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1 General setting

Nonholonomic systems where the Lagrangian is of mechanical type
L(vq) =

1
2κ(vq, vq)− V (q), vq ∈ TqQ. Here κ is a Riemannian metric

on Q. The discrete Lagrangian Ld : Q ×Q → R represents an approxi-
mation of L : TQ→ R. Constraints linear in the velocities are given by
a distribution D ⊂ TQ. Using the metric κ, define the complementary
projectors

P : TQ→D
Q : TQ→D⊥.

2 A geometric nonholonomic integrator

Usual discrete Euler–Lagrange equations (for unconstrained systems):

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 0.

The proposed discrete nonholonomic equations ([4]) are

P ∗|qk
(D1Ld(qk, qk+1)) +P ∗|qk

(D2Ld(qk−1, qk)) = 0 (1a)

Q∗|qk
(D1Ld(qk, qk+1))−Q∗|qk

(D2Ld(qk−1, qk)) = 0. (1b)

The first equation is the projection of the discrete Euler–Lagrange equa-
tions to the constraint distribution D, while the second one can be
interpreted as an elastic impact of the system against D (see [5]).

This defines a unique discrete evolution operator if and only if the matrix
(D12Ld) is regular, i.e., if the discrete Lagrangian is regular.

Define the pre- and post-momenta using the discrete Legendre transfor-
mations:

p+k−1,k = F
+Ld(qk−1, qk) = (qk, D2Ld(qk−1, qk)) ∈ T∗qk

Q

p−k,k+1 = F
−Ld(qk, qk+1) = (qk,−D1Ld(qk, qk+1)) ∈ T∗qk

Q.

In these terms, equation (1b) can be rewritten as

Q∗|qk







p−k,k+1+ p+k−1,k

2






= 0

which means that the average of post- and pre-momenta satisfies the
constraints. We can also rewrite the discrete nonholonomic equations as
a jump of momenta:

p−k,k+1 =
�

P ∗−Q∗
�

�

�

qk
(p+k−1,k).

3 Left-invariant systems on Lie groups

Take Q = G a Lie group, and a left-invariant discrete Lagrangian ([1, 6]).
Define the increment Wk = g−1

k gk+1. The method becomes

p−k,k+1 = (P −Q)
∗
�

R∗
W−1

k−1
p−k−1,k

�

(2)

where R∗ is the mapping on T∗G induced by right multiplication. If in
addition D is left-invariant, then

pk = (P −Q)∗
�

Ad∗Wk−1
pk−1

�

,

where pk is the discrete body momentum ([3]) pk = L∗gk
p−k,k+1 ∈ g∗.

gk−1

gk

gk+1

p+
k−1,k p−k,k+1

p+
k,k+1P∗ −Q∗

R∗
W−1

k−1
R∗

W−1
k

p−k−1,k

(D⊥)o

Evolution of momenta (solid arrows) according to Eq. (2).

4 Preserving energy on Lie groups

Theorem 1. Let the configuration manifold be a Lie group with a Lagran-
gian defined by a bi-invariant metric and with an arbitrary distribution D,
and take a discrete Lagrangian that is left-invariant. Then the proposed
discrete nonholonomic method (1) is energy-preserving.

Sketch of proof. The bi-invariant metric κ induces a bi-invariant inner
product on each fiber of T∗G. Right translations on T∗G and the map-
ping (P −Q)∗ : T∗G → T∗G preserve the corresponding norm ‖ · ‖κ.
Then the method (2) is such that ‖p−k,k+1‖κ (and also ‖p+k,k+1‖κ) is
preserved. The potential energy must be zero, so the energy is the
Hamiltonian H = 1

2‖p‖
2
κ, which is preserved.

5 Discrete nonholonomic momentum map

Suppose that a Lie group G acts on Q. Define for each q ∈Q

gq =
¦

ξ ∈ g |ξQ(q) ∈ Dq
©

.

The bundle over Q whose fiber at q is gq is denoted by gD. Define the
discrete nonholonomic momentum map Jnh

d : Q×Q→ (gD)∗ as in [2] by

Jnh
d (qk−1, qk): gqk→ R

ξ 7→
¬

D2Ld(qk−1, qk),ξQ(qk)
¶

.

For any smooth section eξ of gD we have a function (Jnh
d )eξ : Q×Q→ R,

defined as (Jnh
d )eξ(qk−1, qk) = Jnh

d (qk−1, qk)
�

eξ(qk)
�

.

We state the following result without proof. If Ld is G-invariant and ξ ∈ g

is a horizontal symmetry (that is, ξQ(q) ∈ Dq for all q ∈ Q), then the
proposed nonholonomic integrator preserves (Jnh

d )ξ.

6 Preservation of the constraint submanifold

Define the average momentum

epk =
1

2

�

p+k−1,k+ p−k,k+1

�

.

For a trajectory computed by our method, this momentum satisfies the
constraints Q∗(epk) = 0 and in addition 1

2‖epk‖2κ (its energy) is also pre-
served under the hypotheses of Theorem 1. Thus, our method produces
a sequence of points lying on the constraint submanifold on the Hamilto-
nian side, with constant energy.
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