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1. If true, justify and if false, give a counterexample, or explain why.

(a) Let f(x, y, z) = y − x. Then the line integral of ∇f around the
unit circle x2 +y2 = 1 in the xy plane is π, the area of the circle.

Solution. This is false. The line integral of any gradient around
a closed curve is zero.

(b) Let F be a smooth vector field in space and suppose that the
circulation of F around the circle of radius 1 centered at (0, 0, 0)
and lying in the xy-plane, is zero. Then (∇× F)(0, 0, 0) = 0.

Solution. This is false. There are two reasons this is wrong.
First, one has to have zero circulation for circles of arbitrarily
small radius. Second, one has to have the circles in planes with
arbitrary normal vectors. An explicit counterexample is F = yk,
which has ∇ × F = i. The circulation around any circle in the
xy-plane is zero, but the curl at (0, 0, 0) is not zero.

(c) The center of mass of the region between the spheres x2 + y2 +
z2 = 4 and x2 + y2 + z2 = 9 having mass density

δ(x, y, z) = sin[π(7− x2 − y2 + 5z)]

lies somewhere on the z-axis between z = −3 and z = 3.

Solution. This is true. The mass density is symmetric about
the z-axis (this is because the function δ depends on x and y
only in the combination r2 = x2 + y2) and so the center of mass
lies on this axis of symmetry. On the other hand, the center
of mass should lie between the greatest and least values of z,
namely between z = −3 and z = 3.

(d) If f is a smooth function of (x, y, z), there is a point (x0, y0, z0)
on the sphere x2 + y2 + z2 = 1 such that

∇f(x0, y0, z0) = k(x0i + y0j + z0k)

for some constant k.

Solution. This is true. If we let the point (x0, y0, z0) be a
maximum point for f , and let g(x, y, z) = x2 + y2 + z2, then by
the Lagrange multiplier theorem, there is a constant k such that
∇f(x0, y0, z0) = k∇g(x0, y0, z0), which is the result desired.

2. Find the center of mass of the solid region that consists of all points
(x, y, z) that lie inside the hemisphere

x2 + y2 + z2 = 1,

lie above the xy plane (i.e., z ≥ 0), and lie in the cone z2 ≥ x2 + y2

if the mass density (mass per unit volume at (x, y, z)) is δ(x, y, z) =
1− z.
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Solution. After drawing a figure, we see that the region in question
is described in spherical coordinates by 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤
φ ≤ π/4. By symmetry, the center of mass will lie on the z-axis, so
we need only compute z̄. First of all, the mass is given by integrating
the mass density δ(x, y, z) = 1 − z = 1 − ρ cosφ over the region in
question:

m =

∫ 2π

0

∫ π/4

0

∫ 1

0

(1− ρ cosφ)ρ2 sinφdρdφdθ

=

∫ 2π

0

∫ π/4

0

∫ 1

0

(ρ2 sinφ− ρ3 sinφ cosφ) dρdφdθ

=
1

3
(− cosφ)|π/40 · 2π − 1

4

1

2
(sin2 φ)|π/40 · 2π

= 2π

(
1

3

(
1−
√

2

2

)
− 1

4
· 1

4

)

=
13

24
π −
√

2

3
π

The numerator in the formula for the z-component of the center of
mass is given by

n =

∫ 2π

0

∫ π/4

0

∫ 1

0

ρ cosφ(1− ρ cosφ)ρ2 sinφdρdφdθ.

This is evaluated as with the mass to give

n =
π

8
− 2π

15

(
1−
√

2

4

)
.

Thus, the location of the center of mass is given by (0, 0, n/m).

3. (a) Let S be the surface x2 + 2y2 + 2z2 = 1. Find a parametrization
of S and use it to find the tangent plane to S at ( 1√

2
, 12 , 0).

Solution. This parametrization is given by modifying the spher-
ical coordinate parametrization of the sphere:

Φ =

(
cos θ sinφ,

1√
2

sin θ sinφ,
1√
2

cosφ

)
The normal vector to the surface is given by

Φφ ×Φθ =

∣∣∣∣∣∣
i j k

cos θ cosφ 1√
2

sin θ cosφ − 1√
2

sinφ

− sin θ sinφ 1√
2

cos θ sinφ 0

∣∣∣∣∣∣
= sinφ

(
1

2
sinφ cos θ,

1√
2

sinφ sin θ,
1√
2

cosφ

)
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At the point
(

1√
2
, 12 , 0

)
, where φ = π/2 and θ = π/4, this

becomes ∣∣∣∣∣∣
i j k
0 0 − 1√

2

− 1√
2

1
2 0

∣∣∣∣∣∣ =

(
1

2
√

2
,

1

2
, 0

)

Thus, the tangent plane is given by

1

2
√

2

(
x− 1√

2

)
+

1

2

(
y − 1

2

)
= 0,

that is, x+
√

2y =
√

2.

(b) Verify that the curve c(t) = (cos t)i+ 1√
2
(sin t)j where 0 ≤ t ≤ 2π

lies in the surface S in part (a) and that c′(π4 ) lies in the tangent
plane you found in (a).

Solution. Since x = cos t, y = 1√
2

sin t, z = 0 satisfies x2 +

2y2 + 2z2 = 1, the curve c(t) lies on the surface. Its tangent
vector at the point t = π/4 is

c′(t) =

(
− sin

π

4
,

1√
2

cos
π

4
, 0

)
=

(
−1√

2
,

1

2
, 0

)

This lies in the tangent plane found in (a) after translation to
the point ( 1√

2
, 12 , 0). That is, the point

(x, y, z) =

(
1√
2
,

1

2
, 0

)
+ c′(π/4) = (0, 1, 0)

satisfies the equation x+
√

2y =
√

2, which is clearly true.

4. Let C be the unit circle x2 + z2 = 1, y = 0 oriented counterclockwise
when viewed from along the positive y axis. Let S1 be the surface
x2 +z2 ≤ 1, y = 0 and let S2 be the surface x2 +y2 +z2 = 1, y ≥ 0.

(a) Draw a figure showing possible orientations for S1 and S2.

Solution. See the following figure.
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Figure for part (a)

(b) For F = yi− zj + yz2k, show that∫∫
S1

(∇× F) · dS =

∫∫
S2

(∇× F) · dS.

Solution. Each side equals the line integral

∫
C

F ·ds by Stokes’

theorem and so they are equal to each other.

(c) Evaluate ∫
C

F · ds.

Solution. Write ∫
C

F · ds =

∫∫
S1

(∇× F) · dS

The curl of F is given by∣∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z
y −z yz2

∣∣∣∣∣∣∣∣∣ = (z2 + 1)i− k,

and the area element on S1 is given by dS = j dx dz. Thus,
(∇×F) ·dS = ((z2 +1)i−k) · j dx dz = 0, so the integral is zero.


