
Hybrid Monte-Carlo
For the algorithmic realization of the constrained stochastic Hamilto-
nian system we employ an appropriately adapted hybrid Monte-Carlo
(HMC) scheme. Given a numerical integrator the idea of HMC is to
reject those moves that have too large energy fluctuations.

The algorithm is as follows.

1. Set qk = xk with Φ(qk) = ξ.

2. Pick a random momentum ζ ∼ N (0, β−1Id).

3. Project onto the hidden constraint

pk = P (qk)ζ =⇒ pk ∼ ρ(qk, ·) .

4. Integrate (qk+1, pk+1) = Ψ̂τ (qk, pk).

5. Accept, xk+1 = qk+1 with probability

min(1, exp(−β∆Hk+1)

or reject, i.e, xk+1 = xk.

6. Repeat.

Application: free energy calculation

In order to illustrate the applicability of the proposed HMC algorithm
we have computed the free energy profile or potential of mean force
of the glycine dipeptide as a function of its two central torsion angles.
At T = 300K, the most pronounced metastable conformations of
the dipeptide, the extended C5 conformation and the ring-like C7
conformation, are separated by large potential barriers (see below).

The constrained simulations were carried out on a 36× 36 grid using
the GROMOS96 force field and the RATTLE algorithm with a step
size h = 2fs. Each grid point Φ1 = φ and Φ2 = ψ represents a
combination of the two dihedral angles (φ, ψ). The HMC integration
interval was chosen to be τ = 100fs and each conditional expectation
was taken over N = 10 000 points; with the thus set parameters the
acceptance rate of the HMC algorithm was about 90% (typically the
acceptance rate decreases as the number of particles grows).
For each grid point (φ, ψ), we computed the conditional expectation
of the total force acting on the two angles. Eventually the corre-
sponding free energy profile is obtained upon numerically integrating
the resulting 2-dimensional vector field.
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Sampling by constrained motion

The co-area formula is an assertion about how to reweight the con-
strained Gibbs measure the respective conditional probability mea-
sure. As yet, we haven’t made any reference to dynamics; so any
(constrained) dynamical system that samples π will do the job.
We consider the constrained version of our original initial value prob-
lem and confine our attention to Hamiltonian systems

ẋ =
∂H

∂p

ṗ = −∂H
∂x

− λ
∂Φ

∂x
, Φ(x) = ξ ,

with H : T ∗Rn→ R being the system’s Hamiltonian

H(x, p) =
1

2
|p|2 + V (x) , p = ẋ .

Stochastic Hamiltonian systems

Hamiltonian systems admit infinitely many invariant probability mea-
sures none of which is ergodic in general. But we may enforce er-
godicity by adding suitable random perturbations to the dynamics:
given the exact Hamiltonian flow Ψτ at time τ > 0, we introduce a
stochastic Hamiltonian flow as iterates of the map

xn+1 = (Π ◦ Ψτ ) (xn, pn) , pn ∼ ρ(xn, ·) ,

where Π: T ∗Σ → Σ, (x, p) 7→ x and ρ ∝ exp(−βH|T ∗Σ). Iterating
the thus defined map yields a series of configurations

{x0, x1, . . .} ⊂ Σ .

Symplecticness and energy-conservation of Ψτ entail ergodicity with
respect to π, i.e., the law of large numbers

1

N

N−1∑
k=0

f (xk) →
∫

Σ
f dπ as N →∞

holds for almost all initial conditions x0 ∈ Σ. If we replace the exact
flow by its numerical discretization, Ψ̂τ , however, π is no longer pre-
served under the discrete flow. Hence ergodicity gets lost, primarily
due to the energy error of the discretization.

Metropolized stochastic Hamiltonian systems

We may adopt appropriate Monte-Carlo strategies to enforce the de-
sired target distribution thereby accounting for the energy error of
the numerical flow. We have the following law of large numbers:

Theorem (H. 2007). Given τ > 0 sufficiently small, let the nu-
merical flow Ψ̂τ be symmetric and symplectic. Then

qn+1 = (Π ◦ Ψτ ) (xn, pn) , pn ∼ ρ(xn, ·)
P [xn+1 = qn+1] = min{1, exp(−β∆Hn+1)}

defines an irreducible Markov process {x0, x1, . . .} ⊂ Σ with
unique invariant probability measure π and the property

1

N

N−1∑
k=0

f (xk) →
∫

Σ
f dπ as N →∞

almost surely and for almost all initial conditions x0 ∈ Σ.

The idea of irreducibility is essentially that the probability to reach
any point in configuration space is nonzero, i.e.,

P
[
xn+1 ∈ B(qτ )

∣∣ xn = q0
]
> 0

holds true for all q0, qτ ∈ Σ and any Borel set B ∈ B(Σ), where
the connecting paths can be constructed as stationary solutions of a
discrete action principle. The discrete Euler-Lagrange equations then
yield a numerical flow map that is both symmetric and symplectic;
employing, e.g., trapezoidal rule for discretizing the action integral
yields the well-known SHAKE/RATTLE algorithm.

Since the energy error ∆Hn+1 in each step is bounded, we can reach
any point xn+1 ∈ B(qτ ) with non-zero probability by perturbing the
initial momenta (the set of admissible momenta is nonempty).
The law of large numbers guarantees that any realization of the
“metropolized” stochastic Hamiltonian flow eventually samples the
constrained Gibbs measure without bias and independent of the sta-
ble step size of the integrator. Yet the rate of convergence may depend
on how τ or the internal step size of the integrator is chosen.

Abstract

A typical problem in statistical mechanics consists in computing equi-
librium averages of certain observables. We present a novel hybrid
Monte-Carlo algorithm for sampling the Gibbs distribution of a me-
chanical system that is subject to configuration constraints. Using the
ordinary Metropolis-Hastings acceptance rule together with a stan-
dard symplectic integrator for constrained systems (e.g., SHAKE or
RATTLE) we can prove that the dynamics is ergodic and samples the
correct distribution for any stable step size.

The sampling problem

Consider a system assuming states (x, v) ∈ TRn with the energy

E(x, v) =
1

2
|v|2 + V (x) .

Typical problems, e.g., in molecular dynamics (MD) or quasi-
continuum methods consists in calculating equilibrium averages of an
observable f (x) over all configurations,

Ef =

∫
Rn
f dµ , dµ(x) ∝ exp(−βV (x))dx ,

where µ denotes the Gibbs measure at temperature T = 1/β. Now
consider the solution of the following initial value problem

ẍ(t) = −∇V (x(t)) , x(0) = x .

We call the sampling problem the task of computing the expectation
Ef by taking the time average over the trajectory x(t), i.e.,

Ef ≈ 1

T

∫ T

0
f (x(t)) dt .

Rare events

The are various problems with computing ensemble averages from sin-
gle trajectories:

• the system may contain large energy barriers that obstruct fast sam-
pling (metastability),

• the dynamics x(t) are not ergodic with respect to the Gibbs measure,
i.e., trajectories do not sample µ.

The Gibbs distribution of a typical metastable system is shown in
the figure below. Large deviations theory states that the exit from a
metastable set is a rare event when the dynamics have to overcome a
potential barrier, say, ∆V . The asymptotic exit time scales like

τexit ∝ exp(−β∆V ) for β � 1 .

Hence sampling the Gibbs measure requires integrating the system
over an exponentially long times. Quantities of interest that assume
knowledge of µ are, e.g., free energy differences or transition rates be-
tween metastable sets. For these purposes, however, is often sufficient
to know µ at certain (improbable) points, e.g., in a local neighbour-
hood of a transition state in case of which the sampling problem boils
down to computing conditional expectations of the form

E [f |ξ] =
1

Z(ξ)

∫
Rn
f (x)δ(Φ(x)− ξ)dµ(x) .

Here Z(ξ) normalizes the conditional probability to one, and Φ: Rn→
R denotes some physical observable (reaction coordinate) that
parametrizes, e.g., a transition between metastable sets.

Following Ciccotti et al. (1989) we employ constrained simulations
to sample conditional probabilities. Given a reaction coordinate Φ, we
introduce a constraint as the set of all configurations x ∈ Rn for which
Φ(x) = ξ for a regular value ξ of Φ.

Though defined in terms of Φ, the set of admissible configurations is
intrinsically defined by the hypersurface Σ = Φ−1(ξ). Accordingly,
the constrained Gibbs measure is obtained by restriction, i.e.,

dπ(x) ∝ exp(−βV (σ(x))) dσ(x)

where dσ denotes the surface element of Σ ⊂ Rn. Federer’s co-area
formula implies that the conditional expectation can be recast as

E [f |ξ] =

(∫
Σ
|∇Φ|−1 dπ

)−1 ∫
Σ
f |∇Φ|−1 dπ .
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Institut für Mathematik, Freie Universität Berlin, Germany


