A momentum-energy nonholonomic integrator

Sebastián J. Ferraro^{*}, David Iglesias[†] and David Martín de Diego[†]

*Universidad Nacional del Sur, Bahía Blanca, Argentina; [†]ICMAT (CSIC-UAM-UCM-UC3M), Madrid, Spain.

Email addresses: sferraro@uns.edu.ar - iglesias@imaff.cfmac.csic.es - d.martin@imaff.cfmac.csic.es

1 General setting

Nonholonomic systems where the Lagrangian is of *mechanical type* $L(v_q) = \frac{1}{2}\kappa(v_q, v_q) - V(q), v_q \in T_qQ$. Here κ is a Riemannian metric on Q. The discrete Lagrangian $L_d: Q \times Q \to \mathbb{R}$ represents an approximation of $L: TQ \to \mathbb{R}$. Constraints linear in the velocities are given by a distribution $\mathcal{D} \subset TQ$. Using the metric κ , define the complementary projectors

$$\mathscr{P}: TQ \to \mathscr{D}$$
$$\mathscr{Q}: TQ \to \mathscr{D}^{\perp}.$$

2 A geometric nonholonomic integrator

Usual discrete Euler–Lagrange equations (for *unconstrained* systems):

 $D_1L_d(a_k, a_{k+1}) + D_2L_d(a_{k-1}, a_k) = 0.$

4 Preserving energy on Lie groups

Theorem 1. Let the configuration manifold be a Lie group with a Lagrangian defined by a bi-invariant metric and with an arbitrary distribution \mathcal{D} , and take a discrete Lagrangian that is left-invariant. Then the proposed discrete nonholonomic method (1) is energy-preserving.

Sketch of proof. The bi-invariant metric κ induces a bi-invariant inner product on each fiber of T^*G . Right translations on T^*G and the mapping $(\mathscr{P} - \mathscr{Q})^* : T^*G \to T^*G$ preserve the corresponding norm $\|\cdot\|_{\kappa}$. Then the method (2) is such that $\|p_{k,k+1}^-\|_{\kappa}$ (and also $\|p_{k,k+1}^+\|_{\kappa}$) is preserved. The potential energy must be zero, so the energy is the Hamiltonian $H = \frac{1}{2} \|p\|_{\kappa}^2$, which is preserved.

5 Discrete nonholonomic momentum map

$$= 1 - u(4k) 4k + 1 = 2 - u(4k - 1) 4k = 0$$

The proposed *discrete nonholonomic equations* ([4]) are

$$\mathscr{P}_{|q_k}^*(D_1L_d(q_k, q_{k+1})) + \mathscr{P}_{|q_k}^*(D_2L_d(q_{k-1}, q_k)) = 0$$
(1a)

$$\mathscr{Q}_{|q_k}^*(D_1L_d(q_k, q_{k+1})) - \mathscr{Q}_{|q_k}^*(D_2L_d(q_{k-1}, q_k)) = 0.$$
(1b)

The first equation is the projection of the discrete Euler–Lagrange equations to the constraint distribution \mathcal{D} , while the second one can be interpreted as an elastic impact of the system against \mathcal{D} (see [5]).

This defines a unique discrete evolution operator if and only if the matrix $(D_{12}L_d)$ is regular, i.e., if the discrete Lagrangian is regular.

Define the pre- and post-momenta using the discrete Legendre transformations:

$$p_{k-1,k}^{+} = \mathbb{F}^{+}L_{d}(q_{k-1}, q_{k}) = (q_{k}, D_{2}L_{d}(q_{k-1}, q_{k})) \in T_{q_{k}}^{*}Q$$

$$p_{k,k+1}^{-} = \mathbb{F}^{-}L_{d}(q_{k}, q_{k+1}) = (q_{k}, -D_{1}L_{d}(q_{k}, q_{k+1})) \in T_{q_{k}}^{*}Q.$$

In these terms, equation (1b) can be rewritten as

$$\mathscr{Q}_{|q_k}^*\left(\frac{p_{k,k+1}^- + p_{k-1,k}^+}{2}\right) = 0$$

which means that the average of post- and pre-momenta satisfies the constraints. We can also rewrite the discrete nonholonomic equations as a jump of momenta:

$$p_{k,k+1}^{-} = (\mathscr{P}^* - \mathscr{Q}^*) \Big|_{q_k} (p_{k-1,k}^+).$$

3 Left-invariant systems on Lie groups

Suppose that a Lie group *G* acts on *Q*. Define for each $q \in Q$

$$\mathfrak{g}^{q} = \left\{ \xi \in \mathfrak{g} \, | \, \xi_{Q}(q) \in \mathcal{D}_{q} \right\}$$

The bundle over Q whose fiber at q is \mathfrak{g}^q is denoted by $\mathfrak{g}^{\mathscr{D}}$. Define the discrete nonholonomic momentum map $J_d^{\mathrm{nh}}: Q \times Q \to (\mathfrak{g}^{\mathscr{D}})^*$ as in [2] by

$$J_d^{\mathrm{nh}}(q_{k-1}, q_k) \colon \mathfrak{g}^{q_k} \to \mathbb{R}$$
$$\xi \mapsto \left\langle D_2 L_d(q_{k-1}, q_k), \xi_Q(q_k) \right\rangle$$

For any smooth section $\tilde{\xi}$ of $\mathfrak{g}^{\mathscr{D}}$ we have a function $(J_d^{nh})_{\tilde{\xi}}: Q \times Q \to \mathbb{R}$, defined as $(J_d^{nh})_{\tilde{\xi}}(q_{k-1}, q_k) = J_d^{nh}(q_{k-1}, q_k) \left(\tilde{\xi}(q_k)\right)$.

We state the following result without proof. If L_d is *G*-invariant and $\xi \in \mathfrak{g}$ is a horizontal symmetry (that is, $\xi_Q(q) \in \mathscr{D}_q$ for all $q \in Q$), then the proposed nonholonomic integrator preserves $(J_d^{nh})_{\xi}$.

6 Preservation of the constraint submanifold

Define the average momentum

$$\widetilde{p}_{k} = \frac{1}{2} \left(p_{k-1,k}^{+} + p_{k,k+1}^{-} \right)$$

For a trajectory computed by our method, this momentum satisfies the constraints $\mathscr{Q}^*(\widetilde{p}_k) = 0$ and in addition $\frac{1}{2} ||\widetilde{p}_k||_{\kappa}^2$ (its energy) is also preserved under the hypotheses of Theorem 1. Thus, our method produces a sequence of points lying on the constraint submanifold on the Hamilto-

Take Q = G a Lie group, and a left-invariant discrete Lagrangian ([1, 6]). Define the increment $W_k = g_k^{-1}g_{k+1}$. The method becomes

$$p_{k,k+1}^{-} = (\mathscr{P} - \mathscr{Q})^* \left(R_{W_{k-1}^{-1}}^* p_{k-1,k}^{-} \right)$$
(2)

where R^* is the mapping on T^*G induced by right multiplication. If in addition \mathcal{D} is left-invariant, then

$$p_k = (\mathscr{P} - \mathscr{Q})^* \left(\operatorname{Ad}_{W_{k-1}}^* p_{k-1} \right),$$

where p_k is the discrete body momentum ([3]) $p_k = L_{g_k}^* p_{k,k+1}^- \in \mathfrak{g}^*$.

Evolution of momenta (solid arrows) according to Eq. (2).

nian side, with constant energy.

References

- [1] A. I. Bobenko and Yu. B. Suris. Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. *Comm. Math. Phys.*, 204(1):147–188, 1999.
- [2] J. Cortés and S. Martínez. Non-holonomic integrators. *Nonlinearity*, 14(5):1365–1392, 2001.
- [3] Yu. N. Fedorov and D. V. Zenkov. Discrete nonholonomic LL systems on Lie groups. *Nonlinearity*, 18(5):2211–2241, 2005.
- [4] S. Ferraro, D. Iglesias, and D. Martín de Diego. Momentum and energy preserving integrators for nonholonomic dynamics. *Nonlinearity*, 21(8):1911–1928, 2008.
- [5] A. Ibort, M. de León, E. A. Lacomba, J. C. Marrero, D. Martín de Diego, and P. Pitanga. Geometric formulation of Carnot's theorem. *J. Phys. A*, 34(8):1691–1712, 2001.
- [6] J. E. Marsden, S. Pekarsky, and S. Shkoller. Discrete Euler-Poincaré and Lie-Poisson equations. *Nonlinearity*, 12(6):1647–1662, 1999.