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Introduction
 Finite-size or inertial particle dynamics in fluid flows can differ markedly from infinitesimal particle

dynamics: both clustering and dispersion are well documented phenomena in inertial particle motion, while
they are absent in the incompressible motion of infinitesimal particles. As we show, these peculiar asymptotic
features are governed by a lower-dimensional inertial equation which is determined explicitly. Moreover, the
limit of validity of the above equation is given explicitly through an analytical criterion that predicts the
regions where dynamical instabilities on the motion of inertial particles will occur.

Let u(t, x) denote the velocity field of a two- or three-dimensional fluid flow of density ρf, with x
referring to spatial locations and t denoting time. The fluid fills a compact (possibly time-varying) spatial
region D with boundary ∂D; we assume that D is a uniformly bounded smooth manifold for all times. We also
assume u(t, x) to be r times continuously differentiable in its arguments for some integer r ≥ 1. We denote the
material derivative of u by

where    denotes the gradient operator with respect x.    Let x(t) denote the path of a finite-size particle of
density ρp immersed in the fluid. If the particle is spherical with sufficiently small radius, its velocity v(t)
satisfies the equation of motion (cf. Maxey and Riley)

With                                                 where St is the Stokes number and t, v, u and g denote nondimensional
variables. The density ratio R distinguishes neutrally buoyant particles (R = 2/3) from aerosols (0 < R < 2/3)
and bubbles (2/3 < R <2). The 3R/2 coefficient represents the added mass effect: an inertial particle brings into
motion a certain amount of fluid that is proportional to half of its mass.

Here we consider finite-size particle motion in general unsteady velocity fields, extending Fenichel's
geometric approach from time-independent to time-dependent vector fields. Such an extension has apparently
not been considered before in dynamical systems theory, thus the present work should be of interest in other
applications of singular perturbation theory where the governing equations are non-autonomous.

Application I : Inertial particles in the 2D von Karman vortex street in the wake of a cylinder

As a first application we consider inertial particle motion in the 2D von Karman vortex street model of Jung, Tel
and Ziemniak (Fig. 2b). In Fig. 2c,d the slow manifold is presented as a surface colored according to the stability
criterion (7). Specifically, red regions corresponds to spatial locations where dynamical instabilities will occur
and hence particles’ velocity will diverge from the velocity imposed by the inertial equation (5). In the upper
right subplots (Fig. 2c,d) the distance from the slow manifold is presented directly in to illustrate more clearly the
stability/instability regions of the slow manifold.

Singular perturbation formulation
The derivation of the equation of motion is only correct under the assumption µ >>1, which motivates

us to introduce the small parameter  ε = 1/µ << 1, and rewrite the equation of motion (1) as a first-order
system of differential equations

This formulation shows that x is a slow variable changing at O(1) speeds, while the fast variable v varies at
speeds of O(1/ε).    To transform the above singular perturbation problem to a regular perturbation problem,
we select an arbitrary initial time t0 and introduce the fast time τ by letting ετ = t – t0. This type of rescaling is
standard in singular perturbation theory with t0 = 0. The new feature here is the introduction of a nonzero
present time t0 about which we introduce the new fast time τ. This trick enables us to extend existing singular
perturbation techniques to unsteady flows. Denoting differentiation with respect to τ by prime, we rewrite 

where φ ≡  t0 + ετ  is a dummy variable that renders the above system of differential equations autonomous in
the variables (x,φ,v)                    ; here n is the dimension of the domain of definition D of the fluid flow (n = 2
for planar flows, and n = 3 for three-dimensional flows).

Slow manifold and inertial equation
The ε = 0 limit of system (3)

has an (n + 1)-parameter family of fixed points satisfying v = u(x,φ). More formally, for any time T > 0, the
compact invariant set M0={(x,φ,v) : v = u(x,φ),  x    D, φ   [t0–T, t0+T]} is completely filled with fixed points
of (4). Note that M0 is a graph over the compact domain D0 = {(x,φ) : x  D, φ  [t0–T, t0+T]};we show the
geometry of D0 and M0 in Fig. 1a.

Inspecting the Jacobian                                        we find that M0 attracts nearby trajectories at a uniform
exponential rate of exp(–τ)  (i.e., exp(– t/ε) in terms of the original unscaled time). In fact, M0 attracts all the
solutions of (3) that satisfy (x(0),φ(0))    D×[t0–T, t0+T]; this can be verified using the last equation of (4) which is
explicitly solvable for any constant value of x and φ. Consequently, M0 is a compact normally hyperbolic
invariant set that has an open domain of attraction. Note that M0 is not a manifold because its boundary

has corners; M0 – ∂M0 , however, is an (n+1) – dimensional normally hyperbolic invariant manifold. By the
results of Fenichel (Fenichel, 1979) for autonomous system any compact normally hyperbolic set of fixed points
on gives rise to a nearby locally invariant manifold for system (3). (Local invariance means that trajectories can
only leave the manifold through its boundary.) In our context, Fenichel's results guarantee the existence of
ε0(t0,T) > 0, such that for all ε   [0, ε0), system (4) admits an attracting locally invariant manifold Mε that is O(ε)
Cr  – close to M0 (See Fig. 1b). By expanding the manifold Mε  into a Taylor series we have the following

Theorem 1 (Haller & Sapsis, 2008): For small ε > 0 the equations of particle motion on the slow manifold can be
written as

where r is an arbitrary but finite integer, and the functions              are given by

We shall refer to (5) with the             defined in (6) as the inertial equation associated with the fluid velocity field
because (6) gives the general asymptotic form of inertial particle motion induced by u(t, x). A leading-order
approximation to the inertial equations is given by

this is the lowest-order truncation of (5) that has nonzero divergence, and hence is capable of capturing clustering
or dispersion arising from finite-size effects.    The above argument renders the slow manifold Mε over the fixed
time interval [t0 – T, t0 + T]. Since the choice of t0 and T was arbitrary, we can extend the existence result of  Mε to
an arbitrary long finite time interval. Slow manifolds are typically not unique, but obey the same asymptotic
expansion (5). Consequently, any two slow manifolds and the corresponding inertial equations are O(εr) close to
each other. Specifically, if r = ∞, then the difference between any two slow manifolds is exponentially small in ε.
The case of neutrally buoyant particles (R = 2/3) turns out to be special: the slow manifold is the unique invariant
surface Mε = {(x,φ,v) : v = u(x,φ),  (x,φ)   D0},on which the dynamics coincides with those of infinitesimally
small particles. This invariant surface survives for arbitrary ε > 0, as noticed by Babiano et al. but may lose its
stability for larger values of ε.

around unstable manifolds of the Lagrangian particle dynamics. Babiano et al. derive a criterion that
characterizes the unstable regions in which scattering of inertial particles occurs. Their derivation follows an
Okubo-Weiss-type heuristic reasoning, where it is assumed that the rate of change of the velocity gradient tensor
calculated on a particle trajectory is small and hence can be neglected. However, as known counterexamples
show (cf. Pierrehumbert and Yang) such reasoning, in general, yields incorrect stability results except near fixed
points of the flow field.

In the following Theorem, we provide a rigorous analytical criterion for the stable and unstable regions of
the slow manifold for weakly inertial particles in general three-dimensional unsteady fluid flows.

Theorem 2 (Sapsis & Haller, 2008): For small ε > 0 the slow manifold is globally attractive if for all x    D

where            denotes the maximum eigenvalue. Additionally, for any ε > 0 and x    D such that condition (7) is
violated the slow manifold Mε repels all close enough trajectories (x(t), v(t)).
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Application II : Inertial particles in hurricane Isabel (US East Coast, 2003)

Our focus here is to study the dynamics of dust and droplet in the three-dimensional flow
field of hurricane Isabel (cf. Fig. 3a) and locate the key three-dimensional structures that
govern their motion. In Fig. 3b we present the regions where dynamical instabilities will
take place according to criterion (7) for two different values of the inertial parameter ε.
Fig. 3c show the attracting inertial Lagrangian coherent structures (ILCS) extracted from
the backward Direct Lyapunov Exponent (DLE) field. In Fig 3d we shows all the points

Fig 1: a) The geometry of the domain and the attracting set of fixed points M0  ;  each point p in M0 has a two-dimensional stable manifold
(unperturbed stable fiber at p) satisfying (x, φ) = const. b) The geometry of the slow manifold Mε ; A trajectory intersecting a stable fiber
converges to the trajectory through the fiber base point p.

Fig 2: a) von Karman vortices in the atmosphere. b) Streamfunction simulating the von Karman vortices. c, d) Inertial particles in the von
Karman velocity field. The colored surface represents the slow manifold that attracts trajectories over blue regions and repels them over red
ones. The trajectories are computed using the full dynamical equations. Upper right plots show directly the distance from the manifold.

Fig 3: a) Satellite image of hurricane Isabel. b) Instability regions of the slow manifold according to criterion (7) for ε = 0.2 and ε  = 0.1.
c-d) Attracting and repelling ILCS for ε = 0.1. e) Attracting ILCS colored according to (7) for ε = 0.2.  f) Attracting and repelling ILCS for ε
= 0.2 colored according to (7) [yellow and red regions indicate locations where divergence of velocity from the slow manifold will occur].

Global attractivity and local instabilities of the slow manifold
The above Theorem 1 seem to imply that inertial particles should synchronize exponentially fast with the inertial
equation dynamics for small Stokes numbers. However, Babiano et al. and Vilela et al. give numerical evidence
that two-dimensional suspensions do not approach Lagrangian particle motions; instead, their trajectories scatter
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b)a)

c) d)
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c) d)

e) f)

a)

Acknowledgments
This research was supported by NSF Grant DMS-04-04845, AFOSR Grant AFOSR FA 9550-06-0092, and a George and Marie Vergottis Fellowship at MIT.
Hurricane Isabel data produced by the Weather Research and Forecast (WRF) model, courtesy of NCAR, and the U.S. National Science Foundation (NSF).

with DLE value greater than 80% of the maximum DLE value. Both plots refer to the case where the slow
manifold is globally stable so we have rapid alignment of inertial particles with the ILCS. This is not the case
for Fig 3e where the inertia parameter is larger and the ILCS derived from the inertial equation are not globally
valid (red regions). Finally, in Fig 3f we superimpose both attracting and repelling ILCS (computed through the
inertial equation) colored according to criterion (7) (yellow & red regions are unstable according to (7)).
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