OBERWOLFACH WORKSHOP
Applied Dynamics AND
Geometric Mechanics

Affine Euler-Poincaré formulation of reduction for principal bundle field theories

FRANÇOIS GAY-BALMAZ

Section de Mathématiques, École Polytechnique Fédérale de Lausanne. CH-1015 Lausanne. Switzerland.

1. THE PROBLEM SETTING

Covariant and dynamical reduction for principal bundle field theories
Reduction for field theories with symmetry can be done either co-
variantly - that is, on spacetime - or dynamically variantly - that is, on spacetime - or dynamically - that is, after spacetime is split into space and time, see [5]. In [1] it was shown
that these two reduction procedures are, in an appropriate sense, equivalent for a class of field theories whose fields take values in a principal bundle.
principar bundle.
The purpose of this note is to give a different approach to the dynamical reduction for principal bundle field theories, by using the new
process of affine Euler-Poincaré reduction. We then show that this approach is equivalent to the covariant Euler-Poincaré reduction theorem for principal bundle field theories, see [2].
It is interesting to note that the affine Euler-Poincaré reduction has been initially developed in the context of complex as liquid crystals,
tofluids (see [4]).

2. COVARIANT REDUCTION

2.1 Covariant Euler-Poincaré reduction

 We recall here from [2] the covariant Euler-Poincaré reduction as it applies to principal bundle field theories.Let $\pi: P \rightarrow X$ be a right principal G-fiber bundle over a manifold X with volume form μ and let $\mathcal{L}=\overline{\mathcal{L}} \mu: J^{1} P \rightarrow \Lambda^{n+1} X$ be a G invarian Lagrangian density. Let $\ell=\bar{\ell} \mu: J^{1} P / G \rightarrow \Lambda^{n+1} X$ be the reduced Lagrangian density associated to \mathcal{L}. For a local section $s: U \subset X \rightarrow P$, let $\sigma:=\left[j^{1} s\right]: U \rightarrow J^{1} P / G$ be the
reduced first jet extension of s and let $\sigma^{A}: U \rightarrow L(T U$ Ad $P)$ be the ector bundle section associated to σ and to a principal O) be the \mathcal{A} on the principal bundle $P_{U}:=\left.P\right|_{U} \rightarrow U$.
Then the following are equivalent
(i) The variational principle $\delta \int_{V} \mathcal{L}\left(j^{1} s\right)=0$
tions along s with compact support.
(ii) The local section s satisfies the covariant Euler-Lagrange equations for
(iii) The variational principle $\delta \int_{U} \ell(\sigma)=0$ holds, using variations of the form
where $\eta: U \subset X \rightarrow \operatorname{Ad} P_{U}$ is a section with compact support, and where $\eta: U \subset X \rightarrow \operatorname{Ad} P_{U}$ is a section with compact support, and
$\nabla^{\mathcal{A}}: \Gamma\left(\operatorname{Ad} P_{U}\right) \rightarrow \Omega^{1}\left(U, \operatorname{Ad} P_{U}\right)$ denotes the affine connection induced by the principal connection \mathcal{A} on P_{U}.
(iv) The covariant Euler-Poincaré equations
hold, where $\frac{\delta \bar{\ell}}{\delta \sigma}$ is the fiber derivative of $\bar{\ell}$ and
is the covariant divergence associated to the \mathcal{A}
Reconstruction : The covariant Euler-Poincaré equations are not Reconstruction : The covariant Euler-Poincare equations are not
sufficient for reconstructing the solution of the problem. One must impose that the curvature of the section σ (as a connection on P) vanishes.
2.2 The case of a trivial bundle

Consider a trivial principal G-bundle $\pi: P=X \times G \rightarrow X, \pi(p)$
where $p=(x, q)$. An element γ_{p} in the first jet bundle reads where $p=(x, g)$. An element γ_{p} in the first jet bundle reads $\gamma_{p}=$
$i d_{T} X \times b_{(x, g)}$, where $b_{(x, g)} \in L\left(T_{x} X, T_{g} G\right)$. Any principal connection \mathcal{A} on

where $\overline{\mathcal{A}} \in \Omega^{1}(X, \mathfrak{g})$. A local section $s: U \subset X \rightarrow P$ reads $s(x)=(x, \bar{s}(x))$
where $\bar{s} \in \mathcal{F}(U G G)$.The reduced first jet extensions $\sigma:=\left[\left\{j^{1} s\right]\right.$ and σ^{4} where $\bar{s} \in \mathcal{F}(U, G)$. The reduced first jet extensions $\sigma:=\left[j^{1} s\right]$ and σ^{A}
can be identified with $\bar{\sigma} \bar{\sigma}^{\mathcal{A}} \in \Omega^{1}(U, \mathfrak{g})$ given by $\bar{\sigma}(x)=T R_{s(x)} T_{x} \bar{s}$ and can be identified with $\bar{\sigma}, \bar{\sigma}^{\mathcal{A}} \in \Omega^{1}(U, \mathfrak{g})$ given by $\bar{\sigma}(x)=T R_{\bar{R}}(x)-T_{T} \bar{s}$ and
$\bar{\sigma}^{\mathcal{A}}(x)=\overline{\mathcal{A}}(\bar{s}(x))+\bar{\sigma}(x)$. As a consequence, in the trivial case, the covariant Euler-Poincaré equations reads
and the constrained variational principle becomes
Note that, as expected in the trivial case, the connection \mathcal{A} can be eliminated from the covariant Euler-Poincaré equations.

3. DYNAMICAL REDUCTION

The affine Euler-Poincaré reduction
We now recall from [4] the process of affine Euler-Poincaré reduction as it applies to the group $\mathcal{F}(M, G)$ of G-valued maps on a manifold M, acting on the space $\Omega^{1}(M, \mathfrak{g})$. Here $\mathcal{F}(M, G)$ is interpreted as the group of gauge transformations and $\Omega^{1}(M, \mathfrak{g})$ is interpreted as
the space of connections, on the trivial bundle $M \times G \rightarrow M$. the space of conne

- Assume that we have a (possibly time-dependent) Lagrangian L :
$T \mathcal{F}(M, G) \times \Omega^{1}(M, \mathfrak{g}) \rightarrow \mathbb{R}$ which is right invariant under the affine $T \mathcal{F}(M, G) \times \Omega^{(}(M, \mathfrak{g}) \rightarrow \mathbb{R}$ which is right invariant under the affine
action of $\Lambda \in \mathcal{F}(M, G)$ given by
action of $\Lambda \in \mathcal{F}(M, G)$ given by
- Fix $\gamma_{0} \in \Omega^{1}(M, \mathfrak{g})$ and define the Lagrangian $L_{\gamma_{0}}: T \mathcal{F}(M, G) \rightarrow \mathbb{R}$ by $L_{\gamma_{0}}(\chi, \dot{\chi}):=L\left(\chi, \dot{\chi}, \gamma_{0}\right)$. Then L_{γ} is right invariant under the lift
to $T \mathcal{F}(M, G)$ of the right action of $\mathcal{F}(M, G)$ on $\mathcal{F}(M, G)$ where $\mathcal{F}(M, G)_{\gamma_{0}}$ denotes the isotropy group of γ_{0} with respect to the affine
action θ.
.
- Right G-invariance of L permits us to define the reduced Lagrangian $l=l(\nu, \gamma): \mathcal{F}(M, \mathfrak{g}) \times \Omega^{1}(M, \mathfrak{g}) \rightarrow \mathbb{R}$.

\mp For a curve $\chi(t) \in \mathcal{F}(M, G), \chi(0)=e$, let
and define the curve $\gamma(t)$ as the unique solution of the equation
The solution can be written as $\gamma(t)=\chi(t) \gamma \gamma \chi(t)^{-1}+\chi(t) \mathrm{d} \chi(t)^{-}$
With the preceding notations, the following are equivalent: (i) With γ_{0} fixed, the variational principle $\delta \int_{t_{1}}^{t_{2}} L_{\gamma_{0}}(\chi, \dot{\chi})$ holds, for variations $\delta \chi(t)$ of $\chi(t)$ vanishing at the endpoints. (ii) $\chi(t)$ satisfies the Euler-Lagrange equations for L_{γ} on $\mathcal{F}(M, G)$ (iii) The constrained variational principle $\delta \int_{t}^{t_{t}} l(\nu, \gamma) d t=0$, holds on $\mathcal{F}(M, \mathfrak{g}) \times \Omega^{1}(M, \mathfrak{g})$, upon using variations of the form
where $\zeta(t) \in \mathcal{F}(M, \mathfrak{g})$ vanishes at the endpoints.
(iv) The affine Euler-Poincaré equations
hold on $\mathcal{F}(M, \mathfrak{g}) \times \Omega^{1}(M, \mathfrak{g})$.

4. FROM COVARIANT TO DYNAMICAL REDUCTION

4.1 Slicing of the covariant Euler-Poincaré equations
We now consider the specific case in which the principal bundle $P \rightarrow X$ is sliced. For simplicity, we restrict to the case where the bundle and the slicing are trivial, that is, we have $P=X \times G \rightarrow X$ and $X=\mathbb{R} \times M$. We assume that M has a volume form μ_{M} and w endow X with the volume form $d t \wedge$
Using the notations of $\S 2.2$, any local
reads $s(x)=\left(x, \bar{s}_{t}(m)\right.$ where $x=(t, m)$ and $\bar{s}_{t} \in \mathcal{F}(V, G), t \in I$. The reduced first jet extension $\sigma=\left[j^{1} s\right]$ can be identified with the time dependent quantities $\bar{\sigma}_{t}^{1} \in \mathcal{F}(V, \mathbf{g})$ and $\bar{\sigma}_{t}^{2} \in \Omega^{1}(V, \mathbf{g})$ given by $\bar{\sigma}_{t}^{1}(m)=$
$T R_{s(x)-1}\left(\bar{s}(x)\right.$ and $\bar{\sigma}_{t}^{2}(m)=T R_{s(x)-1} \overline{\mathbf{d}}(x)$, where $x=(t, m)$. Here \bar{s} and $\mathrm{d} \bar{s}$ denote the tangent maps with respect to I and M. The Lagrangian densities \mathcal{L} and ℓ can be written $\mathcal{L}=\mathcal{L}(t, \dot{\bar{s}}, \mathrm{~d} \bar{s})$ an
$\ell=\ell\left(t, \bar{\sigma}^{1}, \bar{\sigma}^{2}\right)$ and the covariant Euler-Poincare equations are
$=\ell\left(t, \bar{\sigma}^{1}, \bar{\sigma}^{2}\right)$ and the covariant Euler-Poincaré equations are
$\frac{\partial}{\partial t} \frac{\delta \bar{\ell}}{\delta \bar{\sigma}^{1}}=-\operatorname{ad}_{\sigma^{\prime}}^{*} \frac{\delta \bar{l}}{\delta \bar{\sigma}^{1}}+\operatorname{div}\left(-\bar{\sigma}_{2} \frac{\delta \bar{l}}{\delta\left(-\bar{\sigma}^{2}\right)}\right.$.
Remarkably, these equations are formally identical to the affine Euler-Poincaré equations (2). We will explain how this fact can be understood from a reduction point of view.
4.2 Definition and invariance of the instantaneous Lagrangian
Using the hypotheses and notations of the previous box and given a G-invariant Lagrangian density $\mathcal{L}: J^{1} P \rightarrow \Lambda^{n+1} X$, we define the
time dependent Lagrangian $L^{L}: I \times T \mathcal{F}(V, G) \times \Omega^{1}(V, g) \rightarrow \mathbb{R}$ by

This Lagrangian has the remarkable property to be invariant under he affine action (1). Thus, we can apply the affine Euler-Poincar

4.3 The main result

THEOREM. Consider a local section $\bar{s}=\bar{s}(x)=\bar{s}(t, m): U=I \times V \rightarrow G$ of the trivial principal bundle $X \times G \rightarrow X=\mathbb{R} \times M$. The reduced firs jet extension can be written $\sigma=\left(\sigma^{\sigma}, \sigma^{2}\right)$.
Given a local section $s: I \times V \subset X \rightarrow P$, we can define the curve $\chi(t) \in \mathcal{F}(V, G)$ by $\chi(t)(m): \bar{s}(x)$. Given a curve $\chi(t) \in \mathcal{F}(V, G)$, we
define the curves $\nu(t)=\chi(t) \chi(t))^{-1}$ and $\left.\gamma(t)=-\mathrm{d} \chi(t) \chi(t)\right)^{-1}$. Note that we have $\nu(t)(m)=\bar{\sigma}^{1}(x)$ and $\gamma(t)(m)=-\bar{\sigma}^{2}(x)$, where $x=(t, m)$.
Consider a G invariant Lagrangian density $\mathcal{L}: J^{1} P \rightarrow \Lambda^{n+1} X$ and de fine the corresponding time dependent and affine invariant Lagrangian L^{t}
Then the corresponding reduced Lagrangians verify the relation
and the following eight conditions are equivalent
(i) The variational principle $\delta \int_{t 1} L_{0}^{\ell}(t, \chi(t), \dot{\chi}(t)) d t=0$, holds for v riations $\delta \chi(t)$ of $\chi(t)$ vanishing at the endpoints.
(ii) $\chi(t)$ satisfies the Euler-Lagrange equations for L_{0} on $\mathcal{F}(V, G)$

(iii) The constrained variational principle
 holds on $\mathcal{F}(V, \mathfrak{g}) \times \Omega^{\mathfrak{l}}(V, \mathfrak{g})$, upon using variations of the form
 where $\zeta(t) \in \mathcal{F}(V, \mathfrak{g})$ vanishes at the endpoints.
 (iv) The affine Euler-Poincaré equations
 (v) The variational principle $\delta \int_{U} \mathcal{L}\left(j^{1} s\right)=0$ holds, for variations with compact support.
 vi) The section s satisfies the covariant Euler-Lagrange equa tiions for \mathcal{L}. (vii) The variational principle $\delta \int_{U}(\bar{\sigma}(x))=0$ holds, using variations of the form
 where $\eta: U \subset X \rightarrow \mathfrak{g}$ has compact support.
 (viii) The covariant Euler-Poincaré equations hold

4.5 Example : spin glasses

We now apply the theory developed here to the model of spin glasses considered by Dzyaloshinskii in [3], see [4] for the dynamical ap-
proach. Consider the trivial principal bundle $P=X \times G \rightarrow X$ and proach. Consider the trivial principal bundle $P=X \times G \rightarrow X$ and
the Lagrangian density $\mathcal{L}\left(j^{1} s\right):\|T \bar{s}\|^{2}$, where the norm is associated to the right invariant metric $(g \gamma)$ on $J^{1} P$, constructed from g and
γ. Here g is the spacetime metric $g=d t^{2}-g_{M}$ on X, g_{M} is a Riemanγ. Here g is the spacetime metric $g=d t^{2}-g_{M}$ on X, g_{M} is a Rieman nian metric on M, and γ is an adjoint-invariant inner product on \mathfrak{g}
We can write $\mathcal{L}\left(j^{s} s\right):\|\vec{s}\|^{2}-\|\mathrm{d} s\|^{\text {. }}$. The reduced Lagrangian density reads ℓ
The corresponding instantaneous Lagrangians $L^{\mathcal{C}}$ and l are
$L(\chi, \chi, \gamma)=\int_{M}\left(\|\chi\|^{2}-\|\mathrm{d} \chi-\chi \gamma\|^{2}\right) \mu_{M}, \quad l(\nu, \gamma)=\int_{M}\left(\|\nu\|^{2}-\|\gamma\|^{2}\right) \mu_{M}$. in [3]. The motion equations can be obtained from L^{c} by dynamical reduction (see [4]), or from \mathcal{L} by covariant reduction.

4.6 Future directions

(1) Explore the Hamiltonian side of the theory.
(2) Treat the case of a general slicing of the spacetime

Références

[1] Castrillón-López and J. E. Marsden [2008], Covariant and dy namical reduction for principal bundle field theories, preprint. in p-Lopez, M., T. S. Ratiu, and S. Shkoller [2000], Reduc tion in principal fiber bundles: covariant Euler
tions, Proc. Amer. Math. Soc.
I. E. Dzyaloshinskiĭ, Macroscopic description glasses Modern trends in the theory of condensed matter (Proc. Sixteenth Karpacz Winter School Theoret. Phys., Karpacz, 1979), Lecture Gay-Balmaz F and T S. R, 204-224.
Gay-Baimaz, F. and T. S. Ratiu [2008], The geometric structure
of complex fluids, Adv. in Appl. Math dv. in Appl. Math., to appear
cal Fields, with the collab. of J. Isenbers Maps and Class J. Șiniatycki, and P. B. Yasskin, in preparation, Available at

