Example 1. Let

$$
\mathbf{F}=\left(y z e^{x}+x y z e^{x}\right) \mathbf{i}+x z e^{x} \mathbf{j}+x y e^{x} \mathbf{k}
$$

Show that the integral of \mathbf{F} around an oriented simple curve C that is the boundary of a surface S is zero.

Solution. By Stokes' theorem,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S .
$$

We calculate

$$
\begin{aligned}
\nabla \times \mathbf{F}= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y z e^{x}+x y z e^{x} & x z e^{x} & x y e^{x}
\end{array}\right| \\
= & {\left[x e^{x}-x e^{x}\right] \mathbf{i}-\left[(y+x y) e^{x}-(y+x y) e^{x}\right] \mathbf{j} } \\
& +\left[(z+x z) e^{x}-(z+x z) e^{x}\right] \mathbf{k}=0 .
\end{aligned}
$$

Hence the integrals are zero. Alternatively, one can observe that $\mathbf{F}=\nabla\left(x y z e^{x}\right)$ and so its integral around any closed curve is zero.

Example 2. Find the integral of

$$
\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}-z \mathbf{k}
$$

around the triangle with vertices $(0,0,0),(0,2,0)$ and $(0,0,3)$, using Stokes' theorem.
Solution. In the figure, C is the triangle in question and S is a surface it bounds. By Stokes' theorem,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S .
$$

Now

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} & y^{2} & -z
\end{array}\right|=0 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}=0 .
$$

Therefore the integral of \mathbf{F} around C is zero.

Example 3. Let C be the curve $x^{2}+y^{2}=1, z=0$ and let S be the surface S_{1} together with S_{2}, where S_{1} is defined by $x^{2}+y^{2} \leq 1, z=-1$ and S_{2} is defined by $x^{2}+y^{2}=1,-1 \leq z \leq 0$.
(a) Draw a figure showing an orientation such that Stokes' theorem applies to the surface S and the curve C.
(b) If R is another surface with boundary C, show that

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{R}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}
$$

(c) If $\mathbf{F}(x, y, z)=\left(y^{3}+e^{x z}\right) \mathbf{i}-\left(x^{3}+e^{y z}\right) \mathbf{j}+e^{x y z} \mathbf{k}$, calculate

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}
$$

where S is the surface given above.

Solution.

(a) The Figure shows the surface with a chosen orientation:

One could, of course, consistently reverse all the orientations.
(b) Each side equals $\int_{C} \mathbf{F} \cdot d \mathbf{S}$ by Stokes' theorem, so they are equal to each other.
(c) Note that

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{3}+e^{x z} & -x^{3}-e^{y z} & e^{x y z}
\end{array}\right| \\
& =\left(x z e^{x y z}+y e^{y z}\right) \mathbf{i}-\left(y z e^{x y z}-x e^{x z}\right) \mathbf{j}+\left(-3 x^{2}-3 y^{2}\right) \mathbf{k} .
\end{aligned}
$$

By (b),

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{D}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}
$$

where D is the unit disk in the $x y$-plane. For $z=0$,

$$
(\nabla \times \mathbf{F})(x, y, 0)=y \mathbf{i}-x \mathbf{j}-3\left(x^{2}+y^{2}\right) \mathbf{k}
$$

and $d \mathbf{S}=-\mathbf{k} d x d y$ (since it is to be oriented compatible with C). Thus,

$$
\begin{aligned}
\iint_{D}(\nabla \times \mathbf{F}) \cdot d \mathbf{S} & =3 \iint_{D}\left(x^{2}+y^{2}\right) d x d y \\
& =3 \int_{0}^{1} \int_{0}^{2 \pi} r^{2} \cdot r d r d \theta \\
& =3 \cdot 2 \pi \cdot \frac{1}{4}=\frac{3 \pi}{2} .
\end{aligned}
$$

