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Abstract:   This poster summarizes a collaborative paper with 
Houman Owhadi that analyzes a new class of structure-
preserving Langevin integrators obtained from a Lie-Trotter 
splitting of the Langevin equations into Hamilton's and 
Ornstein-Uhlenbeck equations.   A variational integrator is 
used to solve Hamilton's equations and an exact solution is 
used for Ornstein-Uhlenbeck equations.  The composite map is 
first-order and preserves structure of Langevin equations.



Structure of Langevin 
Equations

Here are Langevin equations

The stochastic process             is ergodic with respect to the 
Boltzmann-Gibbs (BG) measure.  Moreover, we assume it’s rate 
of convergence to equilibrium is geometric.  

Roughly, a sufficient condition for geometric ergodicity is 
definiteness of C and certain regularity on the Hamiltonian.

(qt, pt)

{
dq = ∂H

∂p dt,
dp = −∂H

∂q dt− cC∂H
∂p dt + σC1/2dW .



Lie-Trotter Splitting

This splitting is quite natural, but seems to have been only 
recently introduced in the literature.

{
dq = ∂H

∂p dt

dp = −∂H
∂q dt

{
dq = 0
dp = −cC∂H

∂p dt + σC1/2dW

Hamilton's 
equations

Ornstein-
Uhlenbeck 
equations



Variational Integrator
We use a variational integrator for Hamilton's equations. 

One can show numerical orbits are very nearly interpolated by 
a global, autonomous Lagrangian system.
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Exact Orbits of 
Cubic Oscillator

Orbits of Nearby 
Interpolating 
Lagrangian



Ornstein-Uhlenbeck 
Integrator

dp(t) = −cCM−1p(t)dt + σC1/2dW (t)
p(0) = p,

Ornstein-Uhlenbeck equations are linear SDEs

With solution

p(t) = exp(−cCM−1t)p + σ

∫ t

0
exp(−cCM−1(t− s))C1/2dW (s).

Defines map that exactly preserves BG measure

ψh : (q, p) !→ (q, p(h)).



Stochastic Variational 
Integrator
θh : T ∗Q→ T ∗Q

ψh : T ∗Q→ T ∗Q

φh = θh ◦ ψh

{
dq = ∂H

∂p dt

dp = −∂H
∂q dt

{
dq = 0
dp = −cC∂H

∂p dt + σC1/2dW

{
dq = ∂H

∂p dt,
dp = −∂H

∂q dt− cC∂H
∂p dt + σC1/2dW .

approximates

approximates

approximates

Remark: Easy to extend to manifolds.



Even though the integrator is first-order accurate, the distance 
between     and      is based on order of accuracy of the 
variational integrator

Conventional Accuracy
This method is first-order mean-squared accurate:

‖φk
h(q, p)− ϕtk(q, p)‖ms ≤ Ch.

As a consequence, a result due to Mattingly, Stuart, and 
Highman [2002], shows if the original Langevin process is 
geometrically ergodic then so is this integrator.

Let        denote the discrete invariant measure associated to      

µh

φh

µ

µh



Near Preservation of 
BG-measure

Assume that the variational integrator is pth-order accurate.

‖θN
h (q, p)− ϑNh(q, p)‖ ≤ Chp.

Then, one can prove the following identity by change of 
variables:

∫

T∗Q
(E(f(φh))− f) dµ =

∫

T∗Q
f

(
e−β(H((θh)−1)−H) − 1

)
dµ

change in energy of a 
variational integrator



Near Preservation of BG 
measure

Under assumption of geometric ergodicity:

NB: Practical sufficient conditions based on regularity of potential 
energy are provided in the paper.

∣∣∣∣
∫

T∗Q

[
f(φN

h )− f
]
dµ

∣∣∣∣ ≤ O(log (1/h) hp)

Moreover, TV distance of discrete invariant measure satisfies

‖µ− µh‖TV ≤ O(log(1/h)hp).


