Example 1. Find a formula for the divergence of a vector field \mathbf{F} in cylindrical coordinates.

Solution. We proceed along the same lines as the discussion in the text at the end of $\S 8.4$. Consider the situation of the Figure.

The divergence is the flux per unit volume. If $\mathbf{F}=F_{r} \mathbf{e}_{r}+F_{\theta} \mathbf{e}_{\theta}+F_{z} \mathbf{k}$, then the flux out of this cube is, approximately (using the linear approximation),

$$
\begin{aligned}
\text { Flux } & \approx\left[(r+d r) F_{r}(r+d r, \theta, z)-r F_{r}(r, \theta, z)\right] d \theta d z \\
& +\left[F_{\theta}(r, \theta+d \theta, z)-F_{\theta}(r, \theta, z)\right] d r d z \\
& +\left[F_{z}(r, \theta, z+d z)-F_{z}(r, \theta, z)\right] d r \cdot r d \theta \\
& \approx \frac{\partial\left(r F_{r}\right)}{\partial r} d r d \theta d z+\frac{\partial F_{\theta}}{\partial \theta} d r d \theta d z+\frac{\partial F_{z}}{\partial z} r d r d \theta d z .
\end{aligned}
$$

Thus, the flux per unit volume is

$$
\operatorname{div} \mathbf{F}=\frac{1}{r} \frac{\partial}{\partial r}\left(r F_{r}\right)+\frac{1}{r} \frac{\partial F}{\partial \theta}+\frac{\partial F_{z}}{\partial z} . \diamond
$$

Example 2.

(a) Use Gauss' theorem to show that

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S,
$$

where S_{1} and S_{2} are two surfaces having a common boundary.
(b) Prove the same assertion using Stokes' theorem.

Solution.

(a) Since S_{1} and S_{2} have a common boundary, we can apply Gauss' theorem to the region U enclosed by their union:

$$
\iint_{S_{1} \cup S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\iiint_{U} \nabla \cdot(\nabla \times \mathbf{F}) d V=0
$$

since $\nabla \cdot(\nabla \times \mathbf{F})=0$ for any vector field \mathbf{F} by the equality of mixed partials. Assuming that S_{1} and S_{2} are initially oriented so that the induced orientations of their common boundary are the same, we then get:

$$
0=\iint_{S_{1} \cup S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S-\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

(b) By an application of Stokes' theorem, we find that

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\int_{\partial S_{1}} \mathbf{F} \cdot d \mathbf{S},
$$

and

$$
\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\int_{\partial S_{2}} \mathbf{F} \cdot d \mathbf{S},
$$

where S_{1} and S_{2} are assumed to have the same orientations relative to one another as in (a) above. Since $\partial S_{1}=\partial S_{2}$, that does it. \diamond

Example 3. Let

$$
\mathbf{F}(\mathbf{x})=\frac{1}{4 \pi} \sum_{i=1}^{8} 10^{i} \frac{\mathbf{x}-\mathbf{x}_{i}}{\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{3}},
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{8}$ are eight different points in \mathbb{R}^{3}. If S is a closed surface such that $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=11010$, which of the eight points lie inside S ?

Solution. By Gauss' law, we find that

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\frac{1}{4 \pi} \sum_{i=1}^{8} 10^{i} \iint_{S} \frac{\mathbf{x}-\mathbf{x}_{i}}{\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{3}}=\sum_{i=1}^{8} 10^{i} \cdot \begin{cases}1 & \text { if } \mathbf{x}_{i} \text { lies inside } S \\ 0 & \text { otherwise }\end{cases}
$$

From the equation, it is apparent that the only way for the integral to equal 11010 is for S to contain the points $\mathbf{x}_{1}, \mathbf{x}_{3}, \mathbf{x}_{4}$.

