Example 1. Let \mathbf{F} be a conservative vector field in the plane. In the Figure, suppose that in the integral of \mathbf{F} along $A O F$ is 3 , along $O F$ is 2 , and along $A B$ is -5 . Compute the integral of \mathbf{F} along the path BOEF.

Solution. Since \mathbf{F} is conservative, the line integral depends only on the endpoints. Thus, we can take the path BAOF instead. The integral along BAOF $=$ (integral along BA $)+($ integral along AOF $)=-(-5)+3=8 . \diamond$
Example 2. Suppose that the kinetic energy of a particle that moves in a circular path under the influence a force field \mathbf{F} according to Newton's second law (that is, $\mathbf{F}=m \mathbf{a}$) increases after the particle makes one circuit. Can the force field governing the particle's motion be conservative?

Solution. No. If the force field $\mathbf{F}(\mathbf{r})$ is conservative, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=(\text { Energy at start })-(\text { Energy at finish })=0,
$$

which is a contradiction.

