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ÉC OL E  POL Y T EC H N I Q U E
FÉ DÉRA LE  D E  L A U SAN N E

1. THE PROBLEM SETTING

Covariant and dynamical reduction for prin-
cipal bundle field theories
Reduction for field theories with symmetry can be done either co-

variantly – that is, on spacetime – or dynamically – that is, after

spacetime is split into space and time, see [5]. In [1] it was shown

that these two reduction procedures are, in an appropriate sense,

equivalent for a class of field theories whose fields take values in a

principal bundle.

The purpose of this note is to give a different approach to the dyna-

mical reduction for principal bundle field theories, by using the new

process of affine Euler-Poincaré reduction. We then show that this

approach is equivalent to the covariant Euler-Poincaré reduction

theorem for principal bundle field theories, see [2].

It is interesting to note that the affine Euler-Poincaré reduction

has been initially developed in the context of complex fluids, such

as liquid crystals, superfluids, microfluids, and Yang-Mills magne-

tofluids (see [4]).

2. COVARIANT REDUCTION

2.1 Covariant Euler-Poincaré reduction
We recall here from [2] the covariant Euler-Poincaré reduction as it

applies to principal bundle field theories.

Let π : P → X be a right principal G-fiber bundle over a manifold X
with volume form µ and let L = L̄µ : J1P → Λn+1X be a G invariant

Lagrangian density. Let ℓ = ℓ̄µ : J1P/G → Λn+1X be the reduced

Lagrangian density associated to L.

For a local section s : U ⊂ X → P , let σ := [j1s] : U → J1P/G be the

reduced first jet extension of s and let σA : U → L (TU, Ad P ) be the

vector bundle section associated to σ and to a principal connection

A on the principal bundle PU := P |U → U .
————————

Then the following are equivalent :

(i) The variational principle δ
∫

U
L(j1s) = 0 holds, for vertical varia-

tions along s with compact support.

(ii) The local section s satisfies the covariant Euler-Lagrange
equations for L.

(iii) The variational principle δ
∫

U
ℓ(σ) = 0 holds, using variations of

the form

δσ = ∇Aη − [σA, η],

where η : U ⊂ X → Ad PU is a section with compact support, and

∇A : Γ(Ad PU) → Ω1(U, Ad PU) denotes the affine connection induced

by the principal connection A on PU.

(iv) The covariant Euler-Poincaré equations

divA
δℓ̄

δσ
= − ad∗σA

δℓ̄

δσ

hold, where
δℓ̄

δσ
is the fiber derivative of ℓ̄ and

divA : X(U, Ad P ∗
U) → Γ(Ad P ∗

U)

is the covariant divergence associated to the A.
————————

Reconstruction : The covariant Euler-Poincaré equations are not

sufficient for reconstructing the solution of the problem. One must

impose that the curvature of the section σ (as a connection on P )

vanishes.

2.2 The case of a trivial bundle
Consider a trivial principal G-bundle π : P = X × G → X, π(p) = x,

where p = (x, g). An element γp in the first jet bundle reads γp =
idTxX × b(x,g), where b(x,g) ∈ L(TxX, TgG). Any principal connection A on

P writes

A(x, g)(ux, ξg) = Adg−1(Ā(x)(ux) + TRg−1ξg),

where Ā ∈ Ω1(X, g). A local section s : U ⊂ X → P reads s(x) = (x, s̄(x))
where s̄ ∈ F(U,G). The reduced first jet extensions σ := [j1s] and σA

can be identified with σ̄, σ̄A ∈ Ω1(U, g) given by σ̄(x) = TRs̄(x)−1Txs̄ and

σ̄A(x) = Ā(s̄(x)) + σ̄(x). As a consequence, in the trivial case, the

covariant Euler-Poincaré equations reads

div
δℓ̄

δσ̄
= − ad∗

σ̄

δℓ̄

δσ̄
or div−σ̄ δℓ̄

δ(−σ̄)
= 0.

and the constrained variational principle becomes

δσ̄ = dη − [σ̄, η].

Note that, as expected in the trivial case, the connection A can be

eliminated from the covariant Euler-Poincaré equations.

3. DYNAMICAL REDUCTION

The affine Euler-Poincaré reduction
We now recall from [4] the process of affine Euler-Poincaré reduc-

tion as it applies to the group F(M,G) of G-valued maps on a ma-

nifold M , acting on the space Ω1(M, g). Here F(M, G) is interpreted

as the group of gauge transformations and Ω1(M, g) is interpreted as

the space of connections, on the trivial bundle M × G → M .
————————

� Assume that we have a (possibly time-dependent) Lagrangian L :
TF(M,G) × Ω1(M, g) → R which is right invariant under the affine

action of Λ ∈ F(M, G) given by

(χ, χ̇, γ) 7→ (χΛ, χ̇Λ, θΛ(γ)), θΛ(γ) := Λ−1γΛ + Λ−1
dΛ. (1)

� Fix γ0 ∈ Ω1(M, g) and define the Lagrangian Lγ0
: TF(M,G) → R

by Lγ0
(χ, χ̇) := L(χ, χ̇, γ0). Then Lγ0

is right invariant under the lift

to TF(M, G) of the right action of F(M,G)γ0
on F(M, G), where

F(M,G)γ0
denotes the isotropy group of γ0 with respect to the affine

action θ.

� Right G-invariance of L permits us to define the reduced Lagran-

gian l = l(ν, γ) : F(M, g) × Ω1(M, g) → R.

� For a curve χ(t) ∈ F(M, G), χ(0) = e, let ν(t) := χ̇(t)χ(t)−1 ∈ F(M, g)
and define the curve γ(t) as the unique solution of the equation

γ̇ + d
γν = 0, γ(0) = γ0.

The solution can be written as γ(t) = χ(t)γ0χ(t)−1 + χ(t)dχ(t)−1.
————————

With the preceding notations, the following are equivalent :

(i) With γ0 fixed, the variational principle δ
∫ t2

t1
Lγ0

(χ, χ̇)dt = 0,

holds, for variations δχ(t) of χ(t) vanishing at the endpoints.

(ii) χ(t) satisfies the Euler-Lagrange equations for Lγ0
on F(M, G).

(iii) The constrained variational principle δ
∫ t2

t1
l(ν, γ)dt = 0, holds

on F(M, g) × Ω1(M, g), upon using variations of the form

δν = ζ̇ − [ν, ζ ], δγ = −d
γζ,

where ζ(t) ∈ F(M, g) vanishes at the endpoints.

(iv) The affine Euler-Poincaré equations
∂

∂t

δl

δν
= − ad∗

ν

δl

δν
+ divγ δl

δγ
(2)

hold on F(M, g) × Ω1(M, g).

4. FROM COVARIANT TO DYNAMICAL RE-
DUCTION

4.1 Slicing of the covariant Euler-Poincaré
equations
We now consider the specific case in which the principal bundle

P → X is sliced. For simplicity, we restrict to the case where the

bundle and the slicing are trivial, that is, we have P = X × G → X
and X = R × M . We assume that M has a volume form µM and we

endow X with the volume form dt ∧ µM.

Using the notations of §2.2, any local section s : U = I × V ⊂ X → P
reads s(x) = (x, s̄t(m)) where x = (t,m) and s̄t ∈ F(V, G), t ∈ I. The

reduced first jet extension σ = [j1s] can be identified with the time

dependent quantities σ̄1
t ∈ F(V, g) and σ̄2

t ∈ Ω1(V, g) given by σ̄1
t (m) =

TRs̄(x)−1 ˙̄s(x) and σ̄2
t (m) = TRs̄(x)−1ds̄(x), where x = (t,m). Here ˙̄s and ds̄

denote the tangent maps with respect to I and M .

The Lagrangian densities L and ℓ can be written L = L(t, ˙̄s,ds̄) and

ℓ = ℓ(t, σ̄1, σ̄2) and the covariant Euler-Poincaré equations are

∂

∂t

δℓ̄

δσ̄1
= − ad∗σ̄1

δℓ̄

δσ̄1
+ div(−σ̄2)

δℓ̄

δ(−σ̄2)
.

Remarkably, these equations are formally identical to the affine

Euler-Poincaré equations (2). We will explain how this fact can be

understood from a reduction point of view.

4.2 Definition and invariance of the instan-
taneous Lagrangian
Using the hypotheses and notations of the previous box and given

a G-invariant Lagrangian density L : J1P → Λn+1X, we define the

time dependent Lagrangian LL : I × TF(V,G) × Ω1(V, g) → R by

LL(t, χ, χ̇, γ) = LL
γ (t, χ, χ̇) :=

∫

V
L̄(t, χ̇(m),dχ(m) − χ(m)γ(m))µM.

This Lagrangian has the remarkable property to be invariant under

the affine action (1). Thus, we can apply the affine Euler-Poincaré

reduction for any initial value γ0 of γ. We will choose γ0 = 0.

4.3 The main result
THEOREM. Consider a local section s̄ = s̄(x) = s̄(t,m) : U = I×V → G
of the trivial principal bundle X ×G → X = R×M . The reduced first

jet extension can be written σ̄ = (σ̄1, σ̄2).
Given a local section s : I × V ⊂ X → P , we can define the curve

χ(t) ∈ F(V,G) by χ(t)(m) := s̄(x). Given a curve χ(t) ∈ F(V,G), we

define the curves ν(t) = χ̇(t)χ(t)−1 and γ(t) = −dχ(t)χ(t)−1. Note that

we have ν(t)(m) = σ̄1(x) and γ(t)(m) = −σ̄2(x), where x = (t, m).
Consider a G invariant Lagrangian density L : J1P → Λn+1X and de-

fine the corresponding time dependent and affine invariant Lagran-

gian LL : I × TF(V,G) × Ω1(V, g) → R.

————————
Then the corresponding reduced Lagrangians verify the relation

l(ν, γ) =
∫

V
ℓ(ν,−γ)µV

and the following eight conditions are equivalent :

(i) The variational principle δ
∫ t2

t1
LL

0 (t, χ(t), χ̇(t))dt = 0, holds for va-

riations δχ(t) of χ(t) vanishing at the endpoints.

(ii) χ(t) satisfies the Euler-Lagrange equations for L0 on F(V,G).

(iii) The constrained variational principle δ
∫ t2

t1
l(ν(t), γ(t))dt = 0,

holds on F(V, g) × Ω1(V, g), upon using variations of the form

δν = ζ̇ − [ν, ζ ], δγ = −d
γζ,

where ζ(t) ∈ F(V, g) vanishes at the endpoints.

(iv) The affine Euler-Poincaré equations
∂

∂t

δl

δν
= − ad∗ν

δl

δν
+ divγ δl

δγ
hold on F(V, g) × Ω1(V, g).

(v) The variational principle δ
∫

U
L(j1s) = 0 holds, for variations

with compact support.

(vi) The section s satisfies the covariant Euler-Lagrange equa-
tions for L.

(vii) The variational principle δ
∫

U
ℓ(σ̄(x)) = 0 holds, using varia-

tions of the form

δσ̄ = dη − [σ̄, η],

where η : U ⊂ X → g has compact support.

(viii) The covariant Euler-Poincaré equations hold :

div
δℓ̄

δσ̄
= − ad∗σ̄

δℓ̄

δσ̄
.

4.5 Example : spin glasses
We now apply the theory developed here to the model of spin glasses

considered by Dzyaloshinskii in [3], see [4] for the dynamical ap-

proach. Consider the trivial principal bundle P = X × G → X and

the Lagrangian density L(j1s) := ‖T s̄‖2, where the norm is associa-

ted to the right invariant metric (gγ) on J1P , constructed from g and

γ. Here g is the spacetime metric g = dt2 − gM on X, gM is a Rieman-

nian metric on M , and γ is an adjoint-invariant inner product on g.

We can write L(j1s) := ‖ ˙̄s‖2 − ‖ds̄‖2. The reduced Lagrangian density

reads ℓ(σ̄1, σ̄2) = ‖σ̄1‖2 − ‖σ̄2‖2.

The corresponding instantaneous Lagrangians LL and l are

LL(χ, χ̇, γ) =
∫

M

(

‖χ̇‖2 − ‖dχ − χγ‖2
)

µM , l(ν, γ) =
∫

M

(

‖ν‖2 − ‖γ‖2
)

µM.

Thus we have recovered the spin glasses Lagrangian l considered

in [3]. The motion equations can be obtained from LL by dynamical

reduction (see [4]), or from L by covariant reduction.

4.6 Future directions
(1) Explore the Hamiltonian side of the theory.

(2) Treat the case of a general slicing of the spacetime X.
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