-
fects of the ambient fluid. The Helmholtz-Hodge decom-
position determines a connection on Q, and βµ is secretly
the curvature of this connection.

4. The SE(2) symmetry

The resulting system is invariant under translations and ro-
tations. To get rid of this symmetry, we use Poisson reduc-
tion. Physically speaking, this corresponds to rewriting the
solid+fluid system in body coordinates.

• By Poisson reducing the magnetic symplectic structure
Ω − βµ, we obtain the non-standard Poisson structure of
Borisov, Mamaev and Ramodanov (BMR).
• The momentum map of the SE(2) symmetry can be used

to construct a shift map from R2N × SE(2) to itself.
• Pulling back the BMR Poisson structure by the shift map

gives the canonical Poisson structure on R2N × se(2)∗:

{f, g}Q = {f, g}Lie−Poisson + {f, g}vortex,

where the first term is just the Lie-Poisson bracket on
se(2)∗ and the second term is the vortex bracket on R2N .
This is the Poisson structure used by Shashikanth, Mars-
den, Burdick and Kelly (SMBK).

A similar shift map was used by Krishnaprasad and Mars-
den (1986) in the theory of coupling to a Lie group.

5. Illustration: the Kutta-Joukowski force

Classically, the Kutta-Joukowski force on a rigid body mov-
ing with velocity U in a fluid with circulation Γ and unit den-
sity is a force with magnitude ΓU at right angles to the ve-
locity.

Having circulation Γ is equivalent to placing a vortex of
strength Γ at the center of the rigid body. Using this ansatz
gives the following for the magnetic two-form:

βµ = −Γe∗x ∧ e∗y,

where {ex, ey} is a basis of R2 ⊂ se(2).

The equations of motion can then be written as

iX(Ωcan − βµ) = dH ⇔ iXΩcan = dH + iXβµ.

The set of equations on the right-hand side are Hamilton’s
equations under the influence of a gyroscopic form iXβµ. In
coordinates, this is precisely the Kutta-Joukowski force.
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Figure. The Kutta-Joukowski force.

6. Conclusions and outlook

We have seen how the dynamics of a rigid body interact-
ing with point vortices can be derived in a systematic way
by using successive reductions. Even though simplifying
assumptions were made along the way, these results con-
tinue to hold under less stringent assumptions.

1. Bodies of arbitrary shape. By using conformal mapping
techniques, an arbitrary closed shape can be mapped
onto the unit disc. By pulling back the results obtained
for circular bodies, we can therefore extend these meth-
ods for bodies of arbitrary shape.

Z = f(z)

2. Different distributions of vorticity. Considering a dif-
ferent vorticity distribution is equivalent to focussing on a
different co-adjoint orbit of Diffvol, but the intrinsic geom-
etry stays the same. For instance, for N vortex rings the
co-adjoint orbit would be the space of knots and links with
the Arnold-Marsden-Weinstein symplectic structure.
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Figure. The Arnold-Marsden-Weinstein symplectic structure.

3. Three-dimensional bodies. The magnetic form ulti-
mately relies on the Helmholtz-Hodge decomposition,
which is independent of dimension. Hence there is also a
magnetic form for 3D bodies, interacting with (say) vortex
rings.

4. Stability. Kanso and Oskouei (2008) study the linear sta-
bility of the translational relative equilibrium (Föppl). To
prove nonlinear stability, the energy-momentum method
or topological methods may be used. For this, a good
insight into the geometry of the system is required.

5. Numerics. Due to its strong geometric properties, the
vortex patch method is remarkably accurate for the sim-
ulation of vortical flows. An extension of this method to
cover moving boundaries would be interesting.
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