OBERWOLFACH WORKSHOP

APPLIED DYNAMICS AND GEOMETRIC MECHANICS

1. THE PROBLEM SETTING

Covariant and dynamical reduction for principal bundle field theories

Reduction for field theories with symmetry can be done either covariantly – that is, on spacetime – or dynamically – that is, after spacetime is split into space and time, see [5]. In [1] it was shown that these two reduction procedures are, in an appropriate sense, equivalent for a class of field theories whose fields take values in a principal bundle.

The purpose of this note is to give a different approach to the dynamical reduction for principal bundle field theories, by using the new process of *affine Euler-Poincaré reduction*. We then show that this approach is equivalent to the covariant Euler-Poincaré reduction theorem for principal bundle field theories, see [2].

It is interesting to note that the affine Euler-Poincaré reduction has been initially developed in the context of *complex fluids*, such as liquid crystals, superfluids, microfluids, and Yang-Mills magnetofluids (see [4]).

2. COVARIANT REDUCTION

2.1 Covariant Euler-Poincaré reduction

We recall here from [2] the covariant Euler-Poincaré reduction as it applies to principal bundle field theories.

Let $\pi : P \to X$ be a *right* principal *G*-fiber bundle over a manifold *X* with volume form μ and let $\mathcal{L} = \overline{\mathcal{L}}\mu : J^1P \to \Lambda^{n+1}X$ be a *G* invariant Lagrangian density. Let $\ell = \bar{\ell}\mu : J^1 P/G \to \Lambda^{n+1}X$ be the reduced Lagrangian density associated to \mathcal{L} .

For a local section $s: U \subset X \to P$, let $\sigma := [j^1 s]: U \to J^1 P/G$ be the reduced first jet extension of s and let $\sigma^{\mathcal{A}} : U \to L(TU, \operatorname{Ad} P)$ be the vector bundle section associated to σ and to a principal connection \mathcal{A} on the principal bundle $P_U := P|_U \to U$.

Then the following are equivalent :

(i) The variational principle $\delta \mid \mathcal{L}(j^1 s) = 0$ holds, for vertical variations along *s* with compact support.

(ii) The local section s satisfies the covariant Euler-Lagrange equations for \mathcal{L} .

(iii) The variational principle $\delta / \ell(\sigma) = 0$ holds, using variations of the form

 $\delta \sigma = \nabla^{\mathcal{A}} \eta - [\sigma^{\mathcal{A}}, \eta],$

where $\eta : U \subset X \to \operatorname{Ad} P_U$ is a section with compact support, and $\nabla^{\mathcal{A}} : \Gamma(\operatorname{Ad} P_U) \to \Omega^1(U, \operatorname{Ad} P_U)$ denotes the affine connection induced by the principal connection \mathcal{A} on P_U .

(iv) The covariant Euler-Poincaré equations

 $\operatorname{div}^{\mathcal{A}} \frac{\partial \ell}{\delta \sigma} = -\operatorname{ad}_{\sigma^{\mathcal{A}}}^* \frac{\partial \ell}{\delta \sigma}$

hold, where $\frac{\partial \ell}{s}$ is the fiber derivative of $\bar{\ell}$ and

 $\operatorname{div}^{\mathcal{A}} : \mathfrak{X}(U, \operatorname{Ad} P_U^*) \to \Gamma(\operatorname{Ad} P_U^*)$

is the covariant divergence associated to the A.

Reconstruction : The covariant Euler-Poincaré equations are not sufficient for reconstructing the solution of the problem. One must impose that the curvature of the section σ (as a connection on P) vanishes.

Affine Euler-Poincaré formulation of reduction for principal bundle field theories

FRANÇOIS GAY-BALMAZ

Section de Mathématiques, École Polytechnique Fédérale de Lausanne. CH-1015 Lausanne. Switzerland.

2.2 The case of a trivial bundle

Consider a trivial principal *G*-bundle $\pi : P = X \times G \rightarrow X, \ \pi(p) = x$, where p = (x, g). An element γ_p in the first jet bundle reads $\gamma_p =$ $id_{T_xX} \times b_{(x,q)}$, where $b_{(x,q)} \in L(T_xX, T_qG)$. Any principal connection \mathcal{A} on *P* writes

 $\mathcal{A}(x,g)(u_x,\xi_g) = \operatorname{Ad}_{g^{-1}}(\bar{\mathcal{A}}(x)(u_x) + TR_{g^{-1}}\xi_g),$

where $\bar{\mathcal{A}} \in \Omega^1(X, \mathfrak{g})$. A local section $s : U \subset X \to P$ reads $s(x) = (x, \bar{s}(x))$ where $\bar{s} \in \mathcal{F}(U,G)$. The reduced first jet extensions $\sigma := [j^1 s]$ and $\sigma^{\mathcal{A}}$ can be identified with $\bar{\sigma}, \bar{\sigma}^{\mathcal{A}} \in \Omega^1(U, \mathfrak{g})$ given by $\bar{\sigma}(x) = TR_{\bar{s}(x)^{-1}}T_x\bar{s}$ and $\bar{\sigma}^{\mathcal{A}}(x) = \bar{\mathcal{A}}(\bar{s}(x)) + \bar{\sigma}(x)$. As a consequence, in the trivial case, the covariant Euler-Poincaré equations reads

$$\operatorname{div} \frac{\delta \bar{\ell}}{\delta \bar{\sigma}} = -\operatorname{ad}_{\bar{\sigma}}^* \frac{\delta \bar{\ell}}{\delta \bar{\sigma}} \quad \text{or} \quad \operatorname{div}^{-\bar{\sigma}} \frac{\delta \bar{\ell}}{\delta (-\bar{\sigma})} = 0.$$

and the constrained variational principle becomes

$$\delta\bar{\sigma} = \mathbf{d}\eta - [\bar{\sigma}, \eta].$$

Note that, as expected in the trivial case, the connection \mathcal{A} can be eliminated from the covariant Euler-Poincaré equations.

3. DYNAMICAL REDUCTION

The affine Euler-Poincaré reduction

We now recall from [4] the process of affine Euler-Poincaré reduction as it applies to the group $\mathcal{F}(M,G)$ of *G*-valued maps on a manifold M, acting on the space $\Omega^1(M, \mathfrak{g})$. Here $\mathcal{F}(M, G)$ is interpreted as the group of *gauge transformations* and $\Omega^1(M, \mathfrak{g})$ is interpreted as the space of *connections*, on the trivial bundle $M \times G \rightarrow M$.

Assume that we have a (*possibly time-dependent*) Lagrangian L $T\mathcal{F}(M,G) \times \Omega^1(M,\mathfrak{g}) \to \mathbb{R}$ which is *right* invariant under the *affine* action of $\Lambda \in \mathcal{F}(M,G)$ given by

> $(\chi, \dot{\chi}, \gamma) \mapsto (\chi\Lambda, \dot{\chi}\Lambda, \theta_{\Lambda}(\gamma)), \quad \theta_{\Lambda}(\gamma) := \Lambda^{-1}\gamma\Lambda + \Lambda^{-1}\mathbf{d}\Lambda.$ (1)

Fix $\gamma_0 \in \Omega^1(M, \mathfrak{g})$ and define the Lagrangian $L_{\gamma_0} : T\mathcal{F}(M, G) \to \mathbb{R}$ by $L_{\gamma_0}(\chi,\dot{\chi}) := L(\chi,\dot{\chi},\gamma_0)$. Then L_{γ_0} is right invariant under the lift to $T\mathcal{F}(M,G)$ of the right action of $\mathcal{F}(M,G)_{\gamma_0}$ on $\mathcal{F}(M,G)$, where $\mathcal{F}(M,G)_{\gamma_0}$ denotes the isotropy group of γ_0 with respect to the affine action θ .

■ Right *G*-invariance of *L* permits us to define the reduced Lagrangian $l = l(\nu, \gamma) : \mathcal{F}(M, \mathfrak{g}) \times \Omega^1(M, \mathfrak{g}) \to \mathbb{R}.$

For a curve $\chi(t) \in \mathcal{F}(M,G), \chi(0) = e$, let $\nu(t) := \dot{\chi}(t)\chi(t)^{-1} \in \mathcal{F}(M,\mathfrak{g})$ and define the curve $\gamma(t)$ as the unique solution of the equation $\dot{\gamma} + \mathbf{d}^{\gamma}\nu = 0, \quad \gamma(0) = \gamma_0.$

The solution can be written as $\gamma(t) = \chi(t)\gamma_0\chi(t)^{-1} + \chi(t)\mathbf{d}\chi(t)^{-1}$.

With the preceding notations, the following are equivalent :

(i) With γ_0 fixed, the variational principle $\delta \int L_{\gamma_0}(\chi, \dot{\chi}) dt = 0$, holds, for variations $\delta \chi(t)$ of $\chi(t)$ vanishing at the endpoints.

(ii) $\chi(t)$ satisfies the Euler-Lagrange equations for L_{γ_0} on $\mathcal{F}(M,G)$. (iii) The constrained variational principle $\delta \int l(\nu, \gamma) dt = 0$, holds on $\mathcal{F}(M,\mathfrak{g}) \times \Omega^1(M,\mathfrak{g})$, upon using variations of the form

 $\delta \nu = \zeta - [\nu, \zeta], \quad \delta \gamma = -\mathbf{d}^{\gamma} \zeta,$

where $\zeta(t) \in \mathcal{F}(M, \mathfrak{g})$ vanishes at the endpoints.

(iv) The affine Euler-Poincaré equations

$$\frac{\delta l}{\delta \nu} = -\operatorname{ad}_{\nu}^{*} \frac{\delta l}{\delta \nu} + \operatorname{div}^{\gamma} \frac{\delta l}{\delta \gamma}$$

hold on $\mathcal{F}(M,\mathfrak{g}) \times \Omega^1(M,\mathfrak{g})$.

(2)

4.1 Slicing of the covariant Euler-Poincaré equations

Remarkably, these equations are formally identical to the affine Euler-Poincaré equations (2). We will explain how this fact can be understood from a reduction point of view.

4.2 Definition and invariance of the instantaneous Lagrangian

Using the hypotheses and notations of the previous box and given a G-invariant Lagrangian density $\mathcal{L} : J^1 P \to \Lambda^{n+1} X$, we define the time dependent Lagrangian $L^{\mathcal{L}}: I \times T\mathcal{F}(V, G) \times \Omega^{1}(V, \mathfrak{g}) \to \mathbb{R}$ by

This Lagrangian has the remarkable property to be invariant under the affine action (1). Thus, we can apply the affine Euler-Poincaré reduction for any initial value γ_0 of γ . We will choose $\gamma_0 = 0$.

4.3 The main result

Then the corresponding reduced Lagrangians verify the relation

and the following eight conditions are equivalent : (i) The variational principle $\delta \int_{0}^{\infty} L_{0}^{\mathcal{L}}(t,\chi(t),\dot{\chi}(t))dt = 0$, holds for variations $\delta \chi(t)$ of $\chi(t)$ vanishing at the endpoints. (ii) $\chi(t)$ satisfies the Euler-Lagrange equations for L_0 on $\mathcal{F}(V,G)$.

4. FROM COVARIANT TO DYNAMICAL RE-DUCTION

We now consider the specific case in which the principal bundle $P \rightarrow X$ is sliced. For simplicity, we restrict to the case where the bundle and the slicing are trivial, that is, we have $P = X \times G \rightarrow X$ and $X = \mathbb{R} \times M$. We assume that M has a volume form μ_M and we endow X with the volume form $dt \wedge \mu_M$.

Using the notations of §2.2, any local section $s: U = I \times V \subset X \rightarrow P$ reads $s(x) = (x, \bar{s}_t(m))$ where x = (t, m) and $\bar{s}_t \in \mathcal{F}(V, G), t \in I$. The reduced first jet extension $\sigma = [j^1 s]$ can be identified with the time dependent quantities $\bar{\sigma}_t^1 \in \mathcal{F}(V, \mathfrak{g})$ and $\bar{\sigma}_t^2 \in \Omega^1(V, \mathfrak{g})$ given by $\bar{\sigma}_t^1(m) = 0$ $TR_{\bar{s}(x)^{-1}}\dot{\bar{s}}(x)$ and $\bar{\sigma}_t^2(m) = TR_{\bar{s}(x)^{-1}}\mathbf{d}\bar{s}(x)$, where x = (t, m). Here $\dot{\bar{s}}$ and $\mathbf{d}\bar{s}$ denote the tangent maps with respect to I and M.

The Lagrangian densities \mathcal{L} and ℓ can be written $\mathcal{L} = \mathcal{L}(t, \overline{s}, d\overline{s})$ and $\ell = \ell(t, \bar{\sigma}^1, \bar{\sigma}^2)$ and the covariant Euler-Poincaré equations are

 $\frac{\partial}{\partial t} \frac{\delta \bar{\ell}}{\delta \bar{\sigma}^1} = -\operatorname{ad}_{\bar{\sigma}^1}^* \frac{\delta \bar{\ell}}{\delta \bar{\sigma}^1} + \operatorname{div}^{(-\bar{\sigma}_2)} \frac{\delta \bar{\ell}}{\delta (-\bar{\sigma}^2)}.$

 $L^{\mathcal{L}}(t,\chi,\dot{\chi},\gamma) = L^{\mathcal{L}}_{\gamma}(t,\chi,\dot{\chi}) := \int_{U} \bar{\mathcal{L}}(t,\dot{\chi}(m),\mathbf{d}\chi(m)-\chi(m)\gamma(m))\mu_{M}.$

THEOREM. Consider a local section $\bar{s} = \bar{s}(x) = \bar{s}(t, m) : U = I \times V \to G$ of the trivial principal bundle $X \times G \to X = \mathbb{R} \times M$. The reduced first jet extension can be written $\bar{\sigma} = (\bar{\sigma}^1, \bar{\sigma}^2)$.

Given a local section $s : I \times V \subset X \to P$, we can define the curve $\chi(t) \in \mathcal{F}(V,G)$ by $\chi(t)(m) := \overline{s}(x)$. Given a curve $\chi(t) \in \mathcal{F}(V,G)$, we define the curves $\nu(t) = \dot{\chi}(t)\chi(t)^{-1}$ and $\gamma(t) = -\mathbf{d}\chi(t)\chi(t)^{-1}$. Note that we have $\nu(t)(m) = \bar{\sigma}^1(x)$ and $\gamma(t)(m) = -\bar{\sigma}^2(x)$, where x = (t, m).

Consider a *G* invariant Lagrangian density $\mathcal{L} : J^1 P \to \Lambda^{n+1} X$ and define the corresponding time dependent and affine invariant Lagrangian $L^{\mathcal{L}}: I \times T\mathcal{F}(V, G) \times \Omega^{1}(V, \mathfrak{g}) \to \mathbb{R}.$

$$l(\nu,\gamma) = \int_V \ell(\nu,-\gamma)\mu_V$$

(iii) The const holds on $\mathcal{F}(V,\mathfrak{g})$

where $\zeta(t) \in \mathcal{F}$ (iv) The affine

hold on $\mathcal{F}(V, \mathfrak{g})$ (v) The variat with compact (vi) The section **tions** for \mathcal{L} . (vii) The variat tions of the for

where $\eta: U \subset X$ (viii) The covaria

4.5 Example : spin glasses

We now apply the theory developed here to the model of *spin glasses* considered by Dzyaloshinskii in [3], see [4] for the dynamical approach. Consider the trivial principal bundle $P = X \times G \rightarrow X$ and the Lagrangian density $\mathcal{L}(j^1s) := ||T\bar{s}||^2$, where the norm is associated to the right invariant metric $(q\gamma)$ on J^1P , constructed from g and γ . Here *g* is the spacetime metric $g = dt^2 - g_M$ on *X*, g_M is a Riemannian metric on M, and γ is an adjoint-invariant inner product on g. We can write $\mathcal{L}(j^1s) := \|\dot{s}\|^2 - \|\mathbf{d}\bar{s}\|^2$. The reduced Lagrangian density reads $\ell(\bar{\sigma}^1, \bar{\sigma}^2) = \|\bar{\sigma}^1\|^2 - \|\bar{\sigma}^2\|^2$. The corresponding instantaneous Lagrangians $L^{\mathcal{L}}$ and l are

 $L^{\mathcal{L}}(\chi, \dot{\chi}, \gamma) = \int_{M} \left(\|\dot{\chi}\|^2 - \|\mathbf{d}\chi - \chi\gamma\|^2 \right) \mu_M, \quad l(\nu, \gamma) = \int_M \left(\|\nu\|^2 - \|\gamma\|^2 \right) \mu_M.$

Thus we have recovered the spin glasses Lagrangian *l* considered in [3]. The motion equations can be obtained from $L^{\mathcal{L}}$ by dynamical reduction (see [4]), or from \mathcal{L} by covariant reduction.

4.6 Future directions

(1) Explore the Hamiltonian side of the theory. (2) Treat the case of a general slicing of the spacetime X.

Références

crained variational principle $\delta \int_{t_1}^{t_2} l(\nu(t), \gamma(t)) dt = 0$,
$\mathfrak{g}) \times \Omega^1(V, \mathfrak{g})$, upon using variations of the form
$\delta u = \dot{\zeta} - [u, \zeta], \delta \gamma = - \mathbf{d}^\gamma \zeta$,
(V, \mathfrak{g}) vanishes at the endpoints.
Euler-Poincaré equations
$\frac{\partial}{\partial t} \frac{\delta l}{\delta \nu} = -\operatorname{ad}_{\nu}^{*} \frac{\delta l}{\delta \nu} + \operatorname{div}^{\gamma} \frac{\delta l}{\delta \gamma}$
$ imes \Omega^1(V, \mathfrak{g}).$
tional principle $\delta \int_U \mathcal{L}(j^1 s) = 0$ holds, for variations
support. n s satisfies the covariant Euler-Lagrange equa -
tional principle $\delta \int_U \ell(\bar{\sigma}(x)) = 0$ holds, using varia-
m
$\deltaar{\sigma} = \mathbf{d}\eta - [ar{\sigma},\eta]$,
$X \rightarrow \mathfrak{g}$ has compact support.
iant Euler-Poincaré equations hold :
$\overline{\lambda}\overline{ ho}$ $\overline{\lambda}\overline{ ho}$

$\operatorname{div} \frac{\delta \ell}{\delta \bar{\sigma}} = -\operatorname{ad}_{\bar{\sigma}}^* \frac{\delta \ell}{\delta \bar{\sigma}}.$

[1] Castrillón-López and J. E. Marsden [2008], Covariant and dynamical reduction for principal bundle field theories, preprint [2] Castrillón-López, M., T. S. Ratiu, and S. Shkoller [2000], Reduction in principal fiber bundles : covariant Euler-Poincaré equations, Proc. Amer. Math. Soc., 128, 2155–2164.

[3] I. E. Dzyaloshinskiĭ, Macroscopic description of spin glasses. Modern trends in the theory of condensed matter (Proc. Sixteenth Karpacz Winter School Theoret. Phys., Karpacz, 1979), Lecture *Notes in Physics*, **115**, 1980, 204–224.

[4] Gay-Balmaz, F. and T. S. Ratiu [2008], The geometric structure of complex fluids, *Adv. in Appl. Math.*, to appear.

[5] Gotay, M. and J. E. Marsden, Momentum Maps and Classical Fields, with the collab. of J. Isenberg, R. Montgomery, J. Śniatycki, and P. B. Yasskin, in preparation, Available at http://www.cds.caltech.edu/marsden/.