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n-Dimensional Euclidean Space and Matrices
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Definition of n space. As was learned in Math 1b, a point in Euclidean
three space can be thought of in any of three ways:

(i) as the set of triples (x, y, z) where x, y, and z are real numbers;

(ii) as the set of points in space;

(iii) as the set of directed line segments in space, based at the origin.

The first of these points of view is easily extended from 3 to any number
of dimensions. We define Rn, where n is a positive integer (possibly greater
than 3), as the set of all ordered n-tuples (x1, x2, . . . , xn), where the xi are
real numbers. For instance, (1,

√
5, 2, 4) ∈ R4.

The set Rn is known as Euclidean n-space , and we may think of its
elements a = (a1, a2, . . . , an) as vectors or n-vectors. By setting n = 1, 2,
or 3, we recover the line, the plane, and three-dimensional space respectively.

Addition and Scalar Multiplication. We begin our study of Euclidean
n-space by introducing algebraic operations analogous to those learned for
R2 and R3. Addition and scalar multiplication are defined as follows:

(i) (a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn); and

(ii) for any real number α,

α(a1, a2, . . . , an) = (αa1, αa2, . . . , αan).

The geometric significance of these operations for R2 and R3 is discussed in
“Calculus”, Chapter 13.

Informal Discussion. What is the point of going from R,R2

and R3, which seem comfortable and “real world”, to Rn? Our
world is, after all, three-dimensional , not n-dimensional!

First, it is true that the bulk of multivariable calculus is about
R2 and R3. However, many of the ideas work in Rn with little
extra effort, so why not do it? Second, the ideas really are useful !
For instance, if you are studying a chemical reaction involving 5
chemicals, you will probably want to store and manipulate their
concentrations as a 5-tuple; that is, an element of R5. The laws
governing chemical reaction rates also demand we do calculus in
this 5-dimensional space.
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The Standard Basis of Rn. The n vectors in Rn defined by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1)

are called the standard basis vectors of Rn, and they generalize the three
mutually orthogonal unit vectors i, j,k of R3. Any vector a = (a1, a2, . . . , an)
can be written in terms of the ei’s as

a = a1e1 + a2e2 + . . .+ anen.

Dot Product and Length. Recall that for two vectors a = (a1, a2, a3)
and b = (b1, b2, b3) in R3, we defined the dot product or inner product
a · b to be the real number

a · b = a1b1 + a2b2 + a3b3.

This definition easily extends to Rn; specifically, for a = (a1, a2, . . . , an),
and b = (b1, b2, . . . , bn), we define

a · b = a1b1 + a2b2 + . . .+ anbn.

We also define the length or norm of a vector a by the formula

length of a = ‖a‖ =
√

a · a =
√
a2

1 + a2
2 + . . .+ a2

n.

The algebraic properties 1–5 (page 669 in “Calculus”, Chapter 13) for
the dot product in three space are still valid for the dot product in Rn. Each
can be proven by a simple computation.

Vector Spaces and Inner Product Spaces. The notion of a vector
space focusses on having a set of objects called vectors that one can add
and multiply by scalars, where these operations obey the familiar rules of
vector addition. Thus, we refer to Rn as an example of a vector space (also
called a linear space). For example, the space of all continuous functions f
defined on the interval [0, 1] is a vector space. The student is familiar with
how to add functions and how to multipy them by scalars and they obey
similar algebraic properties as the addition of vectors (such as, for example,
α(f + g) = αf + αg).

This same space of functions also provides an example of an inner prod-
uct space, that is, a vector space in which one has a dot product that sat-
isfies the properties 1–5 (page 669 in “Calculus”, Chapter 13. Namely, we
define the inner product of f and g to be

f · g =
∫ 1

0
f(x)g(x) dx.
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Notice that this is analogous to the definition of the inner product of two
vectors in Rn, with the sum replaced by an integral.

The Cauchy-Schwarz Inequality. Using the algebraic properties of the
dot product, we will prove algebraically the following inequality, which is
normally proved by a geometric argument in R3.

Cauchy-Schwarz Inequality
For vectors a and b in Rn, we have

|a · b| ≤ ‖a‖ ‖b‖.

If either a or b is zero, the inequality reduces to 0 ≤ 0, so we can assume
that both are non-zero. Then

0 ≤
∣∣∣∣∣∣∣∣ a
‖a‖
− b
‖b‖

∣∣∣∣∣∣∣∣2 = 1− 2a · b
‖a‖ ‖b‖

+ 1;

that is,

0 ≤ − 2a · b
‖a‖ ‖b‖

.

Rearranging, we get
a · b ≤ ‖a‖ ‖b‖.

The same argument using a plus sign instead of minus gives

−a · b ≤ ‖a‖ ‖b‖.

The two together give the stated inequality, since |a · b| = ±a · b de-
pending on the sign of a · b.

If the vectors a and b in the Cauchy-Schwarz inequality are both nonzero,
the inequality shows that the quotient a·b

‖a‖ ‖b‖ lies between −1 and 1. Any
number in the interval [−1, 1] is the cosine of a unique angle θ between 0
and π; by analogy with the 2 and 3-dimensional cases, we call

θ = cos−1 a · b
‖a‖ ‖b‖

the angle between the vectors a and b.

Informal Discussion. Notice that the reasoning above is oppo-
site to the geometric reasoning normally done in R3. That is be-
cause, in Rn, we have no geometry to begin with, so we start with
algebraic definitions and define the geometric notions in terms of
them.
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The Triangle Inequality. We can derive the triangle inequality from the
Cauchy-Schwarz inequality: a · b ≤ |a · b| ≤ ‖a‖ ‖b‖, so that

‖a + b‖2 = ‖a‖2 + 2a · b + ‖b‖2 ≤ ‖a‖2 + 2‖a‖‖b‖+ ‖b‖2.

Hence, we get ‖a+b‖2 ≤ (‖a‖+‖b‖)2; taking square roots gives the following
result.

Triangle Inequality
Let vectors a and b be vectors in Rn. Then

‖a + b‖ ≤ ‖a‖+ ‖b‖.

If the Cauchy-Schwarz and triangle inequalities are written in terms of
components, they look like this:∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

a2
i

) 1
2
(

n∑
i=1

b2i

) 1
2

;

and (
n∑

i=1

(ai + bi)2
) 1

2

≤

(
n∑

i=1

a2
i

) 1
2

+

(
n∑

i=1

b2i

) 1
2

.

The fact that the proof of the Cauchy-Schwarz inequality depends only
on the properties of vectors and of the inner product means that the proof
works for any inner product space and not just for Rn. For example, for the
space of continuous functions on [0, 1], the Cauchy-Schwarz inequality reads∣∣∣∣∫ 1

0
f(x)g(x) dx

∣∣∣∣ ≤
√∫ 1

0
[f(x)]2 dx

√∫ 1

0
[g(x)]2 dx

and the triangle inequality reads√∫ 1

0
[f(x) + g(x)]2 dx ≤

√∫ 1

0
[f(x)]2 dx+

√∫ 1

0
[g(x)]2 dx.
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Example 1. Verify the Cauchy-Schwarz and triangle inequalities for a =
(1, 2, 0,−1) and b = (−1, 1, 1, 0).

Solution.

‖a‖ =
√

12 + 22 + 02 + (−1)2 =
√

6
‖b‖ =

√
(−1)2 + 12 + 12 + 02 =

√
3

a · b = 1(−1) + 2 · 1 + 0 · 1 + (−1)0 = 1
a + b = (0, 3, 1,−1)
‖a + b‖ =

√
02 + 32 + 12 + (−1)2 =

√
11.

We compute a · b = 1 and ‖a‖ ‖b‖ =
√

6
√

3 ≈ 4.24, which verifies the
Cauchy-Schwarz inequality. Similarly, we can check the triangle inequality:

‖a + b‖ =
√

11 ≈ 3.32,

while
‖a‖ + ‖b‖ = 2.45 + 1.73 ≈

√
6 +
√

3 ≈ 4.18,

which is larger. �

Distance. By analogy with R3, we can define the notion of distance in
Rn; namely, if a and b are points in Rn, the distance between a and b is
defined to be ‖a − b‖, or the length of the vector a − b. There is no cross
product defined on Rn except for n = 3, because it is only in R3 that there
is a unique direction perpendicular to two (linearly independent) vectors. It
is only the dot product that has been generalized.

Informal Discussion. By focussing on different ways of thinking
about the cross product, it turns out that there is a generalization of
the cross product to Rn. This is part of a calculus one learns in more
advanced courses that was discovered by Cartan around 1920. This
calculus is closely related to how one generalizes the main integral
theorems of Green, Gauss and Stokes’ to Rn.

Matrices. Generalizing 2× 2 and 3× 3 matrices, we can consider m× n
matrices, that is, arrays of mn numbers:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 an2 . . . amn

 .
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Note that an m× n matrix has m rows and n columns. The entry aij goes
in the ith row and the jth column. We shall also write A as [aij ]. A square
matrix is one for which m = n.

Addition and Scalar Multiplication. We define addition and multi-
plication by a scalar componentwise, as we did for vectors. Given two
m × n matrices A and B, we can add them to obtain a new m × n ma-
trix C = A + B, whose ijth entry cij is the sum of aij and bij . It is clear
that A + B = B + A. Similarly, the difference D = A − B is the matrix
whose entries are dij = aij − bij .

Example 2.

(a)
[

2 1 0
3 4 1

]
+
[
−1 1 3

0 0 7

]
=
[

1 2 3
3 4 8

]
.

(b)
[

1 2
]

+
[

0 −1
]

=
[

1 1
]
.

(c)
[

2 1
1 2

]
−
[

1 0
0 1

]
=
∣∣∣∣ 1 1

1 1

]
. �

Given a scalar λ and an m × n matrix A, we can multiply A by λ to
obtain a new m × n matrix λA = C, whose ijth entry cij is the product
λaij .

Example 3.

3

 1 −1 2
0 1 5
1 0 3

 =

 3 −3 6
0 3 15
3 0 9

 . �

Matrix Multiplication. Next we turn to the most important operation,
that of matrix multiplication . If A = [aij ] is anm×nmatrix and B = [bij ]
is an n× p matrix, then AB = C is the m× p matrix whose ijth entry is

cij =
n∑

k=1

aikbkj ,

which is the dot product of the ith row of A and the jth column of B.

One way to motivate matrix multiplication is via substitution of one set
of linear equations into another. Suppose, for example, one has the linear
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equations

a11x1 + a12x2 = y1

a21x1 + a22x2 = y2

and we want to substitute (or change variables) the expressions

x1 = b11u1 + b12u2

x2 = b21u1 + b22u2

Then one gets the equations (as is readily checked)

c11u1 + c12u2 = y1

c21u1 + c22u2 = y2

where the coefficient matrix of cij is given by the product of the matrices aij

and bij . Similar considerations can be used to motivate the multiplication
of arbitrary matrices (as long as the matrices can indeed be multiplied.)

Example 4. Let

A =

 1 0 3
2 1 0
1 0 0

 and B =

 0 1 0
1 0 0
0 1 1

 .
Then

AB =

 0 4 3
1 2 0
0 1 0

 and BA =

 2 1 0
1 0 3
3 1 0

 . �

This example shows that matrix multiplication is not commutative.
That is, in general,

AB 6= BA.

Note that for AB to be defined, the number of columns of A must equal the
number of rows of B.

Example 5. Let

A =
[

2 0 1
1 1 2

]
and B =

 1 0 2
0 2 1
1 1 1

 .
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Then

AB =
[

3 1 5
3 4 5

]
,

but BA is not defined. �

Example 6. Let

A =


1
2
1
3

 and B =
[

2 2 1 2
]
.

Then

AB =


2 2 1 2
4 4 2 4
2 2 1 2
6 6 3 6

 and BA = [13]. �

If we have three matrices A,B, and C such that the products AB and BC
are defined, then the products (AB)C and A(BC) will be defined and equal
(that is, matrix multiplication is associative). It is legitimate, therefore, to
drop the parenthesis and denote the product by ABC.

Example 7. Let

A =
[

3
5

]
, B = [1 1], and C =

[
1
2

]
.

Then

A(BC) =
[

3
5

]
[3] =

[
9

15

]
.

Also,

AB(C) =
[

3 3
5 5

] [
1
2

]
=
[

9
15

]
as well. �
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It is convenient when working with matrices to represent the vector a =

(a1, . . . , an) in Rn by the n × 1 column matrix


a1

a2
...
an

, which we also

denote by a.

Informal Discussion. Less frequently, one also encounters the
1 × n row matrix [a1 . . . an], which is called the transpose of a1

...
an

 and is denoted by aT . Note that an element of Rn (e.

g. (4, 1, 3.2, 6)) is written with parentheses and commas, while
a row matrix (e.g. [7 1 3 2]) is written with square brackets
and no commas. It is also convenient at this point to use the
letters x,y, z, . . . instead of a,b, c, . . . to denote vectors and their
components.

Linear Transformations. If A =

 a11 . . . a1n
...

am1 . . . amn

 is a m×n matrix,

and x = (x1, . . . , xn) is in Rn, we can form the matrix product

Ax =

 a11 . . . a1n
...

am1 . . . amn


 x1

...
xn

 =

 y1
...
ym

 .
The resulting m×1 column matrix can be considered as a vector (y1, . . . , ym)
in Rm. In this way, the matrix A determines a function from Rn to Rm

defined by y = Ax. This function, sometimes indicated by the notation
x 7→ Ax to emphasize that x is transformed into Ax, is called a linear
transformation , since it has the following linearity properties

A(x + y) = Ax +Ay for x and y in Rn

A(αx) = α(Ax) for x in Rn and α in R.

This is related to the general notion of a linear transformation; that
is, a map between vector spaces that satisfies these same properties.
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One can show that any linear transformation T (x) of the vector space
Rn to Rm actually is of the form T (x) = Ax above for some matrix A. In
view of this, one speaks of A as the matrix of the linear transformation. As
in calculus, an important operation on trasformations is their composition.
The main link with matrix multiplication is this: The matrix of a compo-
sition of two linear transformations is the product of the matrices of the
two transformations. Again, one can use this to motivate the definition of
matrix multiplication and it is basic in the study of linear algebra.

Informal Discussion. We will be using abstract linear algebra
very sparingly. If you have had a course in linear algebra it will only
enrich your vector calculus experience. If you have not had such a
course there is no need to worry — we will provide everything that
you will need for vector calculus.

Example 8. If

A =


1 0 3
−1 0 1

2 1 2
−1 2 1

 ,
then the function x 7→ Ax from R3 to R4 is defined by

 x1

x2

x3

 7→


1 0 3
−1 0 1

2 1 2
−1 2 1


 x1

x2

x3

 =


x1 + 3x3

−x1 + x3

2x1 + x2 + 2x3

−x1 + 2x2 + x3

 . �

Example 9. The following illustrates what happens to a specific point
when mapped by the 4× 3 matrix of Example 8:

Ae2 =


1 0 3
−1 0 1

2 1 2
−1 2 1


 0

1
0

 =


0
0
1
2

 = 2nd column of A. �

Inverses of Matrices. An n× n matrix is said to be invertible if there
is an n× n matrix B such that

AB = BA = In,
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where

In =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1


is the n × n identity matrix. The matrix In has the property that InC =
CIn = C for any n × n matrix C. We denote B by A−1 and call A−1 the
inverse of A. The inverse, when it exists, is unique.

Example 10. If

A =

 2 4 0
0 2 1
3 0 2

 , then A−1 =
1
20

 4 −8 4
3 4 −2
−6 12 4

 ,
since AA−1 = I3 = A−1A, as may be checked by matrix multiplication. �

If A is invertible, the equation Ax = b can be solved for the vector x by
multiplying both sides by A−1 to obtain x = A−1b.

Solving Systems of Equations. Finding inverses of matrices is more or
less equivalent to solving systems of linear equations. The fundamental fact
alluded to above is that

Write a system of n linear equations in n unknowns in the
form Ax = b. It has a unique solution for any b if and only if
the matrix A has an inverse and in this case the solution is given
by x = A−1b.

The basic methods for solving linear equations learned in Math 1b can
be brought to bear in this context. These include Cramer’s Rule and row
reduction.

Example 11. Consider the system of equations

3x+ 2y = u

−x+ y = v



Notes for CIT Mathematics 1c 12

which can be readily solved by row reduction to give

x =
u

5
− 2v

5

y =
u

5
+

3v
5

If we write the system of equations as[
3 2
−1 1

] [
x
y

]
=
[
u
v

]
and the solution as [

x
y

]
=
[

1
5 −2

5
1
5

3
5

] [
u
v

]
then we see that [

3 2
−1 1

]−1

=
[

1
5 −2

5
1
5

3
5

]
which can also be checked by matrix multiplication.

If one encounters an n×n system that does not have a solution, then one
can conclude that the matrix of coefficients does not have an inverse. One
can also conclude that the matrix of coefficients does not have an inverse if
there are multiple solutions.

Determinants. One way to approach determinants is to take the defini-
tion of the determinant of a 2 × 2 and a 3 × 3 matrix as a starting point.
This can then be generalized to n×n determinants. We illustrate here how
to write the determinant of a 4 × 4 matrix in terms of the determinants of
3× 3 matrices:

∣∣∣∣∣∣∣∣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣∣
a22 a23 a24

a32 a33 a34

a42 a43 a44

∣∣∣∣∣∣− a12

∣∣∣∣∣∣
a21 a23 a24

a31 a33 a34

a41 a43 a44

∣∣∣∣∣∣
+ a13

∣∣∣∣∣∣
a21 a22 a24

a31 a32 a34

a41 a42 a44

∣∣∣∣∣∣− a14

∣∣∣∣∣∣
a21 a22 a23

a31 a32 a33

a41 a42 a43

∣∣∣∣∣∣
(note that the signs alternate +,−,+,−, . . .). Continuing this way, one
defines 5× 5 determinants in terms of 4× 4 determinants, and so on.
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The basic properties of 3× 3 determinants remain valid for n× n deter-
minants. In particular, we note the fact that if A is an n× n matrix and B
is the matrix formed by adding a scalar multiple of the kth row (or column)
of A to the lth row (or, respectively, column) of A, then the determinant of
A is equal to the determinant of B. (This fact is used in Example 11 below.)

A basic theorem of linear algebra states that

An n×n matrix A is invertible if and only if the determinant
of A is not zero.

Another basic property is that det(AB) = (detA)(detB). In this text we
leave these assertions unproved.

Example 12. Let

A =


1 0 1 0
1 1 1 1
2 1 0 1
1 1 0 2

 .
Find detA. Does A have an inverse?

Solution. Adding (−1)× first column to the third column and then ex-
panding by minors of the first row, we get

detA =

∣∣∣∣∣∣∣∣
1 0 0 0
1 1 0 1
2 1 −2 1
1 1 −1 2

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣
1 0 1
1 −2 1
1 −1 2

∣∣∣∣∣∣ .
Adding (−1)× first column to the third column of this 3 × 3 determinant
gives

detA =

∣∣∣∣∣∣
1 0 0
1 −2 0
1 −1 1

∣∣∣∣∣∣ =
∣∣∣∣ −2 0
−1 1

∣∣∣∣ = −2.

Thus, detA = −2 6= 0, and so A has an inverse. To actually find the inverse
(if this were asked), one can solve the relevant system of linear equations
(by, for example, row reduction) and proceed as in the previous example.
�



Notes for CIT Mathematics 1c 14

Exercises.

Perform the calculations indicated in Exercises 1 – 4.

1. (1, 4, 5, 6, 7) + (1, 2, 3, 4, 5) =

2. (1, 2, 3, . . . , n) + (0, 1, 2, . . . , n− 1) =

3. 2(1, 2, 3, 4, 5) · (5, 4, 3, 2, 1) =

4. 4(5, 4, 3, 2) · 6(8, 4, 1, 7) =

Verify the Cauchy-Schwarz inequality and the triangle inequality for the
vectors given in Exercises 5 – 8.

5. a = (2, 0,−1),b = (4, 0,−2)

6. a = (1, 0, 2, 6),b = (3, 8, 4, 1)

7. i + j + k, i + k

8. 2i + j, 3i + 4j

Perform the calculations indicated in Exercises 9 – 12.

9.

 1 2 3
4 5 6
7 8 9

+

 4 7 3
8 2 1
0 6 6

 =

10.


0 6 3
2 9 8
1 3 3
2 7 6

+


2 1 7
6 6 6
4 4 4
9 8 1

 =

11.

 2 3 4
7 7 7
1 1 1

−
 2 3 1

1 1 2
3 2 3

 =

12. 6

 1 2 3
4 5 6
7 8 9

 =

In Exercises 13 – 20, find the matrix product or explain why it is not defined.

13.
[

1 2 3
]  4

5
6
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14.
[

1
4

1
2

1
4

]  1
2
1


15.

[
0 1
1 0

] [
a b
c d

]

16.

 1
2
3

 4
5
6



17.

 1 2
3 4
5 6

[ 0 0 0
3 2 1

]

18.

 1 0 0
0 1 0
0 0 1

 a b c
d e f
g h i



19.
[

0 1
2 3

] 1
2
3


20.

([
1 0
2 3

] [
2 4
1 −1

])[
1 1
0 1

]
In Exercises 21 – 24, for the given A, (a) define the mapping x 7→ Ax as
was done in Example 8, and (b) calculate Aa.

21. A =

 1 2 3
4 5 6
7 8 9

 , a =

 1
2
3



22. A =

 0 1 0
1 0 1
0 1 0

 , a =

 4
9
8



23. A =


4 5
9 0
1 1
7 3

 , a =
[

7
9

]
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24. A =
[

4 4 4 0
3 5 5 7

]
, a =


7
9
0
1


In Exercises 25 – 28, determine whether the given matrix has an inverse.

25.
[

1 2
0 1

]

26.
[

1 1
1 1

]

27.

 0 4 5
7 0 6
8 9 0



28.

 1 2 3
4 5 6
7 8 9


29. Let I =

[
1 0
0 1

]
and A =

[
1 2
0 1

]
. Find a matrix B such that

AB = I. Check that BA = I.

30. Verify that the inverse of
[
a b
c d

]
is 1

ad−bc

[
d −b
−c a

]
.

31. Assuming det(AB) = (detA)(detB), verify that (detA)(detA−1) = 1
and conclude that if A has an inverse, then detA 6= 0.

32. Show that, if A,B and C are n × n matrices such that AB = In and
CA = In, then B = C.

33. Define the transpose AT of an m× n matrix A as follows, AT is the
n×m matrix whose ijth entry is the jith entry of A. For instance

[
a b
c d

]T

=
[
a c
b d

]
,

 a b
d e
g h

T

=
[
a d g
b e h

]
.

One can see directly that, if A is a 2×2 or 3×3 matrix, then det(AT ) =
detA. Use this to prove the same fact for 4× 4 matrices.
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34. Let B be the m × 1 column matrix


1
m
1
m
...
1
m

. If A = [a1 . . . am] is any

row matrix, what is AB?

35. Prove that if A is a 4× 4 matrix, then

(a) if B is a matrix obtained from a 4 × 4 matrix A by multiplying
any row or column by a scalar λ, then detB = λ detA; and

(b) det(λA) = λ4 detA.

In Exercises 36 – 38, A,B, and C denote n× n matrices.

36. Is det(A+B) = detA+ detB? Give a proof or counterexample.

37. Does (A+B)(A−B) = A2 −B2?

38. Assuming the law det(AB) = (detA)(detB), prove that det(ABC) =
(detA)(detB)(detC).

39. In the Mathematics 1b final you were asked to solve the system of
equations

x+ y + 2z = 1
3x+ y + 4z = 3

2x+ y = 4

Relate your solution to the inversion problem for the matrix of coeffi-
cients. Find the inverse if it exists.

40. (a) Try to invert the matrix  1 −1 1
2 3 7
1 −2 0


by solving the appropriate system of equations by row reduction.
Find the inverse if it exists or show that an inverse does not exist.

(b) Try to invert the matrix  1 1 1
2 3 7
1 −2 0
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by solving the appropriate system of equations by row reduction.
Find the inverse if it exists or show that an inverse does not exist.


