A momentum-energy nonholonomic integrator
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1 General setting

Nonholonomic systems where the Lagrangian is of mechanical type
L(vg) = %K(vq,vq) —V(q), vq € T,Q. Here k is a Riemannian metric
on Q. The discrete Lagrangian Lj: Q X Q — R represents an approxi-
mation of L: TQ — R. Constraints linear in the velocities are given by
a distribution 2 C TQ. Using the metric k, define the complementary
projectors
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2 A geometric nonholonomic integrator

Usual discrete Euler-Lagrange equations (for unconstrained systems):

D1L4(qk,qk+1) + D2Lq(qk—1,9x) = 0.
The proposed discrete nonholonomic equations ([4]) are
2, (D1La(dr qie+1)) + 2, (D2La(qk-1,9i)) =0 (1a)
Qﬁlk(Dﬂd(CIk, qk+1)) — QEk(DZLd(Qk—la qx)) = 0. (1b)

The first equation is the projection of the discrete Euler—-Lagrange equa-
tions to the constraint distribution 2, while the second one can be
interpreted as an elastic impact of the system against 2 (see [5]).

This defines a unique discrete evolution operator if and only if the matrix
(D19Lg) is regular, i.e., if the discrete Lagrangian is regular.

Define the pre- and post-momenta using the discrete Legendre transfor-
mations:

Pi_1 & =F " La(k-1,9K) = (qk, D2Ld(qr—1,qK)) € Ty Q
Pris1=F La(di:qk+1) = (9>, =D1La(qk, qr+1)) € T, Q.

In these terms, equation (1b) can be rewritten as
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which means that the average of post- and pre-momenta satisfies the
constraints. We can also rewrite the discrete nonholonomic equations as
a jump of momenta:
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3 Left-invariant systems on Lie groups

Take Q = G a Lie group, and a left-invariant discrete Lagrangian ([1, 6]).
Define the increment Wy = g, 1 gk+1- The method becomes
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where R* is the mapping on T*G induced by right multiplication. If in
addition 9 is left-invariant, then

pe=(2 - 2)" (Ad}, pr1),

*

where py, is the discrete body momentum ([3]) pj = szp]: i1 €9
9 (DY)
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Evolution of momenta (solid arrows) according to Eq. (2).

4 Preserving energy on Lie groups

Theorem 1. Let the configuration manifold be a Lie group with a Lagran-
gian defined by a bi-invariant metric and with an arbitrary distribution 9,
and take a discrete Lagrangian that is left-invariant. Then the proposed
discrete nonholonomic method (1) is energy-preserving.

Sketch of proof. The bi-invariant metric k induces a bi-invariant inner
product on each fiber of T*G. Right translations on T*G and the map-
ping (2 — 2)": T*G — T*G preserve the corresponding norm || - ||...
Then the method (2) is such that ||pI:,k+1”'< (and also ||pltk+1||,<) is
preserved. The potential energy must be zero, so the energy is the
Hamiltonian H = %ll p||%, which is preserved. ]

5 Discrete nonholonomic momentum map

Suppose that a Lie group G acts on Q. Define for each g € Q
a?={&egl&qlq) € 74}

The bundle over Q whose fiber at g is g4 is denoted by gZ. Define the
discrete nonholonomic momentum map Jcrllh: QxQ— (g@ )* as in [2] by

Jgh(Qk—LCIk): gk —> R
£ <D2Ld(CIk—1aCIk): 5Q(Qk)> '

For any smooth section E of gZ we have a function (Jgh)g: QxQ—-R,
defined as (Jgh)g(Qk—LQk) = I (g1 91) (E(qr))-

We state the following result without proof. If L, is G-invariant and £ € g
is a horizontal symmetry (that is, £q(q) € 9, for all ¢ € Q), then the

proposed nonholonomic integrator preserves (Jgh)g.

6 Preservation of the constraint submanifold

Define the average momentum

RV
Pk=75 (pk—l,k +pk,k+1) '

For a trajectory computed by our method, this momentum satisfies the
constraints 2%(p;) = 0 and in addition %Hf)’klI% (its energy) is also pre-
served under the hypotheses of Theorem 1. Thus, our method produces
a sequence of points lying on the constraint submanifold on the Hamilto-
nian side, with constant energy.
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