Instabilities on the Dynamics of Inertial Particles

Themistoklis Sapsis \& George Haller
Department of Mechanical Engineering
Massachusetts Institute of Technology

Applied Dynamics and Geometric Mechanics, Oberwolfach

July 20-26, 2008

Introduction

Finite-size or inertial particle dynamics in fluid flows can differ markedly from infinitesimal particle ynamics: both clustering and dispersion are well documented phenomena in inertial particle motion, while hey are absent in the incompressible motion of infinitesimal particles. As we show, these peculiar asymptotic imit of validity of the above equation is given explicitly through an analytical criterion that predicts the regions where dynamical instabilities on the motion of inertial particles will occur

Let $\boldsymbol{u}(t, \boldsymbol{x})$ denote the velocity field of a two- or three-dimensional fluid flow of density ρ_{ρ} with \boldsymbol{x} referring to spatial locations and t denoting time. The fluid fills a compact (possibly time-varying) spatial egion D with boundary ∂D; we assume that D is a uniformly bounded smooth manifold for all times. We also assume $u(t, x)$ to be r times conti
here ∇ denotes the eradient $\frac{D u}{D t}=\frac{\partial}{\partial t}+(\nabla \boldsymbol{V}) u$
where ∇ denotes the gradient operator with respect \boldsymbol{x}. Let $\boldsymbol{x}(t)$ denote the path of a finite-size particle of
density $\rho_{\text {, }}$ immersed in the fluid. If the particle is spherical with sufficiently small radius, its velocity $v(t)$ density ρ_{p} immersed in the fluid. If the particle e is sis)
satisfies the equation of motion (cf. Maxey and Riley)

$$
\dot{v}-\frac{3 R}{2} \frac{D u}{D t}=-\mu(\boldsymbol{v}-\boldsymbol{u})+\left(1-\frac{3 R}{2}\right) \boldsymbol{g}
$$

With $R=2 \rho_{f} /\left(2 \rho_{f}+\rho_{p}\right), \mu=R / S t$ where S t is the Stokes number and $\mathrm{t}, \mathrm{v}, \mathrm{u}$ and g denote nondimensional
variables. The density ratio R distinguishes neutrally buoyant particles $(R=2 / 3)$ from aerosols $(0<R<2 / 3)$竍 motion a certain amount of fluid that is proportional to half of its mass.

Here we consider finite-size particle motion in general unsteady velocity fields, extending Fenichels eometric approach from time-independent to time-dependent vector fields. Such an extension has apparently not been considered before in dynamical systems theory, thus the present work should be of interest in other Singular perturbation formulation

The derivation of the equation of motion is only correct under the assumption $\mu \gg 1$, which motivates is to introduce the small param
system of differential equations

$$
\begin{aligned}
& \dot{x}=\boldsymbol{v} \\
& \varepsilon \dot{v}=\boldsymbol{u}(t, \boldsymbol{x})-\boldsymbol{v}+\varepsilon \frac{3 R}{2} \frac{D u(t, x)}{D t}+\varepsilon\left(1-\frac{3 R}{2}\right) \boldsymbol{g}
\end{aligned}
$$

This formulation shows that x is a slow variable changing at $O(1)$ speeds, while the fast variable \boldsymbol{v} varies at speeds of $O(1 / \varepsilon)$. To transform the above singular perturbation problem to a regular perturbation problem, we select an arbitrary initial time t_{0} and introduce the fast time τ by letting $\varepsilon \tau=t-t_{0}$. This type of rescaling is
standard in singular perturbation theory with $t_{0}=0$. The new feature here is the introduction of a nonzero present time t_{0} about which we introduce the new fast time τ. This trick enables us to extend existing singular perturbation techniques to unsteady flows. Denoting differentiation with respect to τ by prime, we rewrite

$$
\begin{aligned}
& \varphi^{\prime}=\varepsilon \\
& v^{\prime}=u(t, x)-v+\varepsilon \frac{3 R}{2} \frac{D u(t, x)}{D t}+\varepsilon\left(1-\frac{3 R}{2}\right) g
\end{aligned}
$$

where $\varphi \equiv t_{0}+\varepsilon \tau$ is a dummy variable that renders the above system of differential equations autonomous in he variables $(\boldsymbol{x}, \varphi, \boldsymbol{v}) \in D \times \mathbb{R} \times \mathbb{R}^{n}$, here n is the dimension of the domain of definition D of the fluid flow $(n=2$ Slow manifold and inertial equation
The $\varepsilon=0$ limit of system (3)

$$
\begin{aligned}
& x^{\prime}=0 \\
& \varphi^{\prime}=0
\end{aligned}
$$

$=u(t, x)-v$
has an $(n+1)$-parameter family of fixed points satisfying $\boldsymbol{v}=\boldsymbol{u}(\boldsymbol{x}, \varphi)$. More formally, for any time $T>0$, the compact invariant set $M_{0}=\left\{(\boldsymbol{x}, \varphi, \boldsymbol{v}): \boldsymbol{v}=\boldsymbol{u}(\boldsymbol{x}, \varphi), \boldsymbol{x} \in D, \varphi \in\left[t_{0}-T, t_{0}+T\right]\right\}$ is completely filled with fixed points of (4). Note that M_{0} is a graph over the compact domain $D_{0}=\left\{(\mathrm{x}, \varphi): \mathrm{x} \in D, \varphi \in\left[t_{0}-T, t_{0}+T\right]\right\}$;we show the geometry of D_{0} and M_{0} in Fig. 1.

Inspecting the Jacobian $d_{v}(u(x, \varphi)-v)_{v_{10}}=-I_{\text {nsen }}$ we find that M_{0} attracts nearby trajectories at a uniform exponential rate of $\exp (-\tau)$ (i.e., $\exp (-t / t)$ in terms of the original unscaled time). In fact, M_{0} attracts all the explicitly solvable for any constant normally hyperbolic invariant set that has an open domain of attraction. Note that M_{0} is not a manifold because is boundary

$$
\partial M_{0}=\partial D \times\left[t_{0}-T, t_{0}+T\right] \bigcup D \times\left\{t_{0}-T\right\} \bigcup D \times\left\{t_{0}+T\right\}
$$

has corners; $M_{0}-\partial M_{0}$, however, is an $(n+1)-$ dimensional normally hyperbolic invariant manifold. By the
results of Fenichel (Fenichel, 1979) for autonomous system any compact normally hyperbolic set of fixed points results of Fenichel (Fenichel, 1979) for autonomous system any compact normally hyperbolic set of fixed points only leave the manifold through its boundary.) In our context, Fenichel's results guarantee the existence of $\varepsilon_{0}\left(t_{0}, T\right)>0$, such that for all $\varepsilon \in\left[0, \varepsilon_{0}\right)$, system (4) admits an attracting locally invariant manifold M_{ε} that is $\mathrm{O}(\varepsilon)$ C^{r} - close to M_{0} (See Fig. 1b). By expanding the manifold M_{ε} into a Taylor series we have the following
Theorem 1 (Haller \& Sapsis, 2008): For small $\varepsilon>0$ the equations of particle motion on the slow manifold can be

$$
\dot{x}=u_{\varepsilon}(t, x) \equiv u(t, x)+\varepsilon u^{\prime}(t, x)+\varepsilon^{2} u^{2}(t, x)+\ldots+\varepsilon^{\prime} u^{\prime}(t, x)+O\left(\varepsilon^{r+1}\right)
$$

here r is an arbitrary but finite integer, and the functions $u^{\prime}(t, x)$ are given by

$$
\begin{aligned}
& \boldsymbol{u}^{\prime}(t, x)=\left(\frac{3 R}{2}-1\right)\left(\frac{D u}{D t}-g\right) \\
& \boldsymbol{u}^{k}(t, x)=-\left[\frac{D u^{k-1}}{D t}+(\nabla \boldsymbol{u}) u^{k-1}+\sum_{k=1}^{t-2}\left(\nabla \boldsymbol{u}^{\prime}\right) \boldsymbol{u}^{k-1-1}\right] k \geq 2 .
\end{aligned}
$$

We shall refer to (5) with the $u^{\prime}(t, \boldsymbol{x})$ defined in (6) as the inertial equation associated with the fluid velocity field because (6) gives the general asymptotic form of inertial particle motion induced by $\boldsymbol{u}(t, \boldsymbol{x})$. A leading-order approximation to the inertial equations is given by

$$
\dot{\boldsymbol{x}}=\boldsymbol{u}(t, \boldsymbol{x})+\varepsilon\left(\frac{3 R}{2}-1\right)\left(\frac{D \boldsymbol{u}}{D t}-g\right)+O\left(\varepsilon^{2}\right)
$$

this is the lowest-order truncation of (5) that has nonzero divergence, and hence is capable of capturing clustering or dispersion arising from finite-size effects. The above argument renders the slow manifold M_{0} over the fixed
time interval $\left[t_{0}-T, t_{0}+T\right]$. Since the choice of t_{0} and T was arbitrary, we can extend the existence result of M to an arbitrary long finite time interval. Slow manifolds are typically not unique, but obey the same asymptotic expansion (5). Consequently, any two slow manifolds and the corresponding inertial equations are $O\left(\xi^{\prime}\right)$ close each other. Specifically, if $r=\infty$, then the difference between any two slow manifolds is exponentially small in he case of neutrally buoyant particles $(R=2 / 3)$ turns out to be special: the slow manifold is the unique invariant
surface $M_{\varepsilon}=\left\{(\boldsymbol{x}, \varphi, \boldsymbol{v}): \boldsymbol{v}=\boldsymbol{u}(\boldsymbol{x}, \varphi),(\boldsymbol{x}, \varphi) \in D_{0}\right\}$, on which the dynamics coincides with those of infinitesimally small particles. This invariant surface survives for arbitrary $\varepsilon>0$, as noticed by Babiano et al. but may lose its ability for larger values of ε
Global attractivity and local instabilities of the slow manifold
The above Theorem 1 seem to imply that inertial particles should synchronize exponentially fast with the inertial equation dynamics for small Stokes numbers. However, Babiano et al. and Vilela et al. give numerical evidence

Fig 2: a) von Karman vorices in the atmosphere. b) Streamfunction simulating the von Karman vorices. c, (d) Inertial particles in the von

around unstable manifolds of the Lagrangian particle dynamics. Babiano et al. derive a criterion that characterizes the unstable regions in which scattering of inertial particles occurs. Their derivation follows an
Okubo-Weiss-type heuristic reasoning, where it is assumed that the rate of change of the velocity gradient tensor calculated on a particle trajectory is small and hence can be neglected. However, as known counterexamples show (cf. Pierrehumbert and Yang) such reasoning, in general, yields incorrect stability results except near fixed points of the flow field.

In the following Theorem, we provide a rigorous analytical criterion for the stable and unstable regions of the slow manifold for weakly inertial particles in general three-dimensional unsteady fluid flows.

$$
\text { Theorem } 2 \text { (Sapsis \& Haller, 2008): For small } \varepsilon>0 \text { the slow manifold is globally atractive if for all } x \in D
$$

$$
\lambda_{\max }\left(-\frac{\nabla u_{\varepsilon}(t, x)+\left[\nabla u_{\varepsilon}(t, \boldsymbol{x})\right]^{\tau}}{2}\right)<\frac{1}{\varepsilon}
$$

Where $\lambda_{\text {max }}$ denotes the maximum eigenvalue. Additionally, for any $\varepsilon>0$ and $\boldsymbol{x} \in D$ such that condition (7) is Application I : Inertial particles in the 2D von Karman vortex street in the wake of a cylinde
As a first application we consider inertial particle motion in the 2D von Karman vortex street model of Jung, Tel and Ziemniak (Fig. 2b). In Fig. 2c,d the slow manifold is presented as a surface colored according to the stability criterion (7). Specifically, red regions corresponds to spatial locations where dynamical instabilities will occur
and hence particles' velocity will diverge from the velocity imposed by the inertial equation (5). In the upper right subplots (Fig. 2c,d) the distance from the slow manifold is presented directly in to illustrate more clearly the stability instability regions of the slow manifold.
Application II : Inertial particles in hurricane Isabel (US East Coast, 2003) Our focus here is to study the dynamics of dust and droplet in the three-dimensional flow Ouild of hurricane Isabel (cf. Fig. 3a) and locate the key three-dimensional structures that govern their motion. In Fig. 3 b we present the regions where dynamical instabilities will
take place according to criterion (7) for two different values of the inertial take place according to criterion (7) for two different values of the inertial parameter
Fig. 3c show the attracting inertial Lagrangian coherent structures (ILCS) extracted froo the backward Direct Lyapunov Exponent (DLE) field. In Fig 3d we shows all the points
 with DLE value greater than 80% onet (DLE) NLE manifold is globally stable so we have rapid alignment of inertial particles with the ILCS. This is for Fig 3 e where the inertia parameter is larger and the ILCS derived from the inertial equation are not the coaslly
valid (red regions). Finally in Fig 3 we superinpors b) \quad.

Fig 3: a) Sutelliti image of hurricane Isabel. b) Instability regions of the slow manifold dccording to criterion (1) for $\varepsilon=0.2$ and $\varepsilon=0.1$.
 Acknowledgments
 References

mo,	

